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Abstract
The process of diagnosing hazardous alcohol drinking (HAD) is based on self-reported data and is thereby vulnerable to bias.
There has been an interest in developing epigenetic biomarkers for HAD that might complement clinical assessment. Because
alcohol consumption has been previously linked to DNA methylation (DNAm), we aimed to select DNAm signatures in blood
to predict HAD from two demographically and clinically distinct populations (Ntotal= 1,549). We first separately conducted an
epigenome-wide association study (EWAS) for phosphatidylethanol (PEth), an objective measure of alcohol consumption, and
for self-reported alcohol consumption in Cohort 1. We identified 83 PEth-associated CpGs, including 23 CpGs previously
associated with alcohol consumption or alcohol use disorder. In contrast, no CpG reached epigenome-wide significance on self-
reported alcohol consumption. Using a machine learning approach, two CpG subsets from EWAS on PEth and on self-reported
alcohol consumption from Cohort 1 were separately tested for the prediction of HAD in Cohort 2. We found that a subset of 143
CpGs selected from the EWAS on PEth showed an excellent prediction of HAD with the area under the receiver operating
characteristic curve (AUC) of 89.4% in training set and 73.9% in validation set of Cohort 2. However, CpGs preselected from
the EWAS on self-reported alcohol consumption showed a poor prediction of HAD with AUC 75.2% in training set and 57.6%
in validation set. Our results demonstrate that an objective measure for alcohol consumption is a more informative phenotype
than self-reported data for revealing epigenetic mechanisms. The PEth-associated DNAm signature in blood could serve as a
robust biomarker for alcohol consumption.

Introduction

Hazardous alcohol drinking (HAD) is detrimental to health
and is highly correlated with medical comorbidities and
psychiatric diseases [1, 2]. Diagnosing HAD is challenging
due to a lack of stable and objective measures for chronic
heavy alcohol consumption [3]. Phosphatidylethanol (PEth)
is a lipid metabolite of ethanol formed from phosphati-
dylcholine in erythrocytes and has been proposed as a
biomarker for alcohol consumption. Compared with self-
reported data, PEth reliably detects ethanol levels up to
21 days after the last drink [4], and the PEth level is highly
correlated with alcohol consumption [5]. However, the
clinical applicability of PEth is limited because its half-life
is ~4–7 days and its window of detection is considered to be
21 days [6]. Thus, other longer-term biomarkers for alcohol
consumption are needed to inform clinical practice.

Epigenetic signatures have emerged as attractive bio-
markers for complex diseases such as cancers and neurode-
generative diseases [7]. Epigenetic markers may reflect
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environmental exposures, including alcohol consumption.
Among these epigenetic markers, DNA methylation (DNAm)
biomarkers are particularly attractive because they are rela-
tively stable and capture an early stage of pathophysiological
changes [8, 9]. A recent longitudinal study on DNAm showed
that most DNA methylome changes occurred 80–90 days
before clinically detectable glucose elevation [10], suggesting
that DNAm is involved in an early stage of diabetes. Finally,
epigenetic modifications can be reliably detected in non-
invasive fluids and biospecimens [11]. Thus, the utility of
epigenetic alterations has motivated the biomarker research
field to develop epigenetic signatures derived from easily
accessible cells for clinical use [12–14].

DNAm markers are emerging as diagnostic biomarkers in
many areas of medicine and are applied to predict complex
diseases [15]. For example, DNAm markers on the pro-
moters of several genes, including BMP3, NDRG4, and
SPEPT9, in blood or stool samples have been approved by
the Food and Drug Administration as biomarkers for color-
ectal cancer screening [16]. DNAm markers also distinguish
smokers and nonsmokers [17, 18]. However, we do not yet
have validated DNAm biomarkers for the diagnosis of HAD.

DNAm is directly altered by HAD in the following
manner. HAD often causes folate and vitamin B deficiency,
resulting in the reduction of S-adenosylmethionine (SAM).
DNAm is modulated by DNA methyltransferase which
transfers a methyl group from SAM to the 5-position of
cytosine in the context of cytosine-phosphate-guanine
(CpG) dinucleotide. Reduced methyl transfer reaction co-
factors (folate and vitamin B) reduce methyltransferase
activity that may lead to alteration in DNAm. Recent studies
have shown that alcohol consumption modifies DNAm [19]
in animals and in the human epigenome from blood, liver,
and saliva cells [17, 20–24]. As a result, DNAm in per-
ipheral cells can serve as a robust biomarker for HAD.

Epigenome-wide association studies (EWAS) have
identified hundreds of DNAm CpGs in blood for alcohol
consumption [25–28], alcohol use disorder (AUD) [29, 30],
stress-related alcohol consumption [31], and fetal alcohol
syndrome [32–35]. A large number of CpGs in the blood
have recently been reported to have associations with
dietary folate and alcohol intake [36]. CpGs have been
associated with alcohol consumption in different cell types,
ethnic groups, and phenotypic assessments [28, 29, 37].
More than a dozen CpGs for alcohol phenotypes have been
replicated. For example, cg11376147 on SLC43A1 has been
linked to alcohol consumption and HAD diagnosis in sev-
eral studies [17, 28, 29]. Thus, DNAm in blood has been
proposed as a diagnostic and prognostic biomarker of
alcohol consumption for clinical use [38]. For this purpose,
a previous study identified a panel of 144 CpGs as bio-
markers for alcohol consumption [29]. However, these
CpGs have not been validated in independent studies.

