Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nuclear receptor corepressors in intellectual disability and autism

Abstract

Autism spectrum disorder (ASD) is characterized by neurocognitive dysfunctions, such as impaired social interaction and language learning. Gene–environment interactions have a pivotal role in ASD pathogenesis. Nuclear receptor corepressors (NCORs) are transcription co-regulators physically associated with histone deacetylases (HDACs) and many known players in ASD etiology such as transducin β-like 1 X-linked receptor 1 and methyl-CpG binding protein 2. The epigenome-modifying NCOR complex is sensitive to many ASD risk factors, including HDAC inhibitor valproic acid and a variety of endocrine factors, xenobiotic chemicals, or metabolites that can directly bind to multiple nuclear receptors. Here, we review recent studies of NCORs in neurocognition using animal models and human genetics approaches. We discuss functional interplays between NCORs and other known players in ASD etiology. It is conceivable that the NCOR complex may bridge the in utero environmental risk factors of ASD with epigenetic remodeling and can serve as a converging point for many gene–environment interactions in the pathogenesis of ASD and intellectual disability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of protein–protein interactions between NCOR, TBL1XR1, and MECP2.
Fig. 2: A working model for NCOR functions in the brain.

Similar content being viewed by others

References

  1. Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J. Autism spectrum disorder. Lancet. 2018;392:508–20.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lai M-C, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383:896–910.

    Article  PubMed  Google Scholar 

  3. Ayhan F, Konopka G. Genomics of autism spectrum disorder: approach to therapy. F1000Res. 2018;7:F1000 Faculty Rev-627.

  4. Telese F, Gamliel A, Skowronska-Krawczyk D, Garcia-Bassets I, Rosenfeld MG. ‘Seq-ing’ insights into the epigenetics of neuronal gene regulation. Neuron. 2013;77:606–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Forsberg SL, Ilieva M, Maria Michel T. Epigenetics and cerebral organoids: promising directions in autism spectrum disorders. Transl Psychiatry. 2018;8:14.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lonard DM, O’Malley BW. Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nat Rev Endocrinol. 2012;8:598–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Emmett MJ, Lazar MA. Integrative regulation of physiology by histone deacetylase 3. Nat Rev Mol Cell Biol. 2019;20:102–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hu X, Lazar MA. Transcriptional repression by nuclear hormone receptors. Trends Endocrinol Metab. 2000;11:6–10.

    Article  CAS  PubMed  Google Scholar 

  9. You S-H, Lim H-W, Sun Z, Broache M, Won K-J, Lazar MA. Nuclear receptor co-repressors are required for the histone-deacetylase activity of HDAC3 in vivo. Nat Struct Mol Biol. 2013;20:182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Codina A, Love JD, Li Y, Lazar MA, Neuhaus D, Schwabe JWR. Structural insights into the interaction and activation of histone deacetylase 3 by nuclear receptor corepressors. Proc Natl Acad Sci USA. 2005;102:6009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guenther MG, Barak O, Lazar MA. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol. 2001;21:6091–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oberoi J, Fairall L, Watson PJ, Yang J-C, Czimmerer Z, Kampmann T, et al. Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat Struct Mol Biol. 2011;18:177–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bottomley MJ, Lo Surdo P, Di Giovine P, Cirillo A, Scarpelli R, Ferrigno F, et al. Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J Biol Chem. 2008;283:26694–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Norwood J, Franklin JM, Sharma D, D’Mello SR. Histone deacetylase 3 is necessary for proper brain development. J Biol Chem. 2014;289:34569–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hervera A, Zhou L, Palmisano I, McLachlan E, Kong G, Hutson TH, et al. PP4-dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure. EMBO J. 2019;38:e101032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kwapis JL, Alaghband Y, López AJ, Long JM, Li X, Shu G, et al. HDAC3-mediated repression of the Nr4a family contributes to age-related impairments in long-term memory. J Neurosci. 2019;39:4999–5009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alaghband Y, Kwapis JL, López AJ, White AO, Aimiuwu OV, Al-Kachak A, et al. Distinct roles for the deacetylase domain of HDAC3 in the hippocampus and medial prefrontal cortex in the formation and extinction of memory. Neurobiol Learn Mem. 2017;145:94–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Penney J, Tsai L-H. Histone deacetylases in memory and cognition. Sci Signal. 2014;7:re12.

    Article  PubMed  CAS  Google Scholar 

  19. Zhou W, He Y, Rehman AU, Kong Y, Hong S, Ding G, et al. Loss of function of NCOR1 and NCOR2 impairs memory through a novel GABAergic hypothalamus-CA3 projection. Nat Neurosci. 2019;22:205–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jepsen K, Hermanson O, Onami TM, Gleiberman AS, Lunyak V, McEvilly RJ, et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell. 2000;102:753–63.

