Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

The changing opioid crisis: development, challenges and opportunities

Abstract

The current opioid epidemic is one of the most severe public health crisis in US history. Responding to it has been difficult due to its rapidly changing nature and the severity of its associated outcomes. This review examines the origin and evolution of the crisis, the pharmacological properties of opioids, the neurobiology of opioid use and opioid use disorder (OUD), medications for opioid use disorder (MOUD), and existing and promising approaches to prevention. The results of the review indicate that the opioid epidemic is a complex, evolving phenomenon that involves neurobiological vulnerabilities and social determinants of health. Successfully addressing the epidemic will require advances in basic science, development of more acceptable and effective treatments, and implementation of public health approaches, including prevention. The advances achieved in addressing the current crisis should also serve to advance the science and treatment of other substance use disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Compton WM, Jones CM, Baldwin GT, Harding FM, Blanco C, Wargo EM. Targeting Youth to Prevent Later Substance Use Disorder: An Underutilized Response to the US Opioid Crisis. Am J Public Health. 2019;109(S3):S185–9.

  2. Han B, Compton WM, Blanco C, Jones CM. Correlates of Prescription Opioid Use, Misuse, Use Disorders, and Motivations for Misuse Among US Adults. J Clin Psychiatry. 2018;79. 17m11973.

  3. Olfson M, Crystal S, Wall M, Wang S, Liu S, Blanco C. Causes of death after nonfatal opioid overdose. JAMA Psychiatry. 2018;75:820–7.

  4. Olfson M, Wall M, Wang S, Crystal S, Blanco C. Risks of fatal opioid overdose during the first year following nonfatal overdose. Drug Alcohol Depend. 2018;190:112–9.

    PubMed  Google Scholar 

  5. Pincus HA, Blanco C. The opioid crisis in America: an overview. in: confronting our nation’s opioid crisis, a report of the aspen health strategy group. The Aspen Institute; 2017. p. 23–46.

  6. Institute of Medicine. Relieving pain in America: a blueprint for transforming prevention, care, education, and research. Washington, DC: The National Academies Press; 2011.

  7. Porter J, Jick H. Addiction Rare in Patients Treated with Narcotics. New England J Med. 1980;302:123.

  8. Vowles KE, McEntee ML, Julnes PS, Frohe T, Ney JP, van der Goes DN. Rates of opioid misuse, abuse, and addiction in chronic pain: a systematic review and data synthesis. Pain. 2015;156:569–76.

    PubMed  Google Scholar 

  9. Martins SS, Fenton MC, Keyes KM, Blanco C, Zhu H, Storr CL. Mood and anxiety disorders and their association with non-medical prescription opioid use and prescription opioid-use disorder: longitudinal evidence from the national epidemiologic study on alcohol and related conditions. Psychol Med. 2012;42:1261–72.

    CAS  PubMed  Google Scholar 

  10. Blanco C, Alderson D, Ogburn E, Grant BF, Nunes EV, Hatzenbuehler ML, et al. Changes in the prevalence of non-medical prescription drug use and drug use disorders in the United States: 1991–1992 and 2001–2002. Drug Alcohol Depend. 2007;90:252–60.

    PubMed  Google Scholar 

  11. Saha TD, Kerridge BT, Goldstein RB, Chou SP, Zhang H, Jung J, et al. Nonmedical prescription opioid use and DSM-5 nonmedical prescription opioid use disorder in the United States. J Clin Psychiatry. 2016;77:772–80.

    PubMed  PubMed Central  Google Scholar 

  12. Han B, Compton WM, Jones CM, Cai R. Nonmedical prescription opioid use and use disorders among adults aged 18 through 64 years in the United States, 2003–2013. JAMA. 2015;314:1468–78.

    CAS  PubMed  Google Scholar 

  13. Mars SG, Fessel JN, Bourgois P, Montero F, Karandinos G, Ciccarone D. Heroin-related overdose: the unexplored influences of markets, marketing and source-types in the United States. Soc Sci Med (1982). 2015;140:44–53.

    Google Scholar 

  14. Martins SS, Sarvet A, Santaelle-Tenorio J, Saha T, Grant BF, Hasin DS. Changes in US Lifetime Heroin Use and Heroin Use Disorder: Prevalence From the 2001-2002 to 2012-2013 National Epidemiologic Survey on Alcohol and Related Conditions. JAMA Psychiatry. 2017;74:445–55.