Differentially methylated CpG sites have also been
associated with differential gene expression for alcohol
exposure in both animals and humans. Alcohol exposure
is associated with hypomethylation in the promoter of the
proprotein convertase subtilisin/kexin type 9 (PCSK9)
gene [30] that is also correlated with PCSK9 expression
for heavy alcohol consumption in humans and mice.
Because PCSK9 is well known to regulate low-density
lipoprotein cholesterol, DNAm alteration and dysfunction
of PCSK9 is thought to be a mechanism for alcohol-
related abnormalities in lipid metabolism. Most recently,
Gatta et al. [31] reported the hypermethylation of DNA 5-
methylcytosine at the promoter regions of NR3C1
(Nuclear Receptor Subfamily 3 Group C Member 1), the
glucocorticoid receptor, that was correlated with the
reduction of mRNA expression of NR3C1 in human
brains with AUD. The expression levels of several stress-
responsive genes within the NR3C1 gene network were
also decreased in brain samples from individuals with
AUD. This evidence further supports the feasibility of
DNAm biomarkers for HAD that may have both clinical
utilities and help elucidate underlying pathophysiologic
mechanisms of heavy alcohol consumption.

One of the limitations of previous EWAS is that alcohol
consumption was assessed by self-report, which may lead to
inaccurate assessment and introduce bias [29, 39, 40]. A self-
reported phenotype may, in part, explain the discrepancy of
EWAS findings on alcohol consumption or alcohol use-
related phenotypes observed in previous studies. Objective
measures such as PEth may improve the association signals
for alcohol consumption in EWAS because PEth-associated
DNAm markers are more proximal to the biological changes
and pathological processes underlying HAD.

In this study, we hypothesized that the DNAm signatures
associated with PEth would be a more robust predictor of
HAD than self-reported drinking data. We conducted a 2-
stage study with the goal of identifying DNAm CpGs for
alcohol consumption and linking the CpG features to HAD
(Ntotal= 1,549). We first identified CpGs associated with
PEth in Cohort 1. Then, the informative CpGs were selected
to predict HAD by using elastic net regularization (ENR) in
a demographically and clinically independent sample
(Cohort 2). We also compared the findings of DNAm
markers for PEth with those for self-reported alcohol con-
sumption. The analytical strategy is presented in Fig. 1.

Materials and methods

Sample descriptions

Cohort 1 (N= 1,047): The DNA samples in Cohort 1 were
from the Veterans Aging Cohort Study (VACS) [41]. Data
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were obtained from the patients after they provided written
consent; data were collected via telephone interviews, focus
groups, and full access to the national Veterans Affairs
electronic medical record system. All subjects in this subset
of the VACS cohort were men.

Samples in Cohort 1 were divided into a discovery set
(N= 580) and a replication set (N= 467) for EWAS. A
majority of discovery samples were HIV-positive
(~85.34%), and all replication samples were HIV-positive.

Cohort 2 (N= 502): We recruited 502 HIV-negative
healthy community volunteers who responded to adver-
tisements placed either online or in local newspapers and at
a community center in New Haven, CT [42]. Phenotypic
assessment including alcohol consumption was obtained
through the in-person interview. To reduce confounding
effects, we excluded subjects who met the Diagnostic and
Statistical Manual of Mental Disorders, 4th Edition (DSM-
IVTR) (American Psychiatric Association, 1994) criteria for
substance dependence on any drug or alcohol other than
nicotine. Subjects with head injury or those who used pre-
scribed medications for any psychiatric or medical disorders
were also excluded.

All phenotypic data in Cohort 1 and Cohort 2 were
obtained in the same time window as the blood draws for
DNAm profiling. Genomic DNA was extracted from whole
blood using a standard method [43]. The study was
approved by the committee of the Human Research Subject
Protection at Yale University and the IRB committee of the
Connecticut Veteran Healthcare System.

Phosphatidylethanol (PEth) measurement

In this study, PEth was only measured in Cohort 1 using
dried blood spot samples derived from frozen peripheral
blood mononuclear cells stored at −80 °C [5]. We
analyzed the PEth levels from dry blood spots at the
U.S. Drug Testing Laboratory (Des Plaines, IL) via

LC-MS/MS, as described in previous studies [44–46]. The
LC-MS/MS method has a high capacity and is cost-
effective and clinically reliable [46]. PEth can be detected
at concentrations as low as 2 ng/ml. A study showed that
the PEth value is linearly related to alcohol consumption
[47]. In forensics, 20 ng/ml of PEth was used as a cutoff to
detect harmful alcohol use [48]. The sensitivity of PEth
has been reported to be 99% [47], with several studies
showing the assay to have perfect specificity, including in
the presence of liver disease and hypertension. We pre-
viously reported that PEth was highly correlated with the
Alcohol Use Disorders Identification Test-Consumption
(AUDIT-C, first three items of AUDIT) score from elec-
tronic records [49].

Definition of hazardous alcohol drinking (HAD)

Alcohol consumption was measured by both PEth and
AUDIT-C in Cohort 1 and was only measured by AUDIT in
Cohort 2 (Supplementary Table S1). In Cohort 1, HAD was
defined as PEth level ≥20 based on previous studies and
non-HAD was defined as PEth <20 [48]. HAD was corre-
sponding to AUDIT-C score ≥4 and non-HAD was corre-
sponding to AUDIT-C score <4 for men [5]. In the
discovery set of Cohort 1, there were 166 HADs and 414
non-HADs. In the replication set of Cohort 1, there were
135 HADs and 332 non-HADs. In Cohort 2, alcohol con-
sumption was assessed by a full scale of 10-item AUDIT
with a total score of 40. HAD was defined as AUDIT ≥8 for
men and ≥7 for women based on previous studies. Non-
HAD was defined as AUDIT <8 for men and <7 for women
[50]. There were 148 HADs and 354 non-HADs. Cohort 2
was divided into a training set (N= 402) and a testing set
(N= 100), with an 80–20 split, for machine learning pre-
diction of HAD. Demographic and clinical variables for
HAD versus non-HAD participants in Cohort 1 and Cohort
2 are presented in Table 1.