    Article  CAS  PubMed  Google Scholar 

  21. Jepsen K, Solum D, Zhou T, McEvilly RJ, Kim H-J, Glass CK, et al. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature. 2007;450:415–9.

    Article  CAS  PubMed  Google Scholar 

  22. Jessen HM, Kolodkin MH, Bychowski ME, Auger CJ, Auger AP. The nuclear receptor corepressor has organizational effects within the developing amygdala on juvenile social play and anxiety-like behavior. Endocrinology. 2010;151:1212–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McQuown SC, Barrett RM, Matheos DP, Post RJ, Rogge GA, Alenghat T, et al. HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci. 2011;31:764–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sakaguchi Y, Uehara T, Suzuki H, Sakamoto Y, Fujiwara M, Kosaki K, et al. Haploinsufficiency of NCOR1 associated with autism spectrum disorder, scoliosis, and abnormal palatogenesis. Am J Med Genet A. 2018;176:2466–9.

    Article  CAS  PubMed  Google Scholar 

  25. Wang T, Guo H, Xiong B, Stessman HAF, Wu H, Coe BP, et al. De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat Commun. 2016;7:13316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sajan SA, Jhangiani SN, Muzny DM, Gibbs RA, Lupski JR, Glaze DG, et al. Enrichment of mutations in chromatin regulators in people with Rett syndrome lacking mutations in MECP2. Genet Med. 2017;19:13–9.

    Article  PubMed  Google Scholar 

  27. Iwama K, Mizuguchi T, Takeshita E, Nakagawa E, Okazaki T, Nomura Y, et al. Genetic landscape of Rett syndrome-like phenotypes revealed by whole exome sequencing. J Med Genet. 2019;56:396–407.

    Article  CAS  PubMed  Google Scholar 

  28. Ebert DH, Gabel HW, Robinson ND, Kastan NR, Hu LS, Cohen S, et al. Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature. 2013;499:341–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lyst MJ, Ekiert R, Ebert DH, Merusi C, Nowak J, Selfridge J, et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci. 2013;16:898–902.

    Article  CAS  PubMed  Google Scholar 

  30. O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338:1619–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Stessman HAF, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet. 2017;49:515–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Perissi V, Jepsen K, Glass CK, Rosenfeld MG. Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet. 2010;11:109–23.

    Article  CAS  PubMed  Google Scholar 

  33. Mottis A, Mouchiroud L, Auwerx J. Emerging roles of the corepressors NCoR1 and SMRT in homeostasis. Genes Dev. 2013;27:819–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kratsman N, Getselter D, Elliott E. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology. 2016;102:136–45.

    Article  CAS  PubMed  Google Scholar 

  35. Qin L, Ma K, Wang Z-J, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma K, Qin L, Matas E, Duffney LJ, Liu A, Yan Z. Histone deacetylase inhibitor MS-275 restores social and synaptic function in a Shank3-deficient mouse model of autism. Neuropsychopharmacology. 2018;43:1779–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–8.

    Article  CAS  PubMed  Google Scholar 

  38. Lyst MJ, Bird A. Rett syndrome: a complex disorder with simple roots. Nat Rev Genet. 2015;16:261–75.

    Article  CAS  PubMed  Google Scholar 

  39. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393:386–9.

    Article  CAS  PubMed  Google Scholar 

  40. Tillotson R, Selfridge J, Koerner MV, Gadalla KKE, Guy J, De Sousa D, et al. Radically truncated MeCP2 rescues Rett syndrome-like neurological defects. Nature. 2017;550:398–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carney RM, Wolpert CM, Ravan SA, Shahbazian M, Ashley-Koch A, Cuccaro ML, et al. Identification of MeCP2 mutations in a series of females with autistic disorder. Pediatr Neurol. 2003;28:205–11.

    Article  PubMed  Google Scholar 

  42. Kyle SM, Saha PK, Brown HM, Chan LC, Justice MJ. MeCP2 co-ordinates liver lipid metabolism with the NCoR1/HDAC3 corepressor complex. Hum Mol Genet. 2016;25:3029–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nott A, Cheng J, Gao F, Lin Y-T, Gjoneska E, Ko T, et al. Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior. Nat Neurosci. 2016;19:1497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guy J, Hendrich B, Holmes M, Martin JE, Bird A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet. 2001;27:322–6.

    Article  CAS  PubMed  Google Scholar 

  45. Belichenko NP, Belichenko PV, Li HH, Mobley WC, Francke U. Comparative study of brain morphology in Mecp2 mutant mouse models of Rett syndrome. J Comp Neurol. 2008;508:184–95.

