Tet3 ablation in adult brain neurons increases anxiety-like behavior and regulates cognitive function in mice

Abstract

TET3 is a member of the ten-eleven translocation (TET) family of enzymes which oxidize 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC). Tet3 is highly expressed in the brain, where 5hmC levels are most abundant. In adult mice, we observed that TET3 is present in mature neurons and oligodendrocytes but is absent in astrocytes. To investigate the function of TET3 in adult postmitotic neurons, we crossed Tet3 floxed mice with a neuronal Cre-expressing mouse line, Camk2a-CreERT2, obtaining a Tet3 conditional KO (cKO) mouse line. Ablation of Tet3 in adult mature neurons resulted in increased anxiety-like behavior with concomitant hypercorticalism, and impaired hippocampal-dependent spatial orientation. Transcriptome and gene-specific expression analysis of the hippocampus showed dysregulation of genes involved in glucocorticoid signaling pathway (HPA axis) in the ventral hippocampus, whereas upregulation of immediate early genes was observed in both dorsal and ventral hippocampal areas. In addition, Tet3 cKO mice exhibit increased dendritic spine maturation in the ventral CA1 hippocampal subregion. Based on these observations, we suggest that TET3 is involved in molecular alterations that govern hippocampal-dependent functions. These results reveal a critical role for epigenetic modifications in modulating brain functions, opening new insights into the molecular basis of neurological disorders.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: TET3 is present in mature neurons and diminished in the brain of Tet3 cKO mice, with no alteration in 5hmC levels.
Fig. 2: Tet3 cKO mice showed increased anxiety-like behavior and corticosterone levels.
Fig. 3: Tet3 cKO mice showed spatial orientation impairment, but normal recognition memory.
Fig. 4: Transcriptome analysis showed a predominant alteration in transcript levels in the ventral hippocampus.
Fig. 5: Three-dimensional morphometric analysis of Golgi-impregnated neurons of the CA1 hippocampus reveals an increase in dendritic spine maturation in Tet3 cKO mice.

References

  1. 1.

    Feng J, Fouse S, Fan G. Epigenetic regulation of neural gene expression and neuronal function. Pediatr Res. 2007;61:58r–63r.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in Mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Szulwach KE, Li X, Li Y, Song CX, Wu H, Dai Q, et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci. 2011;14:1607–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Cadena-del-Castillo C, Valdes-Quezada C, Carmona-Aldana F, Arias C, Bermudez-Rattoni F, Recillas-Targa F. Age-dependent increment of hydroxymethylation in the brain cortex in the triple-transgenic mouse model of Alzheimer’s disease. J Alzheimer’s Dis. 2014;41:845–54.

    CAS  Article  Google Scholar 

  5. 5.

    Santiago M, Antunes C, Guedes M, Sousa N, Marques CJ. TET enzymes and DNA hydroxymethylation in neural development and function—how critical are they? Genomics. 2014;104:334–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Szwagierczak A, Bultmann S, Schmidt CS, Spada F, Leonhardt H. Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res. 2010;38:e181.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7.

    Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation. Neuron. 2007;53:857–69.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Miller CA, Campbell SL, Sweatt JD. DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiol Learn Mem. 2008;89:599–603.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Zhang RR, Cui QY, Murai K, Lim YC, Smith ZD, Jin S, et al. Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell. 2013;13:237–45.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Gontier G, Iyer M, Shea JM, Bieri G, Wheatley EG, Ramalho-Santos M, et al. Tet2 rescues age-related regenerative decline and enhances cognitive function in the adult mouse brain. Cell Rep. 2018;22:1974–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Rudenko A, Dawlaty MM, Seo J, Cheng AW, Meng J, Le T, et al. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron. 2013;79:1109–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Kumar D, Aggarwal M, Kaas GA, Lewis J, Wang J, Ross DL, et al. Tet1 oxidase regulates neuronal gene transcription, active DNA hydroxy-methylation, object location memory, and threat recognition memory. Neuroepigenetics. 2015;4:12–27.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Kaas GA, Zhong C, Eason DE, Ross DL, Vachhani RV, Ming GL, et al. TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron. 2013;79:1086–93.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011;477:606–10.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Kang J, Lienhard M, Pastor WA, Chawla A, Novotny M, Tsagaratou A, et al. Simultaneous deletion of the methylcytosine oxidases Tet1 and Tet3 increases transcriptome variability in early embryogenesis. Proc Natl Acad Sci USA. 2015;112:E4236–45.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Li X, Wei W, Zhao QY, Widagdo J, Baker-Andresen D, Flavell CR, et al. Neocortical Tet3-mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proc Natl Acad Sci USA. 2014;111:7120–5.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Kremer EA, Gaur N, Lee MA, Engmann O, Bohacek J, Mansuy IM. Interplay between TETs and microRNAs in the adult brain for memory formation. Sci Rep. 2018;8:1678.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Yu H, Su Y, Shin J, Zhong C, Guo JU, Weng YL, et al. Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair. Nat Neurosci. 2015;18:836–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Wang L, Li MY, Qu C, Miao WY, Yin Q, Liao J, et al. CRISPR-Cas9-mediated genome editing in one blastomere of two-cell embryos reveals a novel Tet3 function in regulating neocortical development. Cell Res. 2017;27:815–29.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Liu Y, Fu QF, Fu XL. The interaction between cognition and emotion. Chinese Sci Bull. 2009;54:4102–16.

