Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Differential regulation of alcohol consumption and reward by the transcriptional cofactor LMO4

Abstract

Repeated alcohol exposure leads to changes in gene expression that are thought to underlie the transition from moderate to excessive drinking. However, the mechanisms by which these changes are integrated into a maladaptive response that leads to alcohol dependence are not well understood. One mechanism could involve the recruitment of transcriptional co-regulators that bind and modulate the activity of transcription factors. Our results indicate that the transcriptional regulator LMO4 is one such candidate regulator. Lmo4-deficient mice (Lmo4gt/+) consumed significantly more and showed enhanced preference for alcohol in a 24 h intermittent access drinking procedure. shRNA-mediated knockdown of Lmo4 in the nucleus accumbens enhanced alcohol consumption, whereas knockdown in the basolateral amygdala (BLA) decreased alcohol consumption and reduced conditioned place preference for alcohol. To ascertain the molecular mechanisms that underlie these contrasting phenotypes, we carried out unbiased transcriptome profiling of these two brain regions in wild type and Lmo4gt/+ mice. Our results revealed that the transcriptional targets of LMO4 are vastly different between the two brain regions, which may explain the divergent phenotypes observed upon Lmo4 knockdown. Bioinformatic analyses revealed that Oprk1 and genes related to the extracellular matrix (ECM) are important transcriptional targets of LMO4 in the BLA. Chromatin immunoprecipitation revealed that LMO4 bound Oprk1 promoter elements. Consistent with these results, disruption of the ECM or infusion of norbinaltorphimine, a selective kappa opioid receptor antagonist, in the BLA reduced alcohol consumption. Hence our results indicate that an LMO4-regulated transcriptional network regulates alcohol consumption in the BLA.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lmo4 haploinsuffficiency increase alcohol consumption and preference.
Fig. 2: Knockdown of LMO4 in the NAc increases alcohol consumption.
Fig. 3: Knockdown of LMO4 in the BLA reduces alcohol consumption and conditioned place preference.
Fig. 4: Transcriptome analysis identifies ECM-related genes as transcriptional targets of LMO4 that regulate alcohol consumption.
Fig. 5: BLA KORs promote alcohol consumption.

References

  1. Bell RL, Kimpel MW, McClintick JN, Strother WN, Carr LG, Liang T, et al. Gene expression changes in the nucleus accumbens of alcohol-preferring rats following chronic ethanol consumption. Pharmacol Biochem Behav. 2009;94:131–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hitzemann R, Bottomly D, Darakjian P, Walter N, Iancu O, Searles R, et al. Genes, behavior and next-generation RNA sequencing. Genes Brain Behav. 2013;12:1–12.

    Article  CAS  PubMed  Google Scholar 

  3. Mayfield RD, Lewohl JM, Dodd PR, Herlihy A, Liu J, Harris RA. Patterns of gene expression are altered in the frontal and motor cortices of human alcoholics. J Neurochem. 2002;81:802–13.

    Article  CAS  PubMed  Google Scholar 

  4. Most D, Leiter C, Blednov YA, Harris RA, Mayfield RD. Synaptic microRNAs coordinately regulate synaptic mRNAs: perturbation by chronic alcohol consumption. Neuropsychopharmacology. 2016;41:538–48.

    Article  CAS  PubMed  Google Scholar 

  5. Mulligan MK, Ponomarev I, Hitzemann RJ, Belknap JK, Tabakoff B, Harris RA, et al. Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. Proc Natl Acad Sci USA. 2006;103:6368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pandey SC, Ugale R, Zhang H, Tang L, Prakash A. Brain chromatin remodeling: a novel mechanism of alcoholism. J Neurosci. 2008;28:3729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Repunte-Canonigo V, Shin W, Vendruscolo LF, Lefebvre C, van der Stap L, Kawamura T, et al. Identifying candidate drivers of alcohol dependence-induced excessive drinking by assembly and interrogation of brain-specific regulatory networks. Genome Biol. 2015;16:68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ponomarev I, Wang S, Zhang L, Harris RA, Mayfield RD. Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci. 2012;32:1884–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scibilia RJ, Lachowicz JE, Kilts CD. Topographic nonoverlapping distribution of D1 and D2 dopamine receptors in the amygdaloid nuclear complex of the rat brain. Synapse. 1992;11:146–54.