    Article  PubMed  Google Scholar 

  46. Li W, Pozzo-Miller L. Beyond widespread Mecp2 deletions to model rett syndrome: conditional spatio-temporal knockout, single-point mutations and transgenic rescue mice. Autism Open Access. 2012;2012:5.

  47. Guy J, Gan J, Selfridge J, Cobb S, Bird A. Reversal of neurological defects in a mouse model of Rett syndrome. Science. 2007;315:1143–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chao H-T, Zoghbi HY, Rosenmund C. MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron. 2007;56:58–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stearns NA, Schaevitz LR, Bowling H, Nag N, Berger UV, Berger-Sweeney J. Behavioral and anatomical abnormalities in Mecp2 mutant mice: a model for Rett syndrome. Neuroscience. 2007;146:907–21.

    Article  CAS  PubMed  Google Scholar 

  50. Pelka GJ, Watson CM, Radziewic T, Hayward M, Lahooti H, Christodoulou J, et al. Mecp2 deficiency is associated with learning and cognitive deficits and altered gene activity in the hippocampal region of mice. Brain. 2006;129:887–98.

    Article  PubMed  Google Scholar 

  51. Weng S-M, McLeod F, Bailey MES, Cobb SR. Synaptic plasticity deficits in an experimental model of rett syndrome: long-term potentiation saturation and its pharmacological reversal. Neuroscience. 2011;180:314–21.

    Article  CAS  PubMed  Google Scholar 

  52. Chao H-T, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature. 2010;468:263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen RZ, Akbarian S, Tudor M, Jaenisch R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet. 2001;27:327–31.

    Article  CAS  PubMed  Google Scholar 

  54. Gemelli T, Berton O, Nelson ED, Perrotti LI, Jaenisch R, Monteggia LM. Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry. 2006;59:468–76.

    Article  CAS  PubMed  Google Scholar 

  55. Gulmez Karaca K, Brito DVC, Zeuch B, Oliveira AMM. Adult hippocampal MeCP2 preserves the genomic responsiveness to learning required for long-term memory formation. Neurobiol Learn Mem. 2018;149:84–97.

    Article  CAS  PubMed  Google Scholar 

  56. Fyffe SL, Neul JL, Samaco RC, Chao H-T, Ben-Shachar S, Moretti P, et al. Deletion of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron. 2008;59:947–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chahrour M, Jung SY, Shaw C, Zhou X, Wong STC, Qin J, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science. 2008;320:1224–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen L, Chen K, Lavery LA, Baker SA, Shaw CA, Li W, et al. MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome. Proc Natl Acad Sci USA. 2015;112:5509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baker SA, Chen L, Wilkins AD, Yu P, Lichtarge O, Zoghbi HY. An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders. Cell. 2013;152:984–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cellot G, Cherubini E. GABAergic signaling as therapeutic target for autism spectrum disorders. Front Pediatr. 2014;2:70.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Harada M, Taki MM, Nose A, Kubo H, Mori K, Nishitani H, et al. Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 tesla instrument. J Autism Dev Disord. 2011;41:447–54.

    Article  PubMed  Google Scholar 

  62. Mori T, Mori K, Fujii E, Toda Y, Miyazaki M, Harada M, et al. Evaluation of the GABAergic nervous system in autistic brain: (123)I-iomazenil SPECT study. Brain Dev. 2012;34:648–54.

    Article  PubMed  Google Scholar 

  63. Yamashita Y, Matsuishi T, Ishibashi M, Kimura A, Onishi Y, Yonekura Y, et al. Decrease in benzodiazepine receptor binding in the brains of adult patients with Rett syndrome. J Neurol Sci. 1998;154:146–50.

    Article  CAS  PubMed  Google Scholar 

  64. Mendez MA, Horder J, Myers J, Coghlan S, Stokes P, Erritzoe D, et al. The brain GABA-benzodiazepine receptor alpha-5 subtype in autism spectrum disorder: a pilot [(11)C]Ro15-4513 positron emission tomography study. Neuropharmacology. 2013;68:195–201.

    Article  CAS  PubMed  Google Scholar 

  65. Sgadò P, Genovesi S, Kalinovsky A, Zunino G, Macchi F, Allegra M, et al. Loss of GABAergic neurons in the hippocampus and cerebral cortex of Engrailed-2 null mutant mice: implications for autism spectrum disorders. Exp Neurol. 2013;247:496–505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Braat S, Kooy RF. The GABAA receptor as a therapeutic target for neurodevelopmental disorders. Neuron. 2015;86:1119–30.

    Article  CAS  PubMed  Google Scholar 

  67. Calfa G, Li W, Rutherford JM, Pozzo-Miller L. Excitation/inhibition imbalance and impaired synaptic inhibition in hippocampal area CA3 of Mecp2 knockout mice. Hippocampus. 2015;25:159–68.