  15. Muhuri PK, Gfoerer JC, Davies MC. Associations of nonmedical pain reliever use and initiation of heroin use in the United States. SAMHSA CBHSQ Data Review August 2013. Available at https://www.samhsa.gov/data/sites/default/files/DR006/DR006/nonmedical-pain-reliever-use-2013.htm. Accessed 28 Dec 2019.

  16. Compton WM, Jones CM, Baldwin GT. Relationship between nonmedical prescription-opioid use and heroin use. N Engl J Med. 2016;374:154–63.

    CAS  PubMed  Google Scholar 

  17. Hedegaard H, Minino A, Warner M. Drug overdose deaths in the United States. 1999–2017. NCHS Data Brief 2018;329.

  18. Jones CM, Einstein EB, Compton WM. Changes in synthetic opioid involvement in drug overdose deaths in the United States, 2010–2016. JAMA. 2018;319:1819–21.

    PubMed  PubMed Central  Google Scholar 

  19. Frank RG, Pollack HA. Addressing the fentanyl threat to public health. N Engl J Med. 2017;376:605–7.

    PubMed  Google Scholar 

  20. Suzuki J, El-Haddad S. A review: fentanyl and non-pharmaceutical fentanyls. Drug Alcohol Depend. 2017;171:107–16.

    CAS  PubMed  Google Scholar 

  21. Cai NS, Quiroz C, Bonaventura J, Bonifazi A, Cole TO, Purks J, et al. Opioid-galanin receptor heteromers mediate the dopaminergic effects of opioids. J Clin Invest. 2019;129:2730–44.

  22. Ling GS, Paul D, Simantov R, Pasternak GW. Differential development of acute tolerance to analgesia, respiratory depression, gastrointestinal transit and hormone release in a morphine infusion model. Life Sci. 1989;45:1627–36.

    CAS  PubMed  Google Scholar 

  23. Christie MJ. Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharm. 2008;154:384–96.

    CAS  Google Scholar 

  24. Rich MM, Wenner P. Sensing and expressing homeostatic synaptic plasticity. Trends Neurosci. 2007;30:119–25.

    CAS  PubMed  Google Scholar 

  25. Govindan RM, Behen ME, Helder E, Makki MI, Chugani HT. Altered water diffusivity in cortical association tracts in children with early deprivation identified with Tract-Based Spatial Statistics (TBSS). Cereb Cortex. 2010;20:561–9.

    PubMed  Google Scholar 

  26. Sheridan MA, Fox NA, Zeanah CH, McLaughlin KA, Nelson CA 3rd. Variation in neural development as a result of exposure to institutionalization early in childhood. Proc Natl Acad Sci. 2012;109:12927–32.

    CAS  PubMed  Google Scholar 

  27. Xu J, Lu Z, Xu M, Pan L, Deng Y, Xie X, et al. A heroin addiction severity-associated intronic single nucleotide polymorphism modulates alternative pre-mRNA splicing of the mu opioid receptor gene OPRM1 via hnRNPH interactions. J Neurosci. 2014;34:11048–66.

    PubMed  PubMed Central  Google Scholar 

  28. Nelson EC, Agrawal A, Heath AC, Bogdan R, Sherva R, Zhang B, et al. Evidence of CNIH3 involvement in opioid dependence. Mol Psychiatry. 2016;21:608–14.

    CAS  PubMed  Google Scholar 

  29. Greenwald MK, Steinmiller CL, Sliwerska E, Lundahl L, Burmeister M. BDNF Val(66)Met genotype is associated with drug-seeking phenotypes in heroin-dependent individuals: a pilot study. Addict Biol. 2013;18:836–45.

    CAS  PubMed  Google Scholar 

  30. Caspi A, McClay J, Moffitt TE, Mill J, Martin, J, Craig IW, et al. Role of genotype in the cycle of violence in maltreated children. Science. 2002;297:851–4.

  31. Weder N, Yang BZ, Douglas-Palumberi H, Massey J, Krystal JH, Gelernter J, et al. MAOA genotype, maltreatment, and aggressive behavior: the changing impact of genotype at varying levels of trauma. Biol Psychiatry. 2009;65:417–24.

    CAS  PubMed  Google Scholar 

  32. Meyer-Lindenberg A, Kohn PD, Kolachana B, Kippenhan S, McInerney-Leo A, Nussbaum R, et al. Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat Neurosci. 2005;8:594–6.

    CAS  PubMed  Google Scholar 

  33. Drabant EM, Hariri AR, Meyer-Lindenberg A, Munoz KE, Mattay VS, Kolachana BS, et al. Catechol O-methyltransferase val158met genotype and neural mechanisms related to affective arousal and regulation. Arch Gen Psychiatry. 2006;63:1396–406.

