Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Individual differences in stereotypy and neuron subtype translatome with TrkB deletion

Abstract

Motor stereotypies occurring in early-onset neuropsychiatric diseases are associated with dysregulated basal ganglia direct-pathway activity. Disruptions in network connectivity through impaired neuronal structure have been implicated in both rodents and humans. However, the neurobiological mechanisms leading to direct-pathway neuron disconnectivity in stereotypy remain poorly understood. We have a mouse line with Tropomyosin receptor kinase B (TrkB) receptor deletion from D1-expressing cells (D1-Cre-flTrkB) in which a subset of animals shows repetitive rotations and head tics with juvenile onset. Here we demonstrate these behaviors may be associated with abnormal direct-pathway activity by reducing rotations using chemogenetic inhibition of dorsal striatum D1-medium spiny neurons (D1-MSNs) in both juvenile and young-adult mice. Taking advantage of phenotypical differences in animals with similar genotypes, we then interrogated the D1-MSN specific translatome associated with repetitive behavior by using RNA sequencing of ribosome-associated mRNA. Detailed translatome analysis followed by multiplexed gene expression assessment revealed profound alterations in neuronal projection and synaptic structure related genes in stereotypy mice. Examination of neuronal morphology demonstrated dendritic atrophy and dendritic spine loss in dorsal striatum D1-MSNs from mice with repetitive behavior. Together, our results uncover phenotype-specific molecular alterations in D1-MSNs that relate to morphological adaptations in mice displaying stereotypy behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Behavioral and pharmacological characterization of D1-Cre-flTrkB mice.
Fig. 2: D1-MSNs of mice with stereotypy display distinct translatome profiles.
Fig. 3: Gene ontology analysis reveals alterations in morphology-related genes in D1-MSNs of mice with stereotypy.
Fig. 4: Multiplexed mRNA analysis of D1-MSNs.
Fig. 5: Mice with stereotypy display D1-MSN dendritic atrophy and reduced dendritic spines at both 4 and 8 weeks.

Similar content being viewed by others

References

  1. Peter Z, Oliphant ME, Fernandez TV. Motor stereotypies: a pathophysiological review. Front Neurosci. 2017;11:171.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Canales JJ, Graybiel AM. A measure of striatal function predicts motor stereotypy. Nat Neurosci. 2000;3:377–83.

    Article  CAS  PubMed  Google Scholar 

  3. Albin RL, Mink JW. Recent advances in Tourette syndrome research. Trends Neurosci. 2006;29:175–82.

    Article  CAS  PubMed  Google Scholar 

  4. Saka E, Graybiel AM. Pathophysiology of Tourette’s syndrome: striatal pathways revisited. Brain Dev. 2003;25:S15–19.

    Article  PubMed  Google Scholar 

  5. Maia TV, Frank MJ. From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci. 2011;14:154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guehl D, Benazzouz A, Aouizerate B, Cuny E, Rotge JY, Rougier A, et al. Neuronal correlates of obsessions in the caudate nucleus. Biol psychiatry. 2008;63:557–62.

    Article  PubMed  Google Scholar 

  7. Berridge KC, Aldridge JW. Super-stereotypy I: enhancement of a complex movement sequence by systemic dopamine D1 agonists. Synapse. 2000;37:194–204.

    Article  CAS  PubMed  Google Scholar 

  8. Chartoff EH, Marck BT, Matsumoto AM, Dorsa DM, Palmiter RD. Induction of stereotypy in dopamine-deficient mice requires striatal D1 receptor activation. Proc Natl Acad Sci USA. 2001;98:10451–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee Y, Kim H, Kim JE, Park JY, Choi J, Lee JE, et al. Excessive D1 dopamine receptor activation in the dorsal striatum promotes autistic-like behaviors. Mol Neurobiol. 2018;55:5658–71.

    Article  CAS  PubMed  Google Scholar 

  10. Singer HS, Butler IJ, Tune LE, Seifert WE Jr., Coyle JT. Dopaminergic dsyfunction in Tourette syndrome. Ann Neurol. 1982;12:361–6.