    Article  CAS  PubMed  Google Scholar 

  68. Ma L-Y, Wu C, Jin Y, Gao M, Li G-H, Turner D, et al. Electrophysiological phenotypes of MeCP2 A140V mutant mouse model. CNS Neurosci Ther. 2014;20:420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kline DD, Ogier M, Kunze DL, Katz DM. Exogenous brain-derived neurotrophic factor rescues synaptic dysfunction in Mecp2-null mice. J Neurosci. 2010;30:5303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB. Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci USA. 2005;102:12560–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu Y, Lin Y, Takasaki Y, Wang C, Kimura H, Xing J, et al. Rare loss of function mutations in N-methyl-D-aspartate glutamate receptors and their contributions to schizophrenia susceptibility. Transl Psychiatry. 2018;8:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Hillman BG, Gupta SC, Stairs DJ, Buonanno A, Dravid SM. Behavioral analysis of NR2C knockout mouse reveals deficit in acquisition of conditioned fear and working memory. Neurobiol Learn Mem. 2011;95:404–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Becker JAJ, Clesse D, Spiegelhalter C, Schwab Y, Le Merrer J, Kieffer BL. Autistic-like syndrome in mu opioid receptor null mice is relieved by facilitated mGluR4 activity. Neuropsychopharmacology. 2014;39:2049–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Iscru E, Goddyn H, Ahmed T, Callaerts-Vegh Z, D’Hooge R, Balschun D. Improved spatial learning is associated with increased hippocampal but not prefrontal long-term potentiation in mGluR4 knockout mice. Genes Brain Behav. 2013;12:615–25.

    Article  CAS  PubMed  Google Scholar 

  75. Ben-Shachar S, Chahrour M, Thaller C, Shaw CA, Zoghbi HY. Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum Mol Genet. 2009;18:2431–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Lovén J, et al. Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell. 2013;13:446–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Soshnev AA, Li X, Wehling MD, Geyer PK. Context differences reveal insulator and activator functions of a Su(Hw) binding region. PLoS Genet. 2008;4:e1000159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Yu Z, Syu L-J, Mellerick DM. Contextual interactions determine whether the Drosophila homeodomain protein, Vnd, acts as a repressor or activator. Nucleic Acids Res. 2005;33:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ruiz i Altaba A. Gli proteins encode context-dependent positive and negative functions: implications for development and disease. Development. 1999;126:3205–16.

    Article  PubMed  Google Scholar 

  80. Adams GE, Chandru A, Cowley SMCo-repressor. co-activator and general transcription factor: the many faces of the Sin3 histone deacetylase (HDAC) complex. Biochem J. 2018;475:3921–32.

    Article  CAS  PubMed  Google Scholar 

  81. Kang J, Kang Y, Kim YW, You J, Kang J, Kim A. LRF acts as an activator and repressor of the human β-like globin gene transcription in a developmental stage dependent manner. Biochem Cell Biol. 2019;97:380–6.

    Article  CAS  PubMed  Google Scholar 

  82. Abraham S, Paknikar R, Bhumbra S, Luan D, Garg R, Dressler GR, et al. The Groucho-associated phosphatase PPM1B displaces Pax transactivation domain interacting protein (PTIP) to switch the transcription factor Pax2 from a transcriptional activator to a repressor. J Biol Chem. 2015;290:7185–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sakabe NJ, Aneas I, Shen T, Shokri L, Park S-Y, Bulyk ML, et al. Dual transcriptional activator and repressor roles of TBX20 regulate adult cardiac structure and function. Hum Mol Genet. 2012;21:2194–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yao YL, Yang WM, Seto E. Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol. 2001;21:5979–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen X-F, Kuryan B, Kitada T, Tran N, Li J-Y, Kurdistani S, et al. The Rpd3 core complex is a chromatin stabilization module. Curr Biol. 2012;22:56–63.

    Article  CAS  PubMed  Google Scholar 

  86. Alejandro-Osorio AL, Huebert DJ, Porcaro DT, Sonntag ME, Nillasithanukroh S, Will JL, et al. The histone deacetylase Rpd3p is required for transient changes in genomic expression in response to stress. Genome Biol. 2009;10:R57.

  87. Sertil O, Vemula A, Salmon SL, Morse RH, Lowry CV. Direct role for the Rpd3 complex in transcriptional induction of the anaerobic DAN/TIR genes in yeast. Mol Cell Biol. 2007;27:2037–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Van Esch H, Bauters M, Ignatius J, Jansen M, Raynaud M, Hollanders K, et al. Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am J Hum Genet. 2005;77:442–53.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Koerner MV, FitzPatrick L, Selfridge J, Guy J, De Sousa D, Tillotson R, et al. Toxicity of overexpressed MeCP2 is independent of HDAC3 activity. Genes Dev. 2018;32:1514–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kruusvee V, Lyst MJ, Taylor C, Tarnauskaitė Ž, Bird AP, Cook AG. Structure of the MeCP2–TBLR1 complex reveals a molecular basis for Rett syndrome and related disorders. Proc Natl Acad Sci USA. 2017;114:E3243–50.