    CAS  PubMed  Google Scholar 

  34. Tyndale RF, Sellers EM. Genetic variation in CYP2A6-mediated nicotine metabolism alters smoking behavior. Therapeutic Drug Monit. 2002;24:163–71.

    CAS  Google Scholar 

  35. Tunbridge EM, Huber A, Farrell SM, Stumpenhorst K, Harrison PJ, Walton ME. The role of catechol-O-methyltransferase in reward processing and addiction. CNS Neurol Disord Drug Targets. 2012;11:306e323.

    Google Scholar 

  36. Lobo MK, Nestler EJ. The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat. 2011;5:41.

    PubMed  PubMed Central  Google Scholar 

  37. Samochowiec A, Grzywacz A, Kaczmarek L, Bienkowski P, Samochowiec J, Mierzejewski P, et al. Functional polymorphism of matrix metalloproteinase-9 (MMP-9) gene in alcohol dependence: family and case control study. Brain Res. 2010;1327:103–6.

    CAS  PubMed  Google Scholar 

  38. Song R, Zhang HY, Li X, Bi GH, Gardner EL, Xi ZX. Increased vulnerability to cocaine in mice lacking dopamine D3 receptors. Proc Natl Acad Sci USA. 2012;109:17675–80.

    CAS  PubMed  Google Scholar 

  39. Szumlinski KK, Kalivas PW, Worley PF. Homer proteins: implications for neuropsychiatric disorders. Curr Opin Neurobiol. 2006;16:251–7.

    CAS  PubMed  Google Scholar 

  40. Stefaniuk M, Beroun A, Lebitko T, Markina O, Leski S, Meyza K, et al. Matrix metalloproteinase-9 and synaptic plasticity in the central amygdala in control of alcohol-seeking behavior. Biol Psychiatry. 2017;81:907–17.

    CAS  PubMed  Google Scholar 

  41. Samochowiec J, Ladehoff M, Pelz J, Smolka M, Schmidt LG, Rommelspacher H, et al. Predominant influence of the 3’-region of dopamine D2 receptor gene (DRD2) on the clinical phenotype in German alcoholics. Pharmacogenetics. 2000;10:471–5.

    CAS  PubMed  Google Scholar 

  42. Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, Mercer KB, et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA. 2008;299:1291–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmitt JE, Neale MC, Fassassi B, Perez J, Lenroot RK, Wells EM, et al. The dynamic role of genetics on cortical patterning during childhood and adolescence. Proc Natl Acad Sci USA. 2014;111:6774–9.

    CAS  PubMed  Google Scholar 

  44. Nestler EJ. Epigenetic mechanisms of drug addiction. Neuropharmacology. 2014;76(Pt B):259–68.

    Google Scholar 

  45. Adolescent Brain Cognitive Development Study. Available at https://abcdstudy.org. Accessed 28 Dec 2019.

  46. Baby Connectome Project. Available at https://doi.org/https://babyconnectomeproject.org. Accessed 28 Dec 2019.

  47. Levenson JM, Sweatt JD. Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell Mol Life Sci. 2006;63:1009–16.

    CAS  PubMed  Google Scholar 

  48. Champagne FA, Curley JP. How social experiences influence the brain. Curr Opin Neurobiol. 2005;15:704–9.

    CAS  PubMed  Google Scholar 

  49. Sun H, Maze I, Dietz DM, Scobie KN, Kennedy PJ, Damez-Werno D, et al. Morphine epigenomically regulates behavior through alterations in histone H3 lysine 9 dimethylation in the nucleus accumbens. J Neurosci. 2012;32:17454–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Friedman EM, Karlamangla AS, Almeida DM, Seeman TE. Social strain and cortisol regulation in midlife in the US. Soc Sci Med (1982). 2012;74:607–15.

    Google Scholar 

  51. Karatsoreos IN, McEwen BS. Annual research review: the neurobiology and physiology of resilience and adaptation across the life course. J Child Psychol Psychiatry. 2013;54:337–47.

    PubMed  Google Scholar 

  52. Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science. 1997;278:52–8.

    CAS  PubMed  Google Scholar 

  53. Wise RA. Roles for nigrostriatal-not just mesocorticolimbic-dopamine in reward and addiction. Trends Neurosci. 2009;32:517–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gianoulakis C. Endogenous opioids and addiction to alcohol and other drugs of abuse. Curr Top Med Chem. 2004;4:39–50.