Fig. 1 Study design for the epigenome-wide association study for alcohol consumption.
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DNA methylation and data quality control (QC)

In Cohort 1, DNAm for the discovery sample was profiled
by using the Illumina Infinium HumanMethylation450
Beadchip (Illumina HM450K) (San Diego, CA, USA).
DNAm for the replication sample was assessed by using the
Illumina Infinium MethylationEPIC Beadchip (Illumina
EPIC) (San Diego, CA, USA). In Cohort 2, DNAm was
measured by using Illumina HM450K. All samples in
Cohorts 1 and 2 were processed at the Yale Center for
Genomic Analysis [14]. After QC (details in Supplementary
Information), in Cohort 1, a total of 437,722 CpGs from
450K array remained in the discovery sample and 846,604
CpGs from EPIC array remained for the replication sample.
A total of 48.26% common CpGs (408,583) were analyzed
in meta-analyses. In Cohort 2, we applied the same QC
criteria. A total of 437,722 CpGs remained for analysis.

Discovery and replication EWAS in Cohort 1

EWAS were separately performed to test the association of
each CpG methylation with PEth and AUDIT-C score in the
discovery and replication samples. To adjust for significant
global confounding factors, we followed a comprehensive
analysis pipeline developed by Lehne et al. [51]. Since
previous studies have shown that a large number of CpGs
were significantly associated with age [52], smoking status
[12], race [53], HIV status, and HIV-1 VL [14], these
variables were adjusted in the models. The cell proportions
of six cell types were also adjusted in the models [54]. The
log10 of viral load (log10VL) and ART adherence were
adjusted in the replication sample. In addition, a recent
study reported by Jiao et al. [55] demonstrated that sample
position affected the measurement of DNAm in Illumina
methylation arrays and may introduce biases and increase

Table 1 Demographic and clinical characterizations for Cohort 1 and Cohort 2.

Cohort 1: discovery sample Cohort 1: replication sample Cohort 2

HAD PEth
≥ 20 (N= 166)

non-HAD PEth
< 20 (N= 414)

HAD PEth
≥ 20 (N= 135)

non-HAD PEth
< 20 (N= 332)

HAD Men: AUDIT ≥ 8
Women: AUDIT ≥ 7
(N= 148)

non-HAD Men: AUDIT
< 8 Women: AUDIT < 7
(N= 354)

Age (year) 49.28 ± 7.25 49.25 ± 8.13 47.50 ± 7.08 48.18 ± 8.03 26.80 ± 7.13 29.76 ± 9.28a

Sex (male, %) 100 100 100 100 64.86 35.31b

Race (AA, %) 90.36 79.71c1 82.22 81.02 12.24 22.38c2

Smoker (%) 70.91 53.92d1 63.64 54.91 39.86 12.71d2

Alcohol (AUDIT-C) 4.73 ± 2.65 2.57 ± 2.40e1 4.80 ± 2.30 2.28 ± 2.24e2 NA NA

HIV-infection (%) 88.55 84.54 100 100 NA NA

VL (log10) 2.85 ± 1.24 2.6 ± 1.2 2.69 ± 1.20 2.68 ± 1.24 NA NA

ART adherence (%) 69.23 81.69f 72.73 77.2 NA NA

CD4+ T (%) 0.06 ± 0.06 0.07 ± 0.06 0.10 ± 0.05 0.09 ± 0.04 0.18 ± 0.05 0.18 ± 0.05

CD8+ T (%) 0.17 ± 0.09 0.16 ± 0.09 0.18 ± 0.09 0.18 ± 0.08 0.10 ± 0.04 0.09 ± 0.04

NK (%)g 0.07 ± 0.05 0.08 ± 0.06 0.09 ± 0.03 0.08 ± 0.03 0.03 ± 0.03 0.03 ± 0.03

B cell (%)g 0.08 ± 0.05 0.09 ± 0.05h 0.08 ± 0.03 0.08 ± 0.04 0.07 ± 0.03 0.07 ± 0.03

Monocyte (%)g 0.12 ± 0.04 0.11 ± 0.04 0.11 ± 0.04 0.11 ± 0.03 0.08 ± 0.02 0.08 ± 0.02

Granulocyte (%)g 0.53 ± 0.12 0.53 ± 0.14 0.50 ± 0.11 0.50 ± 0.12 0.58 ± 0.09 0.59 ± 0.09

AA African American, AUDIT Alcohol Use Disorders Identification Test, AUDIT-C first three questions of the Alcohol Use Disorders
Identification Test, VL viral load, ART antiretroviral therapy.
aWelch’s two-sample t-test (degrees of freedom (df)= 360) P value= 1.35E−04.
bChi-square test P value= 2.18E−09.
c1Chi-square test P value= 3.20E−03.
c2Chi-square test P value= 1.29E−02.
d1Chi-square test P value= 2.65E−04.
d2Chi-square test P value= 1.77E−11.
e1Welch’s two-sample t-test (df=280) P value= 3.50E−14.
e2Welch’s two-sample t-test (df=240) P value= 4.27E−18.
fChi-square test P value= 3.69E−03.
gCell-type compositions estimated by methylation.
hWelch’s two-sample t-test (df=320) P value= 2.34E−02.
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batch effects. Thus, we adjusted positional effects in the
models to further address confounding effects. Epigenome-
wide significance was set at a Benjamini–Hochberg false
discovery rate (FDR) < 0.05 in the discovery sample. Sig-
nificance in the replication sample was set at
p< 0:05

number of CpGs being tested. Analytical models present as the
following:

First generalized linear model

For discovery,

β � ln PEthð Þ þ Positionþ HIV statusþ Smoker þ Race

þ AgeþWBCþ CD8T þ CD4T þ Granulocyte

þ NKþ B cellþMonocyteþ PC1control�probes

þ � � � þ PC30control�probes

For replication,

β � ln PEthð Þ þ Position þ log10VL þ ART adherence

þ Smoker þ Raceþ AgeþWBCþ CD8Tþ CD4T

þ Granulocyteþ NKþ B cellþMonocyte

þ PC1control�probes þ � � � þ PC30control�probes:

Principal component analysis (PCA) of intermediary
residuals

We then performed a PCA on the resulting regression resi-
duals. The top five principal components (PCs) on the residuals
(PC1residuals,…,PC5residuals) were adjusted in the final model.

A final generalized linear model for identifying differential
methylation

We performed a final generalized linear regression analysis
for each CpG predicting the β as a function of the In(PEth)
adjusted for confounders and the top five residual PCs
derived from the model above.

The same models were also used for EWAS on AUDIT-
C score in discovery and replication samples, where the
independent variable ln(PEth) was replaced by the AUDIT-
C. To evaluate whether the residual DNAm was adjusted for
confounding effect in the above model, we tested the cor-
relations between the top 30 PCs and position, batch, age,
race, smoking status, WBC, and six cell-type proportions in
before and after QC, respectively.

Meta-analysis of EWAS in Cohort 1

An EWAS meta-analysis was conducted by combining the
findings from the discovery and the replication stages. For
each CpG, we obtained effect size estimates and p values

from the two samples and weighted the effect size estimates
by their estimated standard errors. Then, the summary sta-
tistics of the two samples were combined using a sample-
size weighted meta-analysis using the METAL program
[56]. Epigenome-wide significance was set at an FDR <
0.05.

As a comparison of meta-EWAS findings, we conducted
a single EWAS in a total of 1,047 samples combining the
discovery sample and replication samples together. The
batch effect and positional effect were removed by using
ComBat [57]. The analytical models and covariables were
the same as described above.

Polygenic methylation score (PGMS)

We constructed a PGMS for each individual as a weighted
sum of the CpG β values using the effect size estimated
from the EWAS as weights [13]. In detail, the PEth-related
CpGs identified in the meta-analysis were chosen to con-
struct the PGMS. Then, the PGMS was applied to establish
a prediction model for HAD in Cohort 2.

M̂i ¼
Xq

j¼1

âjβij;

M̂i: the PGMS of individual i;
âj: the estimated coefficient for CpG probe j;
βij: the methylation β value for individual i at CpG probe j.

Adjusted R2 and incremental adjusted R2

We used the adjusted R2 to estimate the phenotypic var-
iances explained by the DNAm. The adjusted R2 repre-
sented the percentage of variation explained by only the
independent variables that affected the dependent variable.
Here, the adjusted R2 was the proportion of the variance of
the PEth values, AUDIT-C scores, or AUDIT scores that
were explained by the individual CpG or the linear com-
bination of CpGs.

We applied the incremental adjusted R2 (incremental R2)
as one of the parameters for feature selection as described
below. The incremental R2 was used to determine whether a
new predictor increases the predictive ability above and
beyond that provided by an existing model. It was calcu-
lated for each selected CpG or the linear combination of
selected CpGs.

Feature selection using elastic net regularization
(ENR)

CpG features were separately preselected from the EWAS
results on PEth and on AUDIT-C in Cohort 1. The
selected features were used to evaluate the prediction of
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HAD. Using the ENR method, we performed 10-fold
cross-validation for feature selection in the training
sample of Cohort 2. Here, we randomly selected 80% of
the samples in Cohort 2 and cross-validated them to
obtain the values for the ENR tuning parameters. The
following steps were taken to select the CpG features and
to evaluate their performance.

Step 1. Preselection CpGs. Because DNAm of CpGs
under the epigenome-wide significance threshold may col-
lectively account for phenotype variation and may improve
prediction of a phenotype, we preselected PEth-associated
CpGs with a meta p < 1E-04 from the meta-EWAS
in Cohort 1 for both PEth and AUDIT-C. The preselected
CpGs were used to establish the predictive model in the
training set of Cohort 2.

Step 2. Importance ranking CpGs. In the training set of
Cohort 2, we performed an ENR for feature selection
among the preselected CpGs. We extracted the coefficients
for the model with the lambda value corresponding to the
minimum mean cross-validated error. This procedure was
repeated N times. We excluded the CpGs with the percen-
tage of zero coefficients larger than 95%. All selected CpGs
were ranked according to the summation of the absolute
value of the N coefficients.

Step 3. Model building by ENR in the training set. CpG
features were selected based on the area under the receiver
operating characteristic curve (AUC) and the incremental R2

for different numbers of CpG sets. The model with the best
performance was determined, and the optimal values of the
parameters in the best model were found by performing
cross-validation in ENR.