    Article  CAS  PubMed  Google Scholar 

  11. Olver JS, O’Keefe G, Jones GR, Burrows GD, Tochon-Danguy HJ, Ackermann U, et al. Dopamine D1 receptor binding in the striatum of patients with obsessive-compulsive disorder. J Affect Disord. 2009;114:321–6.

    Article  CAS  PubMed  Google Scholar 

  12. Visser-Vandewalle V. DBS in tourette syndrome: rationale, current status and future prospects. Acta neurochirurgica Suppl. 2007;97:215–22.

    Article  CAS  Google Scholar 

  13. Zuchner S, Wendland JR, Ashley-Koch AE, Collins AL, Tran-Viet KN, Quinn K, et al. Multiple rare SAPAP3 missense variants in trichotillomania and OCD. Mol Psychiatry. 2009;14:6–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39:25–27.

    Article  CAS  PubMed  Google Scholar 

  15. Abelson JF, Kwan KY, O’Roak BJ, Baek DY, Stillman AA, Morgan TM, et al. Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science. 2005;310:317–20.

    Article  CAS  PubMed  Google Scholar 

  16. Corbit VL, Manning EE, Gittis AH, Ahmari SE. Strengthened inputs from secondary motor cortex to striatum in a mouse model of compulsive behavior. J Neurosci Off J Soc Neurosci. 2019;39:2965–75.

    Article  CAS  Google Scholar 

  17. Rothwell PE, Fuccillo MV, Maxeiner S, Hayton SJ, Gokce O, Lim BK, et al. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell. 2014;158:198–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lennington JB, Coppola G, Kataoka-Sasaki Y, Fernandez TV, Palejev D, Li Y, et al. Transcriptome analysis of the human striatum in Tourette syndrome. Biol Psychiatry. 2016;79:372–82.

    Article  CAS  PubMed  Google Scholar 

  19. Lisboa BCG, Oliveira KC, Tahira AC, Barbosa AR, Feltrin AS, Gouveia G, et al. Initial findings of striatum tripartite model in OCD brain samples based on transcriptome analysis. Sci Rep. 2019;9:3086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Carter AS, Pollock RA. Obsessive compulsive disorder in childhood. Curr Opin pediatrics. 2000;12:325–30.

    Article  CAS  Google Scholar 

  21. American-Psychiatry-Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatry Publishing; 2013.

    Book  Google Scholar 

  22. Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL, et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature. 1997;389:856–60.

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Yui D, Luikart BW, McKay RM, Li Y, Rubenstein JL, et al. Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development. Proc Natl Acad Sci USA. 2012;109:15491–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alonso P, Gratacos M, Menchon JM, Saiz-Ruiz J, Segalas C, Baca-Garcia E, et al. Extensive genotyping of the BDNF and NTRK2 genes define protective haplotypes against obsessive-compulsive disorder. Biol Psychiatry. 2008;63:619–28.

    Article  CAS  PubMed  Google Scholar 

  25. Liu DY, Shen XM, Yuan FF, Guo OY, Zhong Y, Chen JG, et al. The physiology of BDNF and Its relationship with ADHD. Mol Neurobiol. 2015;52:1467–76.

    Article  CAS  PubMed  Google Scholar 

  26. Liu S, Cui J, Niu Z, Yi M, Zhang X, Che F, et al. Do obsessive-compulsive disorder and Tourette syndrome share a common susceptibility gene? An association study of the BDNF Val66Met polymorphism in the Chinese Han population. World J Biol Psychiatry. 2015;16:602–9.

    Article  PubMed  Google Scholar 

  27. Baquet ZC, Gorski JA, Jones KR. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci Off J Soc Neurosci. 2004;; 24:4250–8.

    Article  CAS  Google Scholar 

  28. Baydyuk M, Xu B. BDNF signaling and survival of striatal neurons. Front Cell Neurosci. 2014;8:254.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Besusso D, Geibel M, Kramer D, Schneider T, Pendolino V, Picconi B, et al. BDNF-TrkB signaling in striatopallidal neurons controls inhibition of locomotor behavior. Nat Commun. 2013;4:2031.