    CAS  PubMed  Google Scholar 

  55. Panlilio LV, Justinova Z. Preclinical studies of cannabinoid reward, treatments for cannabis use disorder, and addiction-related effects of cannabinoid exposure. Neuropsychopharmacology. 2018;43:116–41.

    CAS  PubMed  Google Scholar 

  56. Volkow ND, Baler RD. Addiction science: uncovering neurobiological complexity. Neuropharmacology. 2014;76(Pt B):235–49.

    Google Scholar 

  57. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73.

    PubMed  PubMed Central  Google Scholar 

  58. Luscher C, Malenka RC. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron. 2011;69:650–63.

    PubMed  PubMed Central  Google Scholar 

  59. Zweifel LS, Parker JG, Lobb CJ, Rainwater A, Wall VZ, Fadok JP, et al. Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proc Natl Acad Sci USA. 2009;106:7281–8.

    CAS  PubMed  Google Scholar 

  60. Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res. 2009;199:89–102.

    PubMed  Google Scholar 

  61. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162:1403–13.

    PubMed  Google Scholar 

  62. Perez de los Cobos J, Batlle F, Casas M. Proposal for improving the integration of drug dependencies in psychiatric nosology. Actas luso-espanolas de neurologia, psiquiatria y ciencias afines. 1996;24:63–5.

    CAS  PubMed  Google Scholar 

  63. Geisler S, Wise RA. Functional implications of glutamatergic projections to the ventral tegmental area. Rev Neurosci. 2008;19:227–44.

    PubMed  PubMed Central  Google Scholar 

  64. Koob GF, Le Moal M. Addiction and the brain antireward system. Annu Rev Psychol. 2008;59:29–53.

    PubMed  Google Scholar 

  65. Stinus L, Le Moal M, Koob GF. Nucleus accumbens and amygdala are possible substrates for the aversive stimulus effects of opiate withdrawal. Neuroscience. 1990;37:767–73.

    CAS  PubMed  Google Scholar 

  66. Koob GF, Buck CL, Cohen A, Edwards S, Park PE, Schlosburg JE, et al. Addiction as a stress surfeit disorder. Neuropharmacology. 2014;76(Pt B):370–82.

    Google Scholar 

  67. Kimura M, Satoh T, Matsumoto N. What does the habenula tell dopamine neurons? Nat Neurosci. 2007;10:677–8.

    CAS  PubMed  Google Scholar 

  68. Hikosaka O. The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci. 2010;11:503–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Matsumoto M, Hikosaka O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature. 2007;447:1111–5.

    CAS  PubMed  Google Scholar 

  70. Metzger M, Bueno D, Lima LB. The lateral habenula and the serotonergic system. Pharmacol Biochem Behav. 2017;162:22–8.

    CAS  PubMed  Google Scholar 

  71. Naqvi NH, Bechara A. The hidden island of addiction: the insula. Trends Neurosci. 2009;32:56–67.

    CAS  PubMed  Google Scholar 

  72. Bonson KR, Grant SJ, Contoreggi CS, Links JM, Metcalfe J, Weyl HL, et al. Neural systems and cue-induced cocaine craving. Neuropsychopharmacology. 2002;26:376–86.

    CAS  PubMed  Google Scholar 

  73. Pelchat ML, Johnson A, Chan R, Valdez J, Ragland JD. Images of desire: food-craving activation during fMRI. NeuroImage. 2004;23:1486–93.

    PubMed  Google Scholar 

  74. Wang Z, Faith M, Patterson F, Tang K, Kerrin K, Wileyto EP, et al. Neural substrates of abstinence-induced cigarette cravings in chronic smokers. J Neurosci. 2007;27:14035–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jasinska AJ, Stein EA, Kaiser J, Naumer MJ, Yalachkov Y. Factors modulating neural reactivity to drug cues in addiction: a survey of human neuroimaging studies. Neurosci Biobehav Rev. 2014;38:1–16.

    PubMed  Google Scholar 

  76. Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci. 2012;12:241–68.

    PubMed  PubMed Central  Google Scholar 

  77. Bechara A, Damasio H, Damasio AR, Lee GP. Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. J Neurosci. 1999;19:5473–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Damasio AR. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos Trans R Soc Lond Ser B, Biol Sci. 1996;351:1413–20.

    CAS  Google Scholar 

  79. Johnstone T, van Reekum CM, Urry HL, Kalin NH, Davidson RJ. Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J Neurosci. 2007;27:8877–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F. Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci USA. 2011;108:15037–42.