Step 4. Model performance testing in the testing set. The
performance of the CpG features selected from the training
set was evaluated in the testing set using AUC, balanced
accuracy, and incremental R2.

A sensitivity test using different cutoffs of p values was
performed to select the model with the best performance.
Different sets of CpGs with p value <1E−06, <1E−05, <1E
−4, <1E−3 were selected for feature selection in the
training sample and model evaluation in the testing sample.
The CpG set with the best performance was determined in
the final model.

All analyses were performed using R software
(https://www.r-project.org/). ENR was performed using the
function “cv.glmnet” in the “glmnet” package.

Biological interpretation of the prediction model

Gene enrichment analysis was performed using the CpGs
from the final prediction model to understand the underlying
biological significance. We applied the web-accessible, gene
annotation term-based Database for Annotation, Visualization
and Integrated Discovery (DAVID) for gene enrichment

analysis (http://david.niaid.nih.gov) [58]. The expanded
DAVID Knowledgebase integrates almost all major and well-
known public bioinformatics resources [59]. A significant
pathway was set as an FDR < 0.05.

Results

EWAS identifies new DNA methylation CpGs for PEth
but not for self-reported alcohol consumption

Two analyses of EWAS on PEth values and on AUDIT-C
scores were separately conducted in Cohort 1. Phenotypi-
cally, as expected, PEth level and AUDIT-C score were
highly correlated (r= 0.45, p < 2.00E−16) (Supplementary
Fig. S1a). Compared with the non-HAD group, the HAD
group had a greater AUDIT-C score (p= 5.42E−132) and a
higher level of PEth (p= 3.47E−33) (Supplementary Fig.
S1b). Demographic and clinical variables are presented in
Table 1.

Discovery EWAS on PEth and on AUDIT-C

Prior to data QC, we found 10 PCs out of 30 PCs in DNAm
was significantly correlated with position and batch effect,
4 PCs correlated with WBC, 2 PCs correlated with CD8T,
1 PC correlated with CD4T, and 2 PCs correlated with
monocyte (p< 0:05

30 ¼ 1:67E � 03) (Supplementary Fig.
S2a). After adjusted confounding effects in the model,
residual methylation showed no correlations with position,
batch, age, race, smoking status, WBC, or six cell-type
proportions (Supplementary Fig. S2b), suggesting that the
EWAS findings below are unlikely contributed by non-
specific variables in the cohort.

We identified 11 epigenome-wide significant CpGs on
PEth (FDR= 4.14E−04~3.50E−02) (Supplementary Fig.
S3a, Table S2). The EWAS analysis showed minimal
inflation (λ= 1.086) (Supplementary Fig. S3b). The 11 sig-
nificant CpGs were located on 11 genes: SLC7A11 (solute
carrier family 7 member 11), DYRK2 (dual specificity
tyrosine phosphorylation regulated kinase 2), SLC43A1
(solute carrier family 43 member 1), CCDC71 (coiled-coil
domain containing 71), ABAT (4-aminobutyrate amino-
transferase), FOXP1 (forkhead box P1), WDR1 (WD repeat
domain 1), FBLN2 (Fibulin 2), LOC221710, HERV-FRD,
and C1orf161. Seven of 11 CpGs were negatively asso-
ciated with PEth while 4 of 11 were positively associated
with PEth.

We found no CpGs that reached an epigenome-wide
significance threshold for self-reported AUDIT-C scores.
Three of the 11 CpGs associated with PEth showed asso-
ciation with AUDIT-C (p< 0:05

11 ¼ 4:55E � 03):
cg13442969 (DYRK2) (p= 1.78E−03), cg11376147
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(SLC43A1) (p= 2.81E−03), and cg25221975 (FBLN2)
(p= 1.96E−03). It is noteworthy that all 11 CpGs asso-
ciated with PEth showed the same direction as the asso-
ciations with the AUDIT-C scores in the discovery set.

Replication EWAS on PEth and on AUDIT-C

In the replication sample, we found one epigenome-wide
significant CpG associated with PEth: cg20414364
(LOC728613) (Supplementary Fig. S4). For the 11 PEth-
associated CpGs identified in the discovery sample, nine
CpGs were overlapped between discovery and replication
samples. We found that four out of nine CpGs showed
significance for PEth (p< 0:05

9 ¼ 5:56E � 03), although
they did not reach epigenome-wide significance (p ranged
from 1.00E−05 to 2.56E−03) (Supplementary Table S2).
The four CpGs were located on three genes: cg17962756,
cg13442969 (DYRK2), cg11376147 (SLC43A1), and
cg26689780 (WDR1).

As expected, the analysis of the EWAS on AUDIT-C
scores revealed no CpG reaching epigenome-wide sig-
nificance in the replication sample. Only one of nine CpGs
associated with PEth were associated with AUDIT-C score
(p< 0:05

9 ¼ 5:56E � 03) (cg11376147 in SLC43A1 with
p= 2.74E−04) and showed the same direction as the
association of PEth.

Meta-analysis

A meta-analysis revealed 83 epigenome-wide significant
CpGs on PEth (FDR= 4.94E−06 ~ 4.97E−02) (Table 2
and Fig. 2a). Of note, despite removing batch effects and
position effects, a single EWAS conducted in the combining
the discovery and replication samples revealed a greater
number of λ than meta- EWAS (1.442 for the EWAS for
combining samples and 1.130 for meta-EWAS) (Supple-
mentary Fig. S5), suggesting that meta-EWAS was less
likely inflated and biased than the single EWAS.