    Article  Google Scholar 

  21. 21.

    Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci. 2014;15:655–69.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Fanselow MS, Dong H-W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65:7–19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Peat JR, Dean W, Clark SJ, Krueger F, Smallwood SA, Ficz G, et al. Genome-wide bisulfite sequencing in zygotes identifies demethylation targets and maps the contribution of TET3 oxidation. Cell Rep. 2014;9:1990–2000.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Santos F, Peat J, Burgess H, Rada C, Reik W, Dean W. Active demethylation in mouse zygotes involves cytosine deamination and base excision repair. Epigenet Chromatin. 2013;6:39.

    Article  CAS  Google Scholar 

  25. 25.

    Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133–40.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Gibb R, Kolb B. A method for vibratome sectioning of Golgi-Cox stained whole rat brain. J Neurosci Methods. 1998;79:1–4.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Bessa JM, Ferreira D, Melo I, Marques F, Cerqueira JJ, Palha JA, et al. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatr. 2008;14:764.

    Article  CAS  Google Scholar 

  29. 29.

    Mateus-Pinheiro A, Alves ND, Patrício P, Machado-Santos AR, Loureiro-Campos E, Silva JM, et al. AP2γ controls adult hippocampal neurogenesis and modulates cognitive, but not anxiety or depressive-like behavior. Mol Psychiatr. 2016;22:1725.

    Article  CAS  Google Scholar 

  30. 30.

    Erdfelder E, Faul F, Buchner A. GPOWER: a general power analysis program. Behav Res Methods, Instrum Comput. 1996;28:1–11.

    Article  Google Scholar 

  31. 31.

    Cohen J, (ed). Statistical power analysis for the behavioral sciences. New York: Academic Press; 1977.

    Google Scholar 

  32. 32.

    Graziano A, Petrosini L, Bartoletti A. Automatic recognition of explorative strategies in the Morris water maze. J Neurosci Methods. 2003;130:33–44.

    PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Moll P, Ante M, Seitz A, Reda T. QuantSeq 3’ mRNA sequencing for RNA quantification. Nat Methods. 2014;11: i–iii.

    CAS  Article  Google Scholar 

  34. 34.

    Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013;41:D377–386.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Kamburov A, Stelzl U, Lehrach H, Herwig R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 2013;41:D793–800.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Reul JMHM, Holsboer F. On the role of corticotropin-releasing hormone receptors in anxiety and depression. Dialogues Clin Neurosci. 2002;4:31–46.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kramer A, Green J, Pollard J Jr., Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30:523–30.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  38. 38.

    Montalban-Loro R, Lozano-Urena A, Ito M, Krueger C, Reik W, Ferguson-Smith AC, et al. TET3 prevents terminal differentiation of adult NSCs by a non-catalytic action at Snrpn. Nat Commun. 2019;10:1726.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. 39.

    Santiago M, Antunes C, Guedes M, Iacovino M, Kyba M, Reik W, et al. Tet3 regulates cellular identity and DNA methylation in neural progenitor cells. Cell Mol Life Sci. 2019. https://doi.org/10.1007/s00018-019-03335-7.

  40. 40.

    Feng J, Pena CJ, Purushothaman I, Engmann O, Walker D, Brown AN, et al. Tet1 in nucleus accumbens opposes depression- and anxiety-like behaviors. Neuropsychopharmacology. 2017;42:1657–69.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    McDonald RJ, Balog RJ, Lee JQ, Stuart EE, Carrels BB, Hong NS. Rats with ventral hippocampal damage are impaired at various forms of learning including conditioned inhibition, spatial navigation, and discriminative fear conditioning to similar contexts. Behav Brain Res. 2018;351:138–51.

    PubMed  Article  Google Scholar 

  42. 42.

    Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, et al. Anxiety cells in a hippocampal-hypothalamic circuit. Neuron. 2018;97:670–.e676.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Yoshida K, Drew MR, Mimura M, Tanaka KF. Serotonin-mediated inhibition of ventral hippocampus is required for sustained goal-directed behavior. Nature Neurosci. 2019;22:770–7.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Faravelli C, Lo Sauro C, Lelli L, Pietrini F, Lazzeretti L, Godini L, et al. The role of life events and HPA axis in anxiety disorders: a review. Current Pharm Des. 2012;18:5663–74.