    CAS  PubMed  Google Scholar 

  81. Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry. 2001;158:2015–21.

    CAS  PubMed  Google Scholar 

  82. Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ, et al. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse. 1993;14:169–77.

    CAS  PubMed  Google Scholar 

  83. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Jayne M, et al. Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. J Neurosci. 2007;27:12700–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. George O, Sanders C, Freiling J, Grigoryan E, Vu S, Allen CD, et al. Recruitment of medial prefrontal cortex neurons during alcohol withdrawal predicts cognitive impairment and excessive alcohol drinking. Proc Natl Acad Sci. 2012;109:18156–61.

    CAS  PubMed  Google Scholar 

  85. Kim HJ, Lee JH, Yun K, Kim JH. Alterations in striatal circuits underlying addiction-like behaviors. Molecules Cells. 2017;40:379–85.

    CAS  PubMed  Google Scholar 

  86. Volkow ND, Fowler JS. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex. 2000;10:318–25.

    CAS  PubMed  Google Scholar 

  87. Fineberg NA, Potenza MN, Chamberlain SR, Berlin HA, Menzies L, Bechara A, et al. Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology. 2010;35:591–604.

    PubMed  Google Scholar 

  88. Kober H, Lacadie CM, Wexler BE, Malison RT, Sinha R, Potenza MN. Brain activity during cocaine craving and gambling urges: an fMRI study. Neuropsychopharmacology. 2016;41:628–37.

    CAS  PubMed  Google Scholar 

  89. Lee JH, Lim Y, Wiederhold BK, Graham SJ. A functional magnetic resonance imaging (FMRI) study of cue-induced smoking craving in virtual environments. Appl Psychophysiol Biofeedback. 2005;30:195–204.

    PubMed  Google Scholar 

  90. Risinger RC, Salmeron BJ, Ross TJ, Amen SL, Sanfilipo M, Hoffmann RG, et al. Neural correlates of high and craving during cocaine self-administration using BOLD fMRI. NeuroImage. 2005;26:1097–108.

    PubMed  Google Scholar 

  91. Volkow ND, Wang GJ, Ma Y, Fowler JS, Wong C, Ding YS, et al. Activation of orbital and medial prefrontal cortex by methylphenidate in cocaine-addicted subjects but not in controls: relevance to addiction. J Neurosci. 2005;25:3932–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Khaled MA, Pushparaj A, Di Ciano P, Diaz J, Le Foll B. Dopamine D3 receptors in the basolateral amygdala and the lateral habenula modulate cue-induced reinstatement of nicotine seeking. Neuropsychopharmacol. 2014;39:3049–58.

    CAS  Google Scholar 

  93. McGlinchey EM, James MH, Mahler SV, Pantazis C, Aston-Jones G. Prelimbic to accumbens core pathway is recruited in a dopamine-dependent manner to drive cued reinstatement of cocaine seeking. J Neurosci. 2016;36:8700–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yager LM, Garcia AF, Donckels EA, Ferguson SM. Chemogenetic inhibition of direct pathway striatal neurons normalizes pathological, cue-induced reinstatement of drug-seeking in rats. Addict Biol. 2019;24:251–64.

    CAS  PubMed  Google Scholar 

  95. Piazza PV, Le Moal ML. Pathophysiological basis of vulnerability to drug abuse: role of an interaction between stress, glucocorticoids, and dopaminergic neurons. Annu Rev Pharmacol Toxicol. 1996;36:359–78.

    CAS  PubMed  Google Scholar 

  96. De Witte P, Littleton J, Parot P, Koob G. Neuroprotective and abstinence-promoting effects of acamprosate: elucidating the mechanism of action. CNS Drugs. 2005;19:517–37.

    PubMed  Google Scholar 

  97. Valdez GR, Roberts AJ, Chan K, Davis H, Brennan M, Zorrilla EP, et al. Increased ethanol self-administration and anxiety-like behavior during acute ethanol withdrawal and protracted abstinence: regulation by corticotropin-releasing factor. Alcohol Clin Exp Res. 2002;26:1494–501.

    CAS  PubMed  Google Scholar 

  98. Janes AC, Pizzagalli DA, Richardt S, de BFB, Chuzi S, Pachas G, et al. Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biol Psychiatry. 2010;67:722–9.