    Article  CAS  PubMed  Google Scholar 

  10. Blednov YA, Benavidez JM, Black M, Ferguson LB, Schoenhard GL, Goate AM, et al. Peroxisome proliferator-activated receptors α and γ are linked with alcohol consumption in mice and withdrawal and dependence in humans. Alcohol Clin Exp Res. 2015;39:136–45.

    Article  CAS  PubMed  Google Scholar 

  11. Heberlein U, Tsai LT, Kapfhamer D, Lasek AW. Drosophila, a genetic model system to study cocaine-related behaviors: a review with focus on LIM-only proteins. Neuropharmacology. 2009;56:97–106.

    Article  CAS  PubMed  Google Scholar 

  12. Kashani AH, Qiu Z, Jurata L, Lee SK, Pfaff S, Goebbels S, et al. Calcium activation of the LMO4 transcription complex and its role in the patterning of thalamocortical connections. J Neurosci. 2006;26:8398–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lasek AW, Kapfhamer D, Kharazia V, Gesch J, Giorgetti F, Heberlein U. Lmo4 in the nucleus accumbens regulates cocaine sensitivity. Genes Brain Behav. 2010;9:817–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maiya R, Mangieri RA, Morrisett RA, Heberlein U, Messing RO. A selective role for Lmo4 in cue-reward learning. J Neurosci. 2015;35:9638–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hwa LS, Chu A, Levinson SA, Kayyali TM, DeBold JF, Miczek KA. Persistent escalation of alcohol drinking in C57BL/6J mice with intermittent access to 20% ethanol. Alcohol Clin Exp Res. 2011;35:1938–47.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lim JP, Zou ME, Janak PH, Messing RO. Responses to ethanol in C57BL/6 versus C57BL/6 × 129 hybrid mice. Brain Behav. 2012;2:22–31.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lasek AW, Azouaou N. Virus-delivered RNA interference in mouse brain to study addiction-related behaviors. Methods Mol Biol. 2010;602:283–98.

    Article  CAS  PubMed  Google Scholar 

  18. Maiya R, Kharazia V, Lasek AW, Heberlein U. Lmo4 in the basolateral complex of the amygdala modulates fear learning. PLoS ONE. 2012;7:e34559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Osterndorff-Kahanek E, Ponomarev I, Blednov YA, Harris RA. Gene expression in brain and liver produced by three different regimens of alcohol consumption in mice: comparison with immune activation. PLoS ONE. 2013;8:e59870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Osterndorff-Kahanek EA, Becker HC, Lopez MF, Farris SP, Tiwari GR, Nunez YO, et al. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks. PLoS ONE. 2015;10:e0121522.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hall AW, Battenhouse AM, Shivram H, Morris AR, Cowperthwaite MC, Shpak M, et al. Bivalent chromatin domains in glioblastoma reveal a subtype-specific signature of glioma stem cells. Cancer Res. 2018;78:2463–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lasek AW, Lim J, Kliethermes CL, Berger KH, Joslyn G, Brush G, et al. An evolutionary conserved role for anaplastic lymphoma kinase in behavioral responses to ethanol. PLoS ONE. 2011;6:e22636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee AM, Zou ME, Lim JP, Stecher J, McMahon T, Messing RO. Deletion of Prkcz increases intermittent ethanol consumption in mice. Alcohol Clin Exp Res. 2014;38:170–8.