    Article  PubMed  CAS  Google Scholar 

  30. Plotkin JL, Day M, Peterson JD, Xie Z, Kress GJ, Rafalovich I, et al. Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington’s disease. Neuron. 2014;83:178–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gong S, Doughty M, Harbaugh CR, Cummins A, Hatten ME, Heintz N, et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci Off J Soc Neurosci. 2007;27:9817–23.

    Article  CAS  Google Scholar 

  32. Luikart BW, Nef S, Shipman T, Parada LF. In vivo role of truncated trkb receptors during sensory ganglion neurogenesis. Neuroscience. 2003;117:847–58.

    Article  CAS  PubMed  Google Scholar 

  33. Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science. 2010;330:385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanz E, Yang L, Su T, Morris DR, McKnight GS, Amieux PS. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc Natl Acad Sci USA. 2009;106:13939–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Engeln M, Bastide MF, Toulme E, Dehay B, Bourdenx M, Doudnikoff E, et al. Selective inactivation of striatal FosB/DeltaFosB-expressing neurons alleviates L-DOPA-induced dyskinesia. Biol Psychiatry. 2016;79:354–61.

    Article  CAS  PubMed  Google Scholar 

  36. Chandra R, Engeln M, Schiefer C, Patton MH, Martin JA, Werner CT, et al. Drp1 mitochondrial fission in D1 neurons mediates behavioral and cellular plasticity during early cocaine abstinence. Neuron. 2017;96:1327–41 e1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fox ME, Chandra R, Menken MS, Larkin EJ, Nam H, Engeln M, et al. Dendritic remodeling of D1 neurons by RhoA/Rho-kinase mediates depression-like behavior. Mol Psychiatry. 2018. https://doi.org/10.1038/s41380-018-0211-5.

  38. Francis TC, Chandra R, Gaynor A, Konkalmatt P, Metzbower SR, Evans B, et al. Molecular basis of dendritic atrophy and activity in stress susceptibility. Mol Psychiatry. 2017;22:1512–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matern MS, Beirl A, Ogawa Y, Song Y, Paladugu N, Kindt KS, et al. Transcriptomic profiling of zebrafish hair cells using RiboTag. Front Cell Dev Biol. 2018;6:47.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shamir R, Maron-Katz A, Tanay A, Linhart C, Steinfeld I, Sharan R, et al. EXPANDER–an integrative program suite for microarray data analysis. BMC Bioinforma. 2005;6:232.

    Article  CAS  Google Scholar 

  43. Sharan R, Shamir R. CLICK: a clustering algorithm with applications to gene expression analysis. Proc Int Conf Intell Syst Mol Biol. 2000;8:307–16.

    CAS  PubMed  Google Scholar 

  44. Janky R, Verfaillie A, Imrichova H, Van de Sande B, Standaert L, Christiaens V, et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol. 2014;10:e1003731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu QR, Rubio FJ, Bossert JM, Marchant NJ, Fanous S, Hou X, et al. Detection of molecular alterations in methamphetamine-activated Fos-expressing neurons from a single rat dorsal striatum using fluorescence-activated cell sorting (FACS). J Neurochem. 2014;128:173–85.

    Article  CAS  PubMed  Google Scholar 

  47. Chandra R, Francis TC, Konkalmatt P, Amgalan A, Gancarz AM, Dietz DM, et al. Opposing role for Egr3 in nucleus accumbens cell subtypes in cocaine action. J Neurosci Off J Soc Neurosci. 2015;35:7927–37.

    Article  CAS  Google Scholar 

  48. Chessum L, Matern MS, Kelly MC, Johnson SL, Ogawa Y, Milon B, et al. Helios is a key transcriptional regulator of outer hair cell maturation. Nature. 2018;563:696–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Engeln M, Mitra S, Chandra R, Gyawali U, Fox ME, Dietz DM, et al. Sex specific role for Egr3 in nucleus accumbens D2-medium spiny neurons following long term abstinence from cocaine self-administration. Biol Psychiatry. 2019. https://doi.org/10.1016/j.biopsych.2019.10.019.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ferreira TA, Blackman AV, Oyrer J, Jayabal S, Chung AJ, Watt AJ, et al. Neuronal morphometry directly from bitmap images. Nat Methods. 2014;11:982–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rodriguez A, Ehlenberger DB, Dickstein DL, Hof PR, Wearne SL. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PloS One. 2008;3:e1997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Gilbert DL, Budman CL, Singer HS, Kurlan R, Chipkin RE. A D1 receptor antagonist, ecopipam, for treatment of tics in Tourette syndrome. Clin Neuropharmacol. 2014;37:26–30.