    PubMed  PubMed Central  Google Scholar 

  99. Substance Abuse and Mental Health Services Administration. Medications for Opioid Use Disorder. Treatment Improvement Protocol (TIP) Series 63, Full Document, HHS Publication No. (SMA) 18-506. Available at https://store.samhsa.gov/product/TIP-63-Medications-for-Opioid-Use-Disorder. Accessed 28 Dec 2019.

  100. National Academies of Sciences, Engineering, and Medicine. Medications for opioid use disorder save lives. Washington, DC: The National Academies Press; 2019.

  101. Gowing L, Ali R, White JM. Opioid antagonists with minimal sedation for opioid withdrawal. Cochrane Database Syst Rev. 2017;5:Cd002021.

    PubMed  Google Scholar 

  102. Amato L, Minozzi S, Davoli M, Vecchi S. Psychosocial and pharmacological treatments versus pharmacological treatments for opioid detoxification. Cochrane Database Syst Rev. 2011;9:Cd005031.

  103. Ling W, Amass L, Shoptaw S, Annon JJ, Hillhouse M, Babcock D, et al. A multi-center randomized trial of buprenorphine-naloxone versus clonidine for opioid detoxification: findings from the National Institute on Drug Abuse Clinical Trials Network. Addiction (Abingdon, Engl). 2005;100:1090–100.

    Google Scholar 

  104. Smyth BP, Barry J, Keenan E, Ducray K. Lapse and relapse following inpatient treatment of opiate dependence. Ir Med J. 2010;103:176–9.

    CAS  PubMed  Google Scholar 

  105. Merrall EL, Kariminia A, Binswanger IA, Hobbs MS, Farrell M, Marsden J, et al. Meta-analysis of drug-related deaths soon after release from prison. Addiction (Abingdon, Engl). 2010;105:1545–54.

    Google Scholar 

  106. Timko C, Schultz NR, Cucciare MA, Vittorio L, Garrison-Diehn C. Retention in medication-assisted treatment for opiate dependence: a systematic review. J Addictive Dis. 2016;35:22–35.

    Google Scholar 

  107. Amato L, Davoli M, Perucci CA, Ferri M, Faggiano F, Mattick RP. An overview of systematic reviews of the effectiveness of opiate maintenance therapies: available evidence to inform clinical practice and research. J Subst Abus Treat. 2005;28:321–9.

    Google Scholar 

  108. Degenhardt L, Randall D, Hall W, Law M, Butler T, Burns L. Mortality among clients of a state-wide opioid pharmacotherapy program over 20 years: risk factors and lives saved. Drug Alcohol Depend. 2009;105:9–15.

    PubMed  Google Scholar 

  109. Mattick RP, Breen C, Kimber J, Davoli M. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. Cochrane Database Syst Rev. 2014;4:Cd002207.

  110. McDermott KA, Griffin ML, Connery HS, Hilario EY, Fiellin DA, Fitzmaurice GM, et al. Initial response as a predictor of 12-week buprenorphine-naloxone treatment response in a prescription opioid-dependent population. J Clin Psychiatry. 2015;76:189–94.

    PubMed  PubMed Central  Google Scholar 

  111. Nielsen S, Larance B, Degenhardt L, Gowing L, Kehler C, Lintzeris N. Opioid agonist treatment for pharmaceutical opioid dependent people. Cochrane Database Syst Rev. 2016;5:Cd011117.

  112. Faggiano FV-TF, Versino E, Lemma P. Methadone maintenance at different dosages for opioid dependence. Cochrane Database Syst Rev. 2003;3:Cd002208.

  113. Haight BR, Learned SM, Laffont CM, Fudala PJ, Zhao Y, Garofalo AS, et al. Efficacy and safety of a monthly buprenorphine depot injection for opioid use disorder: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (Lond, Engl). 2019;393:778–90.

    CAS  Google Scholar 

  114. Lofwall MR, Walsh SL. A review of buprenorphine diversion and misuse: the current evidence base and experiences from around the world. J Addic Med. 2014;8:315–26.

    CAS  Google Scholar 

  115. Falcon E, Browne CA, Leon RM, Fleites VC, Sweeney R, Kirby LG, et al. Antidepressant-like effects of buprenorphine are mediated by kappa opioid receptors. Neuropsychopharmacology. 2016;41:2344–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Khanna IK, Pillarisetti S. Buprenorphine—an attractive opioid with underutilized potential in treatment of chronic pain. J Pain Res. 2015;8:859–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Rosenthal RN, Lofwall MR, Kim S, Chen M, Beebe KL, Vocci FJ. Effect of buprenorphine implants on illicit opioid use among abstinent adults with opioid dependence treated with sublingual buprenorphine: a randomized clinical trial. JAMA. 2016;316:282–90.