  91. Wen YD, Perissi V, Staszewski LM, Yang WM, Krones A, Glass CK, et al. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci USA. 2000;97:7202–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yoon H-G, Chan DW, Huang Z-Q, Li J, Fondell JD, Qin J, et al. Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J. 2003;22:1336–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yoon H-G, Choi Y, Cole PA, Wong J. Reading an d function of a histone code involved in targeting corepressor complexes for repression. Mol Cell Biol. 2005;25:324–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG. A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell. 2004;116:511–26.

    Article  CAS  PubMed  Google Scholar 

  95. Huang W, Ghisletti S, Perissi V, Rosenfeld MG, Glass CK. Transcriptional integration of TLR2 and TLR4 signaling at the NCoR de-repression checkpoint. Mol Cell. 2009;35:48–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Choi H-K, Choi K-C, Yoo J-Y, Song M, Ko SJ, Kim CH, et al. Reversible SUMOylation of TBL1-TBLR1 regulates β-catenin-mediated Wnt signaling. Mol Cell. 2011;43:203–16.

    Article  CAS  PubMed  Google Scholar 

  97. Bassi MT, Ramesar RS, Caciotti B, Winship IM, De Grandi A, Riboni M, et al. X-linked late-onset sensorineural deafness caused by a deletion involving OA1 and a novel gene containing WD-40 repeats. Am J Hum Genet. 1999;64:1604–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lim Y-M, Hayashi S, Tsuda L. Ebi/AP-1 suppresses pro-apoptotic genes expression and permits long-term survival of Drosophila sensory neurons. PLoS ONE. 2012;7:e37028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Tabet A-C, Leroy C, Dupont C, Serrano E, Hernandez K, Gallard J, et al. De novo deletion of TBL1XR1 in a child with non-specific developmental delay supports its implication in intellectual disability. Am J Med Genet A. 2014;164A:2335–7.

    Article  PubMed  CAS  Google Scholar 

  101. Vaqueiro AC, de Oliveira CP, Cordoba MS, Versiani BR, de Carvalho CX, Alves Rodrigues PG, et al. Expanding the spectrum of TBL1XR1 deletion: Report of a patient with brain and cardiac malformations. Eur J Med Genet. 2018;61:29–33.

    Article  PubMed  Google Scholar 

  102. Pons L, Cordier MP, Labalme A, Till M, Louvrier C, Schluth-Bolard C, et al. A new syndrome of intellectual disability with dysmorphism due to TBL1XR1 deletion. Am J Med Genet A. 2015;167A:164–8.

  103. Riehmer V, Erger F, Herkenrath P, Seland S, Jackels M, Wiater A, et al. A heritable microduplication encompassing TBL1XR1 causes a genomic sister-disorder for the 3q26.32 microdeletion syndrome. Am J Med Genet A. 2017;173:2132–8.

    Article  CAS  PubMed  Google Scholar 

  104. Saitsu H, Tohyama J, Walsh T, Kato M, Kobayashi Y, Lee M, et al. A girl with West syndrome and autistic features harboring a de novo TBL1XR1 mutation. J Hum Genet 2014;59:581–3.

    Article  CAS  PubMed  Google Scholar 

  105. Lemattre C, Thevenon J, Duffourd Y, Nambot S, Haquet E, Vuadelle B, et al. TBL1XR1 mutations in Pierpont syndrome are not restricted to the recurrent p.Tyr446Cys mutation. Am J Med Genet A. 2018;176:2813–8.

    Article  CAS  PubMed  Google Scholar 

  106. Slavotinek A, Pua H, Hodoglugil U, Abadie J, Shieh J, Van Ziffle J, et al. Pierpont syndrome associated with the p.Tyr446Cys missense mutation in TBL1XR1. Eur J Med Genet 2017;60:504–8.

    Article  PubMed  Google Scholar 

  107. Heinen CA, Jongejan A, Watson PJ, Redeker B, Boelen A, Boudzovitch-Surovtseva O, et al. A specific mutation in TBL1XR1 causes Pierpont syndrome. J Med Genet. 2016;53:330–7.

    Article  CAS  PubMed  Google Scholar 

  108. Yamamoto T, Imaizumi T, Yamamoto-Shimojima K, Lu Y, Yanagishita T, Shimada S, et al. Genomic backgrounds of Japanese patients with undiagnosed neurodevelopmental disorders. Brain Dev. 2019;41:776–82.