    Article  CAS  PubMed  Google Scholar 

  53. Maia TV, Conceicao VA. Dopaminergic disturbances in Tourette syndrome: an integrative account. Biol Psychiatry. 2018;84:332–44.

    Article  CAS  PubMed  Google Scholar 

  54. Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010;466:622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stachniak TJ, Ghosh A, Sternson SM. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus–>midbrain pathway for feeding behavior. Neuron. 2014;82:797–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science. 2017;357:503–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abramowitz JS, Taylor S, McKay D. Obsessive-compulsive disorder. Lancet. 2009;374:491–9.

    Article  PubMed  Google Scholar 

  58. Chandra R, Engeln M, Francis TC, Konkalmatt P, Patel D, Lobo MK. A role for peroxisome proliferator-activated receptor gamma coactivator-1alpha in nucleus accumbens neuron subtypes in cocaine action. Biol Psychiatry. 2017;81:564–72.

    Article  CAS  PubMed  Google Scholar 

  59. Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell. 2008;135:738–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lobo MK, Karsten SL, Gray M, Geschwind DH, Yang XW. FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains. Nat Neurosci. 2006;9:443–52.

    Article  CAS  PubMed  Google Scholar 

  61. Ka M, Kim WY. Microtubule-actin crosslinking factor 1 is required for dendritic arborization and axon outgrowth in the developing brain. Mol Neurobiol. 2016;53:6018–32.

    Article  CAS  PubMed  Google Scholar 

  62. Higuchi Y, Hashiguchi A, Yuan J, Yoshimura A, Mitsui J, Ishiura H, et al. Mutations in MME cause an autosomal-recessive Charcot-Marie-Tooth disease type 2. Ann Neurol. 2016;79:659–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuang XL, Zhao XM, Xu HF, Shi YY, Deng JB, Sun GT. Spatio-temporal expression of a novel neuron-derived neurotrophic factor (NDNF) in mouse brains during development. BMC Neurosci. 2010;11:137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Chen YK, Chen CY, Hu HT, Hsueh YP. CTTNBP2, but not CTTNBP2NL, regulates dendritic spinogenesis and synaptic distribution of the striatin-PP2A complex. Mol Biol Cell. 2012;23:4383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Toman RE, Payne SG, Watterson KR, Maceyka M, Lee NH, Milstien S, et al. Differential transactivation of sphingosine-1-phosphate receptors modulates NGF-induced neurite extension. J Cell Biol. 2004;166:381–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106-7:1–16.

    Article  Google Scholar 

  67. Armentano M, Filosa A, Andolfi G, Studer M. COUP-TFI is required for the formation of commissural projections in the forebrain by regulating axonal growth. Development. 2006;133:4151–62.

    Article  CAS  PubMed  Google Scholar 

  68. Ahmari SE, Spellman T, Douglass NL, Kheirbek MA, Simpson HB, Deisseroth K, et al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science. 2013;340:1234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fan S, van den Heuvel OA, Cath DC, de Wit SJ, Vriend C, Veltman DJ, et al. Altered functional connectivity in resting state networks in Tourette’s disorder. Front Hum Neurosci. 2018;12:363.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Worbe Y, Marrakchi-Kacem L, Lecomte S, Valabregue R, Poupon F, Guevara P, et al. Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome. Brain: a J Neurol. 2015;138:472–82.

    Article  Google Scholar 

  71. Hao H, Chen C, Mao W, Xia W, Yi Z, Zhao P, et al. Alterations in resting-state local functional connectivity in obsessive-compulsive disorder. J Affect Disord. 2019;245:113–9.