A majority of these CpGs (66 out of 83 CpGs) were in a
gene region, including 18 CpGs in the promoter, 1 CpGs in
the first exon, and 9 CpGs in the UTR regions. With a
stringent significant threshold, 12 CpGs showed a Bonfer-
roni adjusted p < 5.00E−02. These 12 CpGs mapped to 9
genes, including 3 novel genes (LOC728613, ATG7, and
PAK1) for alcohol consumption and 6 genes (SLC43A1,
DYRK2, WDR1, SLC7A11, FBLN2, and TRA2B) previously
reported to be related to alcohol consumption [28, 29, 37].

Interestingly, even with an increased sample size in the
meta-analysis, we found no epigenome-wide significant
CpG site of the meta-EWAS on AUDIT-C scores (Fig. 2b).

We further tested the correlation between the β values of
the 12 CpGs with Bonferroni significance and PEth. All 12
CpGs were significantly correlated with PEth levels with

p< 0:05
12 ¼ 4:17E � 03 after the model was adjusted for

confounding factors (Fig. 2c), 4 of the 12 CpGs were
positively correlated with PEth, and the remaining 8 CpGs
were negatively correlated with PEth.

PEth-associated CpG sites improve the prediction of
HAD in Cohort 1

Because PEth itself was highly correlated with AUDIT-C
scores and differed significantly between the HAD and the
non-HAD groups, we were interested in whether PEth-
associated CpG DNAm improved the prediction of HAD
compared with the prediction of HAD using PEth alone. We
found that the AUC was 74.2% for PEth alone, 76.8% with
the 12 Bonferroni significant CpGs and PEth, and 87.2%
with the 83 epigenome-wide significant CpGs and PEth
(Supplementary Fig. S6). Thus, DNAm features improved
the prediction of hazardous alcohol consumption compared
with PEth alone in the same cohort.

PGMS derived from 83 PEth-associated CpGs is
correlated with alcohol consumption in an
independent sample

To be consistent with the analysis in Cohort 1, we per-
formed an EWAS on AUDIT-C score in Cohort 2. We
found no epigenome-wide significant CpG for AUDIT-C.
An EWAS for a full scale of AUDIT score also revealed no
significant CpG.

A PGMS constructed from the 83 PEth-associated CpGs
was highly correlated with the self-reported 10-item AUDIT
score in Cohort 2 (r= 0.40, p= 5.47E−19). The incre-
mental R2 of the association between the PGMS corre-
sponding to 83 PEth-related CpGs and the 10-item AUDIT
score was 0.0976, which implied that the PGMS explained
9.8% of the variance of the full AUDIT score in an inde-
pendent population (Supplementary Fig. S7a).

We further tested whether the PGMS derived from the
PEth-associated CpGs was separately correlated with self-
reported alcohol consumption (AUDIT-C, first three items of
AUDIT) and self-reported problem alcohol drinking beha-
viors (AUDIT-P, item 4–10 of full AUDIT). We found that
the PGMS was significantly correlated with AUDIT-C score
(r= 0.36, p= 3.36E−15) (Supplementary Fig. S7b) and
AUDIT-P score (r= 0.34, p= 1.29E−10) (Supplementary
Fig. S7c). The correlation of the PGMS was slightly stronger
with the AUDIT-C score than with the AUDIT-P score.

PEth-associated DNA methylation CpG sites predict
HAD in Cohort 2

We found no statistically significant difference in the
characteristics between the training set and the testing set in

2244 X. Liang et al.
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Cohort 2 (Supplementary Table S3). As shown in Supple-
mentary Fig. S8, a sensitive test showed that the best per-
formance model was a panel of CpGs preselected at p < 1E
−04 assessed by AUC and incremental R2. Of note,
although a larger cutoff value, e.g., p < 1E−03, showed a
greater incremental R2, the AUC was less than the CpG set
at the cutoff of p < 1E−04, which may be due to the
increased background noise with a larger number of pre-
selected CpGs at p < 1E−03. Therefore, the panel of CpGs
with p < 1E−04 from the meta-EWAS in Cohort 1 were
preselected for feature selection.

A total of 259 CpGs were preselected to build a pre-
dictive model in the training set of Cohort 2. All 259 CpGs
were ranked according to the summation of the absolute
value of the N coefficients. As shown in Fig. 3a, a panel of
143 CpGs (Supplementary Table S4) showed the greatest
AUC with 89.4% and the highest incremental R2 with
19.3% in the training set. Therefore, a model of 143 CpGs
was validated in the testing set.

In the testing set, we found that the 143 CpGs model
showed an AUC of 73.9%, a balanced accuracy of 62.3%,
and an incremental R2 of 5.9% (Fig. 3b). The results show
that the 143 selected PEth-associated CpGs enabled the
good prediction of HAD. Notably, the panel of 143 CpGs

included 44 epigenome-wide significant CpGs for meta-
EWAS on PEth in Cohort 1.

Using the same approach for the analysis of feature
selection of AUDIT-C-associated CpGs from Cohort 1 to
predict HAD in Cohort 2, a panel of 18 CpGs were selected
from 54 CpGs with p < 1E−04. In the training set, the AUC
was 70.2%, and the incremental R2 was 2.2%. In the testing
set, the AUC was 57.6% (46.1–69.1%), and the incremental
R2 was 1.1%.

