Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic control of variability in subcortical and intracranial volumes

Abstract

Sensitivity to external demands is essential for adaptation to dynamic environments, but comes at the cost of increased risk of adverse outcomes when facing poor environmental conditions. Here, we apply a novel methodology to perform genome-wide association analysis of mean and variance in ten key brain features (accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus, intracranial volume, cortical surface area, and cortical thickness), integrating genetic and neuroanatomical data from a large lifespan sample (n = 25,575 individuals; 8–89 years, mean age 51.9 years). We identify genetic loci associated with phenotypic variability in thalamus volume and cortical thickness. The variance-controlling loci involved genes with a documented role in brain and mental health and were not associated with the mean anatomical volumes. This proof-of-principle of the hypothesis of a genetic regulation of brain volume variability contributes to establishing the genetic basis of phenotypic variance (i.e., heritability), allows identifying different degrees of brain robustness across individuals, and opens new research avenues in the search for mechanisms controlling brain and mental health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Common genetic variants regulate the distribution variance of human subcortical and intracranial volumes.
Fig. 2: Shift function plots for the top genome-wide significant associations in mean and variance model GWAS results.

Similar content being viewed by others

Data availability

Data availability notes for each cohort can be found on Supplementary Table S1.

Code availability

All scripts are available upon reasonable request to the corresponding authors.

References

  1. Félix MA, Barkoulas M. Pervasive robustness in biological systems. Nat Rev Genet. 2015;16:483–96.

    Article  PubMed  Google Scholar 

  2. Hibar DP, Stein JL, Renteria ME, Arias-Vasquez A, Desrivieres S, Jahanshad N, et al. Common genetic variants influence human subcortical brain structures. Nature. 2015;520:224–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smeland OB, Wang Y, Frei O, Li W, Hibar DP, Franke B, et al. Genetic overlap between schizophrenia and volumes of hippocampus, putamen, and intracranial volume indicates shared molecular genetic mechanisms. Schizophr Bull. 2018;44:854–64.

    Article  PubMed  Google Scholar 

  4. Wagner A. Robustness and evolvability in living systems. Princeton, N.J.; Woodstock: Princeton University Press; 2005.

    Google Scholar 

  5. Masel J, Trotter MV. Robustness and evolvability. Trends Genet. 2010;26:406–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Starrfelt J, Kokko H. Bet-hedging–a triple trade-off between means, variances and correlations. Biol Rev Camb Philos Soc. 2012;87:742–55.

    Article  PubMed  Google Scholar 

  7. Shen X, Pettersson M, Rönnegård L, Carlborg Ö. Inheritance beyond plain heritability: variance-controlling genes in Arabidopsis thaliana. PLoS Genet. 2012;8:e1002839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2015.

  10. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA. 2000;97:11050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Auer PL, Reiner AP, Leal SM. The effect of phenotypic outliers and non-normality on rare-variant association testing. Eur J Hum Genet. 2016;24:1188–94.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang J, Loos RJ, Powell JE, Medland SE, Speliotes EK, Chasman DI, et al. FTO genotype is associated with phenotypic variability of body mass index. Nature. 2012;490:267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shen X, Carlborg O. Beware of risk for increased false positive rates in genome-wide association studies for phenotypic variability. Front Genet. 2013;4:93.

    PubMed  PubMed Central  Google Scholar 

  14. Ritchie SJ, Cox SR, Shen X, Lombardo MV, Reus LM, Alloza C, et al. Sex differences in the adult human brain: evidence from 5216 UK biobank participants. Cereb Cortex. 2018;28:2959–75.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wierenga LM, Sexton JA, Laake P, Giedd JN, Tamnes CK. Pediatric Imaging Nu, and Genetics Study A key characteristic of sex differences in the developing brain: greater variability in brain structure of boys than girls. Cereb Cortex. 2018;28:2741–51.

    Article  PubMed  Google Scholar 

  16. Stasinopoulos DM, Rigby RA. Generalized additive models for location scale and shape (GAMLSS) in R. J Stat Softw. 2007;23:1–46.

    Article  Google Scholar 

  17. Hastie T, Tibshirani R. Varying-coefficient models. J R Stat Soc. 1993;55:757–79.

    Google Scholar 

  18. Franke B, Stein JL, Ripke S, Anttila V, Hibar DP, van Hulzen KJ, et al. Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nat Neurosci. 2016;19:420–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rousselet GA, Pernet CR, Wilcox RR. Beyond differences in means: robust graphical methods to compare two groups in neuroscience. Eur J Neurosci. 2017;46:1738–48.

    Article  PubMed  Google Scholar 

  20. Morris DW, Pearson RD, Cormican P, Kenny EM, O’Dushlaine CT, Perreault LP, et al. An inherited duplication at the gene p21 protein-activated kinase 7 (PAK7) is a risk factor for psychosis. Hum Mol Genet. 2014;23:3316–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quintana DS, Rokicki J, van der Meer D, Alnæs D, Kaufmann T, Córdova-Palomera A, et al. Oxytocin pathway gene networks in the human brain. Nat Commun. 2019;10:668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Houenou J, Boisgontier J, Henrion A, d’Albis MA, Dumaine A, Linke J. et al. A multilevel functional study of a snap25 at-risk variant for bipolar disorder and schizophrenia. J Neurosci. 2017;37:10389–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Najera K, Fagan BM, Thompson PM. SNAP-25 in major psychiatric disorders: a review. Neuroscience. 2019;420:79–85.

  24. de Kovel CGF, Francks C. The molecular genetics of hand preference revisited. Sci Rep. 2019;9:5986.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ayroles JF, Buchanan SM, O’Leary C, Skutt-Kakaria K, Grenier JK, Clark AG, et al. Behavioral idiosyncrasy reveals genetic control of phenotypic variability. Proc Natl Acad Sci USA. 2015;112:6706–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang W, Carbone MA, Magwire MM, Peiffer JA, Lyman RF, Stone EA, et al. Genetic basis of transcriptome diversity in Drosophila melanogaster. Proc Natl Acad Sci USA. 2015;112:E6010–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the South-Eastern Norway Regional Health Authority (2014097, 2015073, 2016083, and 2019101), the Research Council of Norway (204966, 249795, and 223273), Stiftelsen Kristian Gerhard Jebsen, and the European Research Council under the European Union’s Horizon 2020 research and Innovation program (ERC StG, Grant 802998). Research conducted using the UK Biobank Resource (access code 27412).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, ACP and LTW; Methodology, ACP and LTW; Investigation, ACP, vdM, and TK; Writing—Original Draft, ACP and LTW; Writing—Review and Editing, all co-authors.

Corresponding authors

Correspondence to Aldo Córdova-Palomera or Lars T. Westlye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdova-Palomera, A., van der Meer, D., Kaufmann, T. et al. Genetic control of variability in subcortical and intracranial volumes. Mol Psychiatry 26, 3876–3883 (2021). https://doi.org/10.1038/s41380-020-0664-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0664-1

This article is cited by

Search

Quick links