    Article  PubMed  Google Scholar 

  72. Sato D, Lionel AC, Leblond CS, Prasad A, Pinto D, Walker S, et al. SHANK1 deletions in males with autism spectrum disorder. Am J Hum Genet. 2012;90:879–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Turrigiano GG. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell. 2008;135:422–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Francis TC, Gaynor A, Chandra R, Fox ME, Lobo MK. The selective RhoA inhibitor rhosin promotes stress resiliency through enhancing D1-medium spiny neuron plasticity and reducing hyperexcitability. Biol Psychiatry. 2019;85:12.

    Article  CAS  Google Scholar 

  75. Koo JW, Lobo MK, Chaudhury D, Labonte B, Friedman A, Heller E, et al. Loss of BDNF signaling in D1R-expressing NAc neurons enhances morphine reward by reducing GABA inhibition. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2014;39:2646–53.

    Article  CAS  Google Scholar 

  76. Brackenbury WJ, Yuan Y, O’Malley HA, Parent JM, Isom LL. Abnormal neuronal patterning occurs during early postnatal brain development of Scn1b-null mice and precedes hyperexcitability. Proc Natl Acad Sci USA. 2013;110:1089–94.

    Article  CAS  PubMed  Google Scholar 

  77. Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P. BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature. 2001;411:86–89.

    Article  CAS  PubMed  Google Scholar 

  78. Lee FS, Chao MV. Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci USA. 2001;98:3555–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cazorla M, de Carvalho FD, Chohan MO, Shegda M, Chuhma N, Rayport S, et al. Dopamine D2 receptors regulate the anatomical and functional balance of basal ganglia circuitry. Neuron. 2014;81:153–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gertler TS, Chan CS, Surmeier DJ. Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci Off J Soc Neurosci. 2008;; 28:10814–24.

    Article  CAS  Google Scholar 

  81. Ma YY, Cepeda C, Chatta P, Franklin L, Evans CJ, Levine MS. Regional and cell-type-specific effects of DAMGO on striatal D1 and D2 dopamine receptor-expressing medium-sized spiny neurons. ASN Neuro. 2012;4:e00077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Gerfen CR. The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci. 1992;15:285–320.

    Article  CAS  PubMed  Google Scholar 

  83. Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 2003;425:917–25.

    Article  CAS  PubMed  Google Scholar 

  84. Lerner A, Bagic A, Simmons JM, Mari Z, Bonne O, Xu B, et al. Widespread abnormality of the gamma-aminobutyric acid-ergic system in Tourette syndrome. Brain. 2012;135:1926–36.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Porta M, Brambilla A, Cavanna AE, Servello D, Sassi M, Rickards H, et al. Thalamic deep brain stimulation for treatment-refractory Tourette syndrome: two-year outcome. Neurology. 2009;73:1375–80.

    Article  CAS  PubMed  Google Scholar 

  86. Bronson SL, Bale TL. Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology. 2014;155:2635–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Chan JC, Nugent BM, Bale TL. Parental advisory: maternal and paternal stress can impact offspring neurodevelopment. Biol Psychiatry. 2018;83:886–94.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Tourette Syndrome Association and NIH R01DA038613 (MKL), R01DC013817 (RH), and Association Française du Syndrôme de Gilles de la Tourette (ME). The authors would like to thank Sunayana Mitra, Maggie S Mattern, Victoria Rhodes, Katherine Duarte, and Heather Brewer-Scotti for their technical help.

Author information

Authors and Affiliations

Authors

Contributions

ME, RH, and MKL designed the experiments. ME, AL, ST, and TCF conducted behavioral experiments, MDT and BE provided animal support. ME and RC conducted cell-type-specific RNA extraction. ME, YS, and RH performed bioinformatic analyses. ME and MEF conducted neuronal morphology analysis. ME and MKL wrote the paper with contributions from all authors.

Corresponding author

Correspondence to Mary Kay Lobo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engeln, M., Song, Y., Chandra, R. et al. Individual differences in stereotypy and neuron subtype translatome with TrkB deletion. Mol Psychiatry 26, 1846–1859 (2021). https://doi.org/10.1038/s41380-020-0746-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0746-0

This article is cited by

Search

Quick links