    PubMed  Google Scholar 

  118. Comer SD, Sullivan MA, Yu E, Rothenberg JL, Kleber HD, Kampman K, et al. Injectable, sustained-release naltrexone for the treatment of opioid dependence: a randomized, placebo-controlled trial. Arch Gen Psychiatry. 2006;63:210–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Krupitsky E, Nunes EV, Ling W, Illeperuma A, Gastfriend DR, Silverman BL. Injectable extended-release naltrexone for opioid dependence: a double-blind, placebo-controlled, multicentre randomised trial. Lancet (Lond, Engl). 2011;377:1506–13.

    CAS  Google Scholar 

  120. Lee JD, Friedmann PD, Kinlock TW, Nunes EV, Boney TY, Hoskinson RA Jr, et al. Extended-release naltrexone to prevent opioid relapse in criminal justice offenders. N Engl J Med. 2016;374:1232–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sullivan M, Bisaga A, Pavlicova M, Choi CJ, Mishlen K, Carpenter KM, et al. Long-acting injectable naltrexone induction: a randomized trial of outpatient opioid detoxification with naltrexone versus buprenorphine. Am J Psychiatry. 2017;174:459–67.

    PubMed  PubMed Central  Google Scholar 

  122. Vijay A, Morris E, Goldberg A, Petrulli J, Liu H, Huang Y, et al. Naltrexone occupancy at kappa opioid receptors investigated in alcoholics by PET occupancy at kappa opioid receptors investigated in alcoholics by PET. J Nucl Med. 2017;58(suppl 1):1297.

  123. Weerts EM, Kim YK, Wand GS, Dannals RF, Lee JS, Frost JJ, et al. Differences in delta- and mu-opioid receptor blockade measured by positron emission tomography in naltrexone-treated recently abstinent alcohol-dependent subjects. Neuropsychopharmacology. 2008;33:653–65.

    CAS  PubMed  Google Scholar 

  124. Lee JD, Nunes EV Jr, Novo P, Bachrach K, Bailey GL, Bhatt S, et al. Comparative effectiveness of extended-release naltrexone versus buprenorphine-naloxone for opioid relapse prevention (X:BOT): a multicentre, open-label, randomised controlled trial. Lancet (Lond, Engl). 2018;391:309–18.

    CAS  Google Scholar 

  125. Tanum L, Solli KK, Latif ZE, Benth JS, Opheim A, Sharma-Haase K, et al. Effectiveness of injectable extended-release naltrexone vs daily buprenorphine-naloxone for opioid dependence: a randomized clinical noninferiority trial. JAMA Psychiatry. 2017;74:1197–205.

    PubMed  PubMed Central  Google Scholar 

  126. Cushman P. Abstinence following detoxification and methadone maintenance treatment. Am J Med. 1978;65:46–52.

    PubMed  Google Scholar 

  127. Morgan JR, Schackman BR, Leff JA, Linas BP, Walley AY. Injectable naltrexone, oral naltrexone, and buprenorphine utilization and discontinuation among individuals treated for opioid use disorder in a United States commercially insured population. J Subst Abus Treat. 2018;85:90–6.

    Google Scholar 

  128. Nosyk B, Sun H, Evans E, Marsh DC, Anglin MD, Hser YI, et al. Defining dosing pattern characteristics of successful tapers following methadone maintenance treatment: results from a population-based retrospective cohort study. Addiction (Abingdon, Engl). 2012;107:1621–9.

    Google Scholar 

  129. Sordo L, Barrio G, Bravo MJ, Indave BI, Degenhardt L, Wiessing L, et al. Mortality risk during and after opioid substitution treatment: systematic review and meta-analysis of cohort studies. BMJ (Clin Res ed). 2017;357:j1550.

    Google Scholar 

  130. Schwartz RP, Highfield DA, Jaffe JH, Brady JV, Butler CB, Rouse CO, et al. A randomized controlled trial of interim methadone maintenance. Arch Gen Psychiatry. 2006;63:102–9.

    PubMed  Google Scholar 

  131. Sigmon SC, Schwartz RP, Higgins ST. Buprenorphine for persons on waiting lists for treatment for opioid dependence. N Engl J Med. 2017;376:1000–1.

    PubMed  PubMed Central  Google Scholar 

  132. Carroll KM, Weiss RD. The role of behavioral interventions in buprenorphine maintenance treatment: a review. Am J Psychiatry. 2017;174:738–47.