    Article  PubMed  CAS  Google Scholar 

  24. Millan EZ, Kim HA, Janak PH. Optogenetic activation of amygdala projections to nucleus accumbens can arrest conditioned and unconditioned alcohol consummatory behavior. Neuroscience. 2017;360:106–17.

    Article  CAS  PubMed  Google Scholar 

  25. Cunningham CL, Gremel CM, Groblewski PA. Drug-induced conditioned place preference and aversion in mice. Nat Protoc. 2006;1:1662–70.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S. Weighted gene coexpression network analysis: state of the art. J Biopharm Stat. 2010;20:281–300.

    Article  PubMed  Google Scholar 

  27. Lau LW, Cua R, Keough MB, Haylock-Jacobs S, Yong VW. Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat Rev Neurosci. 2013;14:722–9.

    Article  CAS  PubMed  Google Scholar 

  28. Morikawa S, Ikegaya Y, Narita M, Tamura H. Activation of perineuronal net-expressing excitatory neurons during associative memory encoding and retrieval. Sci Rep. 2017;7:46024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gogolla N, Caroni P, Lüthi A, Herry C. Perineuronal nets protect fear memories from erasure. Science. 2009;325:1258–61.

    Article  CAS  PubMed  Google Scholar 

  30. Xue YX, Xue LF, Liu JF, He J, Deng JH, Sun SC, et al. Depletion of perineuronal nets in the amygdala to enhance the erasure of drug memories. J Neurosci. 2014;34:6647–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Anderson RI, Lopez MF, Becker HC. Stress-induced enhancement of ethanol intake in C57BL/6J mice with a history of chronic ethanol exposure: involvement of kappa opioid receptors. Front Cell Neurosci. 2016;10:45.

    PubMed  PubMed Central  Google Scholar 

  32. Anderson RI, Lopez MF, Griffin WC, Haun HL, Bloodgood DW, Pati D, et al. Dynorphin-kappa opioid receptor activity in the central amygdala modulates binge-like alcohol drinking in mice. Neuropsychopharmacology. 2019;44:1084–92.

    Article  CAS  PubMed  Google Scholar 

  33. Chavkin C, Koob GF. Dynorphin, dysphoria, and dependence: the stress of addiction. Neuropsychopharmacology. 2016;41:373–4.

    Article  CAS  PubMed  Google Scholar 

  34. Crowley NA, Kash TL. Kappa opioid receptor signaling in the brain: circuitry and implications for treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2015;62:51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kissler JL, Sirohi S, Reis DJ, Jansen HT, Quock RM, Smith DG, et al. The one-two punch of alcoholism: role of central amygdala dynorphins/kappa-opioid receptors. Biol Psychiatry. 2014;75:774–82.

    Article  CAS  PubMed  Google Scholar 

  36. Li Z, Zhang H. Analyzing Interaction of μ-, δ- and κ-opioid receptor gene variants on alcohol or drug dependence using a pattern discovery-based method. J Addict Res Ther. 2013;(Suppl 7):007.

    Google Scholar 

  37. Nygard SK, Hourguettes NJ, Sobczak GG, Carlezon WA, Bruchas MR. Stress-induced reinstatement of nicotine preference requires dynorphin/kappa opioid activity in the basolateral amygdala. J Neurosci. 2016;36:9937–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li X, Wolf ME. Multiple faces of BDNF in cocaine addiction. Behav Brain Res. 2015;279:240–54.

    Article  CAS  PubMed  Google Scholar 

  39. Lobo MK, Covington HE, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science. 2010;330:385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zaman T, Zhou X, Pandey NR, Qin Z, Keyhanian K, Wen K, et al. LMO4 is essential for paraventricular hypothalamic neuronal activity and calcium channel expression to prevent hyperphagia. J Neurosci. 2014;34:140–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheng Y, Huang CCY, Ma T, Wei X, Wang X, Lu J, et al. Distinct synaptic strengthening of the striatal direct and indirect pathways drives alcohol consumption. Biol Psychiatry. 2017;81:918–29.