Biological interpretation of the 143 identified PEth-
associated CpGs

The 143 CpGs from the final predictive model were anno-
tated on 117 genes. Gene enrichment analysis yielded one
significant annotation terms GO:0048519~negative regula-
tion of biological process (BP) (p= 3.00E−06; FDR=
5.39E−03). Besides this significant pathway, the top 14
pathways (11 BP; 1 molecular function (MF); 2 cellular
components (CC)) with p < 1E−03, an arbitrarily cutoff,
was presented in Supplementary Fig. S9. The 11 BP path-
ways included GO:0048519~negative regulation of BP;
GO:0030155~regulation of cell adhesion (p= 5.86E−05);
GO:0048523~negative regulation of cellular process (p=

Fig. 2 Meta-analyses of epigenome-wide association studies of
alcohol consumption (blue line: Benjamini–Hochberg false dis-
covery rate (FDR) cutoff; red line: Bonferroni correction cutoff).
a Manhattan plot of chromosomal locations of −log10 (p) for the
association between the natural logarithm of phosphatidylethanol (ln
(PEth)) and 408,583 CpGs in the meta-analysis. b Manhattan plot of
chromosomal locations of −log10 (p) for the association between

Alcohol Use Disorders Identification Test-Consumption (AUDIT-C,
first three items of AUDIT) and 408,583 CpGs in the meta-analysis.
c Scatterplots of the adjusted β values (adjust confounding factors and
use residuals of β values) of the 12 Bonferroni significant CpGs (CpGs
above the red line in a) against the ln(PEth) value. All 12 CpGs were
significantly correlated with ln(PEth) with p< 0:05

12 ¼ 4:17E � 03.
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1.08E-04); GO:0044707~single-multicellular organism
process (p= 1.36E−04); GO:0051240~positive regulation
of multicellular organismal process (p= 3.14E−04);
GO:0007275~multicellular organism development (p=
4.24E−04); and GO:0048731~system development (p=
5.19E−04); GO:0065009~regulation of MF (p= 7.01E
−04); GO:0048856~anatomical structure development
(p= 7.09E−04); GO:1902107~positive regulation of leuko-
cyte differentiation (p= 8.43E−04); GO:0048812~neuron
projection morphogenesis (p= 9.11E−04).The MF pathway
is GO:0047485~protein N terminus binding (p= 2.51E
−04). The two CC pathways are GO:0031974~membrane-
enclosed lumen (p= 5.70E−04); GO:0043233~organelle
lumen (p= 9.33E−04).

Discussion

Using samples from two distinct populations, we have
demonstrated that an objective phenotype, PEth, is a robust
phenotype for identifying DNAm in blood associated with
HAD and that PEth-associated CpGs are predictive of
HAD. We revealed 83 CpGs associated with PEth, while
none of the CpGs were associated with self-reported alcohol
consumption. A PGMS derived from the 83 CpGs
explained 9.8% of the variance of alcohol consumption in a
demographically and clinically independent sample. We
further showed that the 83 CpGs combined with PEth
improved 13% of AUC of predicting HAD compared with
the AUC of predicting HAD by PEth alone. Importantly, we
identified a panel of 143 CpGs that were relevant to PEth
levels in a mostly HIV-positive sample and that predicted
self-reported HAD in an HIV-negative sample. The 143
CpGs included five CpGs that were previously included in

the DNAm biomarker panel for prediction of alcohol con-
sumption and five CpGs were Bonferroni significant asso-
ciated with alcohol consumption in an African Ancestry
sample in Liu et al. (Supplementary Fig. S10) [29]. Inter-
estingly, a panel of CpGs related to self-reported AUDIT-C
score showed poor predictive performance for HAD.
Together, these findings suggest that PEth-associated
DNAm features, but not DNAm for self-reported alcohol
consumption, is a robust biomarker in predicting hazardous
alcohol consumption that may have potential clinical utility.

Emerging evidence suggests that a set of epigenetic
modification markers across different tissues is more stable
and reproducible than we previously expected [60]. In this
study, we replicated 24 CpGs that had previously reported
associations with alcohol consumption or alcohol use dis-
orders (Supplementary Table S4). For example, three pro-
moter CpGs, cg19731612 on NSD1 [28, 29], cg03523740
on TXLNA [28, 29], cg18121224 on NSD1 [28], and
cg00407659 on ANXA6 [28] that were associated with
alcohol consumption in previous studies were also sig-
nificantly associated with PEth in our study. In addition, we
revealed multiple new PEth-associated CpGs that are loca-
ted on the genes involved in tyrosine autophosphorylation,
catalyzed phosphorylation of histones H3 and H2B
(DYRK2) and the serine/threonine p21-activating kinases
(PAK1), sequence-specific serine/arginine splicing factor
(TRA2B) functions, and extracellular matrix protein
(FBLN2). These results suggest that alcohol consumption
alters DNAm on the genes involved in the cellular process
and epigenetic programming. One intriguing question is
whether the significant CpGs for HAD detected from the
blood sample is relevant to methylation alteration by alco-
hol consumption in the brain. Several studies have reported
associations of methylation of CpGs with alcohol

Fig. 3 Feature selection using elastic net regularization (ENR) for
hazardous alcohol drinking (HAD). a The area under the receiver
operating characteristic curve (AUC) and the incremental adjusted R2