    PubMed  Google Scholar 

  133. Volkow ND, McLellan AT. Mitigation strategies for opioid abuse. N Engl J Med. 2016;375:96.

    PubMed  Google Scholar 

  134. Albert S, Brason FW 2nd, Sanford CK, Dasgupta N, Graham J, Lovette B. Project Lazarus: community-based overdose prevention in rural North Carolina. Pain Med (Malden, Mass). 2011;12 (Suppl 2):S77–85.

    Google Scholar 

  135. Walley AY, Xuan Z, Hackman HH, Quinn E, Doe-Simkins M, Sorensen-Alawad A, et al. Opioid overdose rates and implementation of overdose education and nasal naloxone distribution in Massachusetts: interrupted time series analysis. BMJ. 2013;346:f174.

    PubMed  PubMed Central  Google Scholar 

  136. Freeman PR, Hankosky ER, Lofwall MR, Talbert JC. The changing landscape of naloxone availability in the United States, 2011−2017. Drug Alcohol Depend. 2018;191:361–4.

    PubMed  PubMed Central  Google Scholar 

  137. Murphy SM, Morgan JR, Jeng PJ, Schackman BR. Will converting naloxone to over-the-counter status increase pharmacy sales? Health Serv Res. 2019.

  138. Substance Abuse and Mental Health Services Administration SAaMHS. SAMHSA opioid overdose prevention toolkit. (No. (SMA) 16-4742); HHS Publication: 2016.

  139. D’Onofrio G, O’Connor PG, Pantalon MV, Chawarski MC, Busch SH, Owens PH, et al. Emergency department-initiated buprenorphine/naloxone treatment for opioid dependence: a randomized clinical trial. JAMA. 2015;313:1636–44.

    PubMed  PubMed Central  Google Scholar 

  140. Volkow ND, Jones EB, Einstein EB, Wargo EM. Prevention and treatment of opioid misuse and addiction: a review. JAMA Psychiatry. 2019;76:208–16.

    PubMed  Google Scholar 

  141. Cicero TJ, Ellis MS, Kasper ZA. Increased use of heroin as an initiating opioid of abuse. Addictive Behav. 2017;74:63–6.

    Google Scholar 

  142. Spoth R, Trudeau L, Shin C, Ralston E, Redmond C, Greenberg M, et al. Longitudinal effects of universal preventive intervention on prescription drug misuse: three randomized controlled trials with late adolescents and young adults. Am J Public Health. 2013;103:665–72.

    PubMed  PubMed Central  Google Scholar 

  143. Blanco C, Wall MM, Liu SM, Olfson M. Towards a comprehensive developmental model of prescription opioid use disorder. J Clin Psychiatry. 2019;81:19m12775.

  144. Han B, Compton WM, Blanco C, Crane E, Lee J, Jones CM. Prescription opioid use, misuse, and use disorders in U.S. adults: 2015 national survey on drug use and health. Ann Intern Med. 2017;167:293–301.

    PubMed  Google Scholar 

  145. Collins FS, Koroshetz WJ, Volkow ND. Helping to end addiction over the long-term: the research plan for the NIH HEAL initiative. JAMA. 2018;320:129–30.

    PubMed  PubMed Central  Google Scholar 

  146. Rasmussen K, White DA, Acri JB. NIDA’s medication development priorities in response to the Opioid Crisis: ten most wanted. Neuropsychopharmacology. 2019;44:657–9.

    PubMed  Google Scholar 

  147. Conn PJ, Christopoulos A, Lindsley CW. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov. 2009;8:41–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Manglik A, Lin H, Aryal DK, McCorvy JD, Dengler D, Corder G, et al. Structure-based discovery of opioid analgesics with reduced side effects. Nature. 2016;537:185–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Levin FR, Bisaga A, Sullivan MA, Williams AR, Cates-Wessel K. A review of a national training initiative to increase provider use of MAT to address the opioid epidemic. Am J Addic. 2016;25:603–9.

    Google Scholar 

Download references

Acknowledgements

The views and opinions expressed in this report are those of the authors and should not be construed to represent the views of any of the sponsoring organizations, agencies or the US government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nora D. Volkow or Carlos Blanco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkow, N.D., Blanco, C. The changing opioid crisis: development, challenges and opportunities. Mol Psychiatry 26, 218–233 (2021). https://doi.org/10.1038/s41380-020-0661-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0661-4

This article is cited by

Search

Quick links