    Article  PubMed  Google Scholar 

  109. Laskowski RA, Tyagi N, Johnson D, Joss S, Kinning E, McWilliam C, et al. Integrating population variation and protein structural analysis to improve clinical interpretation of missense variation: application to the WD40 domain. Hum Mol Genet. 2016;25:927–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013;309:1696–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bromley RL, Mawer G, Clayton-Smith J, Baker GA, Liverpool and Manchester Neurodevelopment Group. Autism spectrum disorders following in utero exposure to antiepileptic drugs. Neurology. 2008;71:1923–4.

    Article  CAS  PubMed  Google Scholar 

  112. Christensen J, Pedersen L, Sun Y, Dreier JW, Brikell I, Dalsgaard S. Association of prenatal exposure to valproate and other antiepileptic drugs with risk for attention-deficit/hyperactivity disorder in offspring. JAMA Netw Open. 2019;2:e186606.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wagner GC, Reuhl KR, Cheh M, McRae P, Halladay AK. A new neurobehavioral model of autism in mice: pre- and postnatal exposure to sodium valproate. J Autism Dev Disord. 2006;36:779–93.

    Article  PubMed  Google Scholar 

  114. Gandal MJ, Edgar JC, Ehrlichman RS, Mehta M, Roberts TPL, Siegel SJ. Validating γ oscillations and delayed auditory responses as translational biomarkers of autism. Biol Psychiatry. 2010;68:1100–6.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mehta MV, Gandal MJ, Siegel SJ. mGluR5-antagonist mediated reversal of elevated stereotyped, repetitive behaviors in the VPA model of autism. PLoS ONE. 2011;6:e26077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schneider T, Przewłocki R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology. 2005;30:80–9.

    Article  CAS  PubMed  Google Scholar 

  117. Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism. Exp Neurol. 2018;299:217–27.

    Article  CAS  PubMed  Google Scholar 

  118. Rasalam AD, Hailey H, Williams JHG, Moore SJ, Turnpenny PD, Lloyd DJ, et al. Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev Med Child Neurol. 2005;47:551–5.

    Article  CAS  PubMed  Google Scholar 

  119. Zhao H, Wang Q, Yan T, Zhang Y, Xu H-J, Yu H-P, et al. Maternal valproic acid exposure leads to neurogenesis defects and autism-like behaviors in non-human primates. Transl Psychiatry. 2019;9:267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kataoka S, Takuma K, Hara Y, Maeda Y, Ago Y, Matsuda T. Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. Int J Neuropsychopharmacol. 2013;16:91–103.

    Article  CAS  PubMed  Google Scholar 

  121. Moldrich RX, Leanage G, She D, Dolan-Evans E, Nelson M, Reza N, et al. Inhibition of histone deacetylase in utero causes sociability deficits in postnatal mice. Behav Brain Res. 2013;257:253–64.

    Article  CAS  PubMed  Google Scholar 

  122. Gogolla N, Leblanc JJ, Quast KB, Südhof TC, Fagiolini M, Hensch TK. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J Neurodev Disord. 2009;1:172–81.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Rinaldi T, Silberberg G, Markram H. Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid. Cereb Cortex. 2008;18:763–70.

    Article  PubMed  Google Scholar 

  124. Lin H-C, Gean P-W, Wang C-C, Chan Y-H, Chen PS. The amygdala excitatory/inhibitory balance in a valproate-induced rat autism model. PLoS ONE. 2013;8:e55248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kawanai T, Ago Y, Watanabe R, Inoue A, Taruta A, Onaka Y, et al. Prenatal exposure to histone deacetylase inhibitors affects gene expression of autism-related molecules and delays neuronal maturation. Neurochem Res. 2016;41:2574–84.

    Article  CAS  PubMed  Google Scholar 

  126. Luo Y, Zhou B, Liu F, Ai R, Wen M, Tong X. [Enhanced autophagy activates p38/MEF2C pathway to regulate the expression of synapse-associated proteins and improve the symptoms of autistic rats]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2019;35:236–42.

  127. Kuo H-Y, Liu F-C. Molecular pathology and pharmacological treatment of autism spectrum disorder-like phenotypes using rodent models. Front Cell Neurosci. 2018;12:422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Foley AG, Cassidy AW, Regan CM. Pentyl-4-yn-VPA, a histone deacetylase inhibitor, ameliorates deficits in social behavior and cognition in a rodent model of autism spectrum disorders. Eur J Pharmacol. 2014;727:80–6.

    Article  CAS  PubMed  Google Scholar 

  129. Foley AG, Gannon S, Rombach-Mullan N, Prendergast A, Barry C, Cassidy AW, et al. Class I histone deacetylase inhibition ameliorates social cognition and cell adhesion molecule plasticity deficits in a rodent model of autism spectrum disorder. Neuropharmacology. 2012;63:750–60.