(incremental R2) of the selected CpGs using the ENR method. A set of
CpGs associated with the natural logarithm of phosphatidylethanol (In
(PEth)) in cohort 1 (p < 1.00E−04) was preselected for ENR analysis

in training samples of Cohort 2. Incremental R2 denotes the difference
in adjusted R2 between the model with the predicted variable and the
model without the predicted variable. b The ROC curve for HAD
prediction in the testing set of Cohort 2 using the 143 ENR-selected
CpGs from the training samples.
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consumption in the human postmortem brain samples.
Several of those CpGs showed nominal significance in our
blood samples. For example, cg18362496 in H19 that was
previously reported hypermethylation in AUD brain sam-
ples [61] showed a positive association with PEth in our
blood sample (p= 0.03). A stress-related gene, KCNK6,
that was previously associated with AUD in brain [31] was
nominal significant in the same direction in our study (p=
0.04). However, the majority of significant CpGs for alco-
hol consumption differs between brain and blood samples.
The discrepancy is not unexpected considering distinct
methylome architectures between the brain and peripheral
tissues. Although the findings do not elucidate the etiology
of alcohol drinking behavior in brain, our results suggest a
peripheral mechanism of how alcohol consumption changes
the epigenome, which may lead to medical disorders. Given
the inaccessibility of brain tissues in living humans, bio-
markers from peripheral cells could be of benefit in
the clinical care of HAD patients.

The 83 PEth-associated CpGs identified in a mostly HIV-
positive population collectively explained 9.8% of the
variance of HAD in an HIV-negative population, suggesting
the stability of the DNAm effect of alcohol exposure.
Notably, the 9.8% effect size of the PGMS in our study is
comparable with the previously reported 12–13.8% effect
size of a PGMS in a study with a larger sample size (N=
13,317) than our study [29]. We further showed that PGMS
was not only significantly associated with recent alcohol
consumption (AUDIT-C) (r= 0.36, p= 3.36E−15) but was
strongly associated with the problematic consequences of
alcohol use (AUDIT-P) (r= 0.34, p= 1.29E−10), further
indicating that DNAm is a relatively stable marker for the
long-term effects of alcohol consumption.

The reproducible CpGs suggest a robust, consistent
epigenetic response to alcohol consumption that can serve
as biomarkers for clinical use. Using a machine learning
approach, we identified a set of 143 CpGs that enables the
distinction of HAD and non-HAD individuals. One of the
common challenges for machine learning prediction is
model overfitting. We took several steps to address this
concern: (1) feature preselection and selection were con-
ducted in two different cohorts; (2) the processes of feature
selection and model evaluation were carried out in the same
cohort but in different sets without overlapping samples;
and (3) we applied a newly developed machine learning
ENR method to select features in a combination of 10-fold
cross-validation. Compared with two traditional penalized
regression methods, Ridge [62] and the least absolute
shrinkage and selection operator (LASSO) [63], ENR has
the advantage of selecting informative features without
compromising predictive accuracy and has been shown to
outperform both the Ridge and LASSO methods [64]. With
these strengths of the analytical approach, we showed that a

panel of 143 CpGs performed fairly well in the testing
sample set.

Compared with the findings from the largest DNAm
biomarker study for alcohol consumption up to date by Liu
et al. [29], we found that a small proportion of CpGs is
indeed overlapping between two studies. Despite many
differences between ours and Liu’s studies, e.g., sample
size, phenotype assessment, DNAm profiling array, and
analytical strategy, nine epigenome-wide significant CpGs
are identical between ours and Liu et al.’s studies in African
Americans. These nine overlapped CpGs are located in five
genes: SLC43A1, FBLN2, HNRNPA1, CAND2, and GAS5.
Five biomarker-CpGs are overlapping between the two
studies. The overlapped CpGs are located on SLC7A11,
DYRK2, TRA2B, NCOA2, and GPR133. Enrichment ana-
lysis suggests the overlapped CpGs are not discovered by
chance across the two studies (Tχ2= 2400 and p= 0 for
epigenome-wide significant CpGs; Tχ2 = 486.4 and p= 0
for biomarker-CpGs). Therefore, the overlapped CpGs
across two very different studies further underscore the
stability and reproducibility of DNAm as a biomarker for
alcohol consumption.

Several limitations should be considered in interpreting
the current findings. (1) There was a lack of power to detect
sex-specific associations between CpGs and HAD. It is well
known that HAD in men and women is epidemiologically
and mechanistically different. The individuals in Cohort 1
were all men and ~50% of the individuals in Cohort 2 were
women. These samples are insufficient to seek sex-specific
DNAm markers. (2) The DNAm signatures were identified
from whole blood samples that lacked cell-type-specific
profiles. Future analyses using cell-type-specific CpGs may
improve prediction performance. (3) The 143 CpGs in the
DNAm signature were preselected from an HIV-positive
sample, while the prediction model was built and validated
in an HIV-negative sample. We expect to improve the
predictive efficiency in a relatively homogenous sample in
future studies. (4) Other psychiatric disorders such as
depression are common in HAD, which might have con-
founded the findings. Validation of the prediction panel on
other alcohol use-related phenotypes, e.g., alcohol use dis-
order, and address other psychiatric disorders are necessary
to confidently claim the predictive performance and accu-
racy for clinical use.

In summary, to the best of our knowledge, this is the first
study to demonstrate that PEth is a robust phenotype for
detecting subtle DNAm changes associated with alcohol
consumption compared with self-reported alcohol use data.
PEth-associated DNAm markers predicted HAD with a
good accuracy. These findings suggest that DNAm sig-
natures may have clinical utility as biomarkers for alcohol
consumption, and further development and testing of these
biomarkers are warranted.
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Data availability

Demographic variables, clinical variables, and methylation
status for the VACS samples were submitted to the GEO
dataset (GSE117861) and are available to the public. All
codes for analysis are also available upon a request to the
corresponding author.
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