    CAS  Article  Google Scholar 

  45. 45.

    Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE, et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet. 2000;24:410–4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Kishimoto T, Radulovic J, Radulovic M, Lin CR, Schrick C, Hooshmand F, et al. Deletion of crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat Genet. 2000;24:415–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Coste SC, Kesterson RA, Heldwein KA, Stevens SL, Heard AD, Hollis JH, et al. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat Genet. 2000;24:403–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Preil J, Müller MB, Gesing A, Reul JMHM, Sillaber I, van Gaalen MM, et al. Regulation of the hypothalamic-pituitary-adrenocortical system in mice deficient for CRH receptors 1 and 2. Endocrinology. 2001;142:4946–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Loebrich S, Nedivi E. The function of activity-regulated genes in the nervous system. Physiol Rev. 2009;89:1079–103.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Coutellier L, Beraki S, Ardestani PM, Saw NL, Shamloo M. Npas4: a neuronal transcription factor with a key role in social and cognitive functions relevant to developmental disorders. PloS ONE. 2012;7:e46604.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Ramamoorthi K, Fropf R, Belfort GM, Fitzmaurice HL, McKinney RM, Neve RL, et al. Npas4 regulates a transcriptional program in CA3 required for contextual memory formation. Science. 2011;334:1669–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Ploski JE, Monsey MS, Nguyen T, DiLeone RJ, Schafe GE. The neuronal PAS domain protein 4 (Npas4) is required for new and reactivated fear memories. PloS ONE. 2011;6:e23760.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Jaehne EJ, Klaric TS, Koblar SA, Baune BT, Lewis MD. Effects of Npas4 deficiency on anxiety, depression-like, cognition and sociability behaviour. Behav Brain Res. 2015;281:276–82.

    CAS  Article  Google Scholar 

  54. 54.

    Berry KP, Nedivi E. Spine dynamics: are they all the same? Neuron. 2017;96:43–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Mattison HA, Popovkina D, Kao JPY, Thompson SM. The role of glutamate in the morphological and physiological development of dendritic spines. Eur J Neurosci. 2014;39:1761–70.

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    McKinney RA. Excitatory amino acid involvement in dendritic spine formation, maintenance and remodelling. J Physiol. 2010;588(Pt 1):107–16.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Antunes C, Sousa N, Pinto L, Marques CJ. TET enzymes in neurophysiology and brain function. Neurosci Biobehav Rev. 2019;102:337–44.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Dong E, Gavin DP, Chen Y, Davis J. Upregulation of TET1 and downregulation of APOBEC3A and APOBEC3C in the parietal cortex of psychotic patients. Transl Psychiatry. 2012;2:e159.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank Julian Peat and Christel Krueger (Babraham Institute, UK) for help with the Tet3 floxed mice, João Sobral (Genomics Unit, IGC, Portugal) for RNA-Seq analysis, and Daniel Neves and Daniel Sobral (Bioinformatics Unit, IGC, Portugal) for Bioinformtaic analysis. This work was supported by National Funds through Foundation for Science and Technology (FCT) fellowships (PD/BD/106049/2015 to CA, PD/BD/128074/2016 to JDS, IF/01079/2014 to LP, SFRH/BD/101298/2014 to SGG, SFRH/BD/131278/2017 to ELC, and IF/00047/2012 and CEECIND/00371/2017 to CJM); FCT project grant (PTDC/BIA-BCM/121276/2010) to CJM; EpiGeneSys Small Collaborative project to LP and MRB; BIAL Foundation Grant 427/14 to LP; Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER; NORTE-01-0145-FEDER-000013); FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and National Funds, through the FCT (POCI-01-0145-FEDER-007038).

Author information

Affiliations

Authors

Contributions

CA designed the study, performed the experiments, analyzed the data, and wrote the manuscript; JDS performed gene ontology analysis of QuantSeq results, statistical analysis, and wrote the manuscript. SGG and NDA helped with the behavioral tests and respective analysis. ELC helped with the behavioral tests. FF helped with neuronal morphology analysis. MRB helped with RNA-Seq data. NS organized and wrote the manuscript; WR contributed with the Tet3 conditional mouse strain; LP and CJM designed the study, organized, and wrote the manuscript. All authors revised and approved the final manuscript.

Corresponding authors

Correspondence to Luísa Pinto or C. Joana Marques.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antunes, C., Da Silva, J.D., Guerra-Gomes, S. et al. Tet3 ablation in adult brain neurons increases anxiety-like behavior and regulates cognitive function in mice. Mol Psychiatry (2020). https://doi.org/10.1038/s41380-020-0695-7

Download citation