    Article  CAS  PubMed  Google Scholar 

  130. Monteiro P, Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci. 2017;18:147–57.

    Article  CAS  PubMed  Google Scholar 

  131. Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet. 2014;10:e1004580.

  132. Jiang Y, Ehlers MD. Modeling autism by SHANK gene mutations in mice. Neuron. 2013;78:8–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism. 2010;1:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yang M, Bozdagi O, Scattoni ML, Wöhr M, Roullet FI, Katz AM, et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci. 2012;32:6525–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet. 2011;20:3093–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472:437–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Mei Y, Monteiro P, Zhou Y, Kim J-A, Gao X, Fu Z, et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature. 2016;530:481–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Duffney LJ, Zhong P, Wei J, Matas E, Cheng J, Qin L, et al. Autism-like deficits in Shank3-deficient mice are rescued by targeting actin regulators. Cell Rep. 2015;11:1400–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang X, Bey AL, Katz BM, Badea A, Kim N, David LK, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7:11459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yoo T, Cho H, Lee J, Park H, Yoo Y-E, Yang E, et al. GABA neuronal deletion of Shank3 exons 14–16 in mice suppresses striatal excitatory synaptic input and induces social and locomotor abnormalities. Front Cell Neurosci. 2018;12:341.

  141. Won H, Lee H-R, Gee HY, Mah W, Kim J-I, Lee J, et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature. 2012;486:261–5.

    Article  CAS  PubMed  Google Scholar 

  142. Han K, Holder JL, Schaaf CP, Lu H, Chen H, Kang H, et al. SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature. 2013;503:72–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Deriziotis P, Fisher SE. Speech and language: translating the genome. Trends Genet. 2017;33:642–56.

    Article  CAS  PubMed  Google Scholar 

  144. MacDermot KD, Bonora E, Sykes N, Coupe A-M, Lai CSL, Vernes SC, et al. Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. Am J Hum Genet. 2005;76:1074–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Schulze K, Vargha-Khadem F, Mishkin M. Phonological working memory and FOXP2. Neuropsychologia. 2018;108:147–52.

    Article  PubMed  Google Scholar 

  146. Argyropoulos GPD, Watkins KE, Belton-Pagnamenta E, Liégeois F, Saleem KS, Mishkin M, et al. Neocerebellar crus I abnormalities associated with a speech and language disorder due to a mutation in FOXP2. Cerebellum. 2019;18:309–19.

    Article  CAS  PubMed  Google Scholar 

  147. Chen Y-C, Kuo H-Y, Bornschein U, Takahashi H, Chen S-Y, Lu K-M, et al. Foxp2 controls synaptic wiring of corticostriatal circuits and vocal communication by opposing Mef2c. Nat Neurosci. 2016;19:1513–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Corballis MC. FOXP2 and the mirror system. Trends Cogn Sci (Regul Ed). 2004;8:95–96.

    Article  Google Scholar 

  149. Khalil R, Tindle R, Boraud T, Moustafa AA, Karim AA. Social decision making in autism: on the impact of mirror neurons, motor control, and imitative behaviors. CNS Neurosci Ther. 2018;24:669–76.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Casey JP, Magalhaes T, Conroy JM, Regan R, Shah N, Anney R, et al. A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder. Hum Genet. 2012;131:565–79.

    Article  PubMed  Google Scholar 

  151. Gong X, Jia M, Ruan Y, Shuang M, Liu J, Wu S, et al. Association between the FOXP2 gene and autistic disorder in Chinese population. Am J Med Genet B Neuropsychiatr Genet. 2004;127B:113–6.

  152. Shu W, Cho JY, Jiang Y, Zhang M, Weisz D, Elder GA, et al. Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proc Natl Acad Sci Usa. 2005;102:9643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. French CA, Groszer M, Preece C, Coupe A-M, Rajewsky K, Fisher SE. Generation of mice with a conditional Foxp2 null allele. Genesis. 2007;45:440–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Medvedeva VP, Rieger MA, Vieth B, Mombereau C, Ziegenhain C, Ghosh T, et al. Altered social behavior in mice carrying a cortical Foxp2 deletion. Hum Mol Genet. 2019;28:701–17.

    Article  CAS  PubMed  Google Scholar 

  155. Bowers JM, Konopka G. ASD-relevant animal models of the Foxp family of transcription factors. Autism Open Access. 2012;Suppl 1:pii: 10082.

  156. O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43:585–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Mukamel Z, Konopka G, Wexler E, Osborn GE, Dong H, Bergman MY, et al. Regulation of MET by FOXP2, genes implicated in higher cognitive dysfunction and autism risk. J Neurosci. 2011;31:11437–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Toma C, Hervás A, Torrico B, Balmaña N, Salgado M, Maristany M, et al. Analysis of two language-related genes in autism: a case-control association study of FOXP2 and CNTNAP2. Psychiatr Genet. 2013;23:82–5.