    Article  CAS  PubMed  Google Scholar 

  42. Kovacs KM, Szakall I, O’Brien D, Wang R, Vinod KY, Saito M, et al. Decreased oral self-administration of alcohol in kappa-opioid receptor knock-out mice. Alcohol Clin Exp Res. 2005;29:730–8.

    Article  CAS  PubMed  Google Scholar 

  43. Lasek AW, Chen H, Chen WY. Releasing addiction memories trapped in perineuronal nets. Trends Genet. 2017;34:197–208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Mulholland PJ, Chandler LJ, Kalivas PW. Signals from the fourth dimension regulate drug relapse. Trends Neurosci. 2016;39:472–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Skrzypiec AE, Maiya R, Chen Z, Pawlak R, Strickland S. Plasmin-mediated degradation of laminin gamma-1 is critical for ethanol-induced neurodegeneration. Biol Psychiatry. 2009;66:785–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith AC, Kupchik YM, Scofield MD, Gipson CD, Wiggins A, Thomas CA, et al. Synaptic plasticity mediating cocaine relapse requires matrix metalloproteinases. Nat Neurosci. 2014;17:1655–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Smith AW, Nealey KA, Wright JW, Walker BM. Plasticity associated with escalated operant ethanol self-administration during acute withdrawal in ethanol-dependent rats requires intact matrix metalloproteinase systems. Neurobiol Learn Mem. 2011;96:199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Go BS, Sirohi S, Walker BM. The role of matrix metalloproteinase-9 in negative reinforcement learning and plasticity in alcohol dependence. Addict Biol. 2019;25:e12715.

    PubMed  Google Scholar 

  49. Rubio-Araiz A, Porcu F, Pérez-Hernández M, García-Gutiérrez MS, Aracil-Fernández MA, Gutierrez-López MD, et al. Disruption of blood-brain barrier integrity in postmortem alcoholic brain: preclinical evidence of TLR4 involvement from a binge-like drinking model. Addict Biol. 2017;22:1103–16.

    Article  CAS  PubMed  Google Scholar 

  50. Chen H, He D, Lasek AW. Repeated binge drinking increases perineuronal nets in the insular cortex. Alcohol Clin Exp Res. 2015;39:1930–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bekku Y, Vargová L, Goto Y, Vorísek I, Dmytrenko L, Narasaki M, et al. Bral1: its role in diffusion barrier formation and conduction velocity in the CNS. J Neurosci. 2010;30:3113–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kalus I, Rohn S, Puvirajesinghe TM, Guimond SE, Eyckerman-Kölln PJ, Ten Dam G, et al. Sulf1 and Sulf2 differentially modulate heparan sulfate proteoglycan sulfation during postnatal cerebellum development: evidence for neuroprotective and neurite outgrowth promoting functions. PLoS ONE. 2015;10:e0139853.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants AA025244 (ROM) and AA027293 (RM), and by Graduate Research Fellowship DGE-1110007 from the National Science Foundation to MBP. We thank Haridha Shivram for help with ChIP and Heather Aziz for help with Gas Chromatography.

Author information

Authors and Affiliations

Authors

Contributions

RM, MBP, and ROM designed the experiments. RM and AB performed stereotaxic surgeries. RM, AB, TT, and MTP performed behavioral experiments and analyzed the data. MBP performed in situ hybridization experiments. GRT, RM, and RDM did bioinformatics analysis of RNAseq data. RM, MBP, and ROM wrote the paper.

Corresponding author

Correspondence to Rajani Maiya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiya, R., Pomrenze, M.B., Tran, T. et al. Differential regulation of alcohol consumption and reward by the transcriptional cofactor LMO4. Mol Psychiatry 26, 2175–2186 (2021). https://doi.org/10.1038/s41380-020-0706-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0706-8

This article is cited by

Search

Quick links