    Article  CAS  PubMed  Google Scholar 

  159. Bruneau N, Szepetowski P. The role of the urokinase receptor in epilepsy, in disorders of language, cognition, communication and behavior, and in the central nervous system. Curr Pharm Des. 2011;17:1914–23.

    Article  CAS  PubMed  Google Scholar 

  160. Kuo H-Y, Liu F-C. Valproic acid induces aberrant development of striatal compartments and corticostriatal pathways in a mouse model of autism spectrum disorder. FASEB J. 2017;31:4458–71.

    Article  CAS  PubMed  Google Scholar 

  161. Assali A, Harrington AJ, Cowan CW. Emerging roles for MEF2 in brain development and mental disorders. Curr Opin Neurobiol. 2019;59:49–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Flavell SW, Kim T-K, Gray JM, Harmin DA, Hemberg M, Hong EJ, et al. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron. 2008;60:1022–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Flavell SW, Cowan CW, Kim T-K, Greer PL, Lin Y, Paradis S, et al. Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science. 2006;311:1008–12.

    Article  CAS  PubMed  Google Scholar 

  164. Novara F, Beri S, Giorda R, Ortibus E, Nageshappa S, Darra F, et al. Refining the phenotype associated with MEF2C haploinsufficiency. Clin Genet. 2010;78:471–7.

    Article  CAS  PubMed  Google Scholar 

  165. Tu S, Akhtar MW, Escorihuela RM, Amador-Arjona A, Swarup V, Parker J, et al. NitroSynapsin therapy for a mouse MEF2C haploinsufficiency model of human autism. Nat Commun. 2017;8:1488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Li H, Radford JC, Ragusa MJ, Shea KL, McKercher SR, Zaremba JD, et al. Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo. Proc Natl Acad Sci USA. 2008;105:9397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Barbosa AC, Kim M-S, Ertunc M, Adachi M, Nelson ED, McAnally J, et al. MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. Proc Natl Acad Sci USA. 2008;105:9391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Harrington AJ, Raissi A, Rajkovich K, Berto S, Kumar J, Molinaro G, et al. MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders. Elife. 2016;5:pii: e20059.

  169. Adachi M, Lin P-Y, Pranav H, Monteggia LM. Postnatal loss of Mef2c results in dissociation of effects on synapse number and learning and memory. Biol Psychiatry. 2016;80:140–8.

    Article  CAS  PubMed  Google Scholar 

  170. Dietrich J-B, Takemori H, Grosch-Dirrig S, Bertorello A, Zwiller J. Cocaine induces the expression of MEF2C transcription factor in rat striatum through activation of SIK1 and phosphorylation of the histone deacetylase HDAC5. Synapse. 2012;66:61–70.

    Article  CAS  PubMed  Google Scholar 

  171. Grégoire S, Yang X-J. Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol Cell Biol. 2005;25:2273–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Gu X, Fu C, Lin L, Liu S, Su X, Li A, et al. miR-124 and miR-9 mediated downregulation of HDAC5 promotes neurite development through activating MEF2C-GPM6A pathway. J Cell Physiol. 2018;233:673–87.

    Article  CAS  PubMed  Google Scholar 

  173. Davila JL, Goff LA, Ricupero CL, Camarillo C, Oni EN, Swerdel MR, et al. A positive feedback mechanism that regulates expression of miR-9 during neurogenesis. PLoS One. 2014;9:e94348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Grégoire S, Xiao L, Nie J, Zhang X, Xu M, Li J, et al. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol Cell Biol. 2007;27:1280–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for the following funds that support the laboratories, although none of them directly supports the work described in this review. The funds are NIH grant CA215591, DK111436, and ES027544 (Z.S.), American Diabetes Association grant 1-19-PDF-012 (W.Z.), National Natural Science Foundation of China 31200804 (Y.K.), and the Fundamental Research Funds for the Central Universities 2242019K40122 (Y.K.). We thank John S. Dunn Foundation and Mrs. Clifford Elder White Graham Endowed Research Fund. We are also thankful for the Cardiovascular Research Institute, Dan L Duncan Comprehensive Cancer Center (P30CA125123), Texas Medical Center Digestive Diseases Center (P30DK056338), and the SPORE program in lymphoma (P50 CA126752) at Baylor College of Medicine, and Gulf Coast Center for Precision Environmental Health (P30ES030285).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Y., Zhou, W. & Sun, Z. Nuclear receptor corepressors in intellectual disability and autism. Mol Psychiatry 25, 2220–2236 (2020). https://doi.org/10.1038/s41380-020-0667-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0667-y

This article is cited by

Search

Quick links