Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Incomplete hippocampal inversion in schizophrenia: prevalence, severity, and impact on hippocampal structure

Abstract

Incomplete hippocampal inversion (IHI) is an anatomical variant of the human brain resulting from an arrest in brain development, especially prevalent in the left hemisphere. We hypothesized that IHI is more common in schizophrenia and contributes to the well-known hippocampal structural differences. We studied 199 schizophrenia patients and 161 healthy control participants with 3 T MRI to establish IHI prevalence and the relationship of IHI with hippocampal volume and asymmetry. IHI was more prevalent (left hemisphere: 15% of healthy control participants, 27% of schizophrenia patients; right hemisphere: 4% of healthy control participants, 10% of schizophrenia patients) and more severe in schizophrenia patients compared to healthy control participants. Severe IHI cases were associated with a higher rate of automated segmentation failure. IHI contributed to smaller hippocampal volume and increased R > L volume asymmetry in schizophrenia. The increased prevalence and severity of IHI supports the neurodevelopmental model of schizophrenia. The impact of this developmental variant deserves further exploration in studies of the hippocampus in schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Incomplete hippocampal inversion.
Fig. 2: Distribution of IHI scores based on laterality of the hippocampus in both schizophrenia patients and healthy control participants.

Similar content being viewed by others

References

  1. Heckers S, Konradi C. Hippocampal neurons in schizophrenia. J Neural Transm. 2002;109:891–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Haukvik UK, Tamnes CK, Söderman E, Agartz I. Neuroimaging hippocampal subfields in schizophrenia and bipolar disorder: a systematic review and meta-analysis. J Psychiatr Res. 2018;104:217–26.

    Article  PubMed  Google Scholar 

  3. Roeske MJ, Konradi C, Heckers S, Lewis AS. Hippocampal volume and hippocampal neuron density, number and size in schizophrenia: a systematic review and meta-analysis of postmortem studies. Mol Psychiatry. 2020;1–12.

  4. Brugger SP, Howes OD. Heterogeneity and homogeneity of regional brain structure in schizophrenia: a meta-analysis. JAMA Psychiatry. 2017;74:1104–11.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Haijma SV, Van Haren N, Cahn W, Koolschijn PCMP, Hulshoff Pol HE, Kahn RS. Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr Bull. 2013;39:1129–38.

    Article  PubMed  Google Scholar 

  6. Shenton ME, Gerig G, McCarley RW, Székely G, Kikinis R. Amygdala-hippocampal shape differences in schizophrenia: the application of 3D shape models to volumetric MR data. Psychiatry Res. 2002;115:15–35.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang L, Joshi SC, Miller MI, Csernansky JG. Statistical analysis of hippocampal asymmetry in schizophrenia. Neuroimage. 2001;14:531–45.

    Article  CAS  PubMed  Google Scholar 

  8. Csernansky JG, Joshi S, Wang L, Haller JW, Gado M, Miller JP, et al. Hippocampal morphometry in schizophrenia by high dimensional brain mapping. Proc Natl Acad Sci USA. 1998;95:11406–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Csernansky JG, Wang L, Jones D, Rastogi-Cruz D, Posener JA, Heydebrand G, et al. Hippocampal deformities in schizophrenia characterized by high dimensional brain mapping. Am J Psychiatry. 2002;159:2000–6.

    Article  PubMed  Google Scholar 

  10. Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44:660–9.

    Article  CAS  PubMed  Google Scholar 

  11. Murray RM, Lewis SW, Lecturer L. Is schizophrenia a neurodevelopmental disorder? Br Med J. 1987;295:681–2.

    Article  CAS  Google Scholar 

  12. Humphrey T. The development of the human hippocampal fissure. J Anat. 1967;101:655–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kier EL, Kim JH, Fulbright RK, Bronen RA. Embryology of the human fetal hippocampus: MR imaging, anatomy, and histology. Am J Neuroradiol. 1997;18:525–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Raininko R, Bajic D. “Hippocampal malrotation”: no real malrotation and not rare. Am J Neuroradiol. 2010;31:3174.

    Article  Google Scholar 

  15. Hennekam RC, Biesecker LG, Allanson JE, Hall JG, Opitz JM, Temple IK, et al. Elements of morphology: general terms for congenital anomalies. Am J Med Genet Part A. 2013;161:2726–33.

    Article  Google Scholar 

  16. Baker LL, Barkovich AJ. The large temporal horn: MR analysis in developmental brain anomalies versus hydrocephalus. Am J Neuroradiol. 1992;13:115–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bajic D, Wang C, Kumlien E, Mattsson P, Lundberg S, Eeg-Olofsson O, et al. Incomplete inversion of the hippocampus—a common developmental anomaly. Eur Radiol. 2008;18:138–42.

    Article  PubMed  Google Scholar 

  18. Baulac M, De Grissac N, Hasboun D, Oppenheim C, Adam C, Arzimanoglou A, et al. Hippocampal developmental changes in patients with partial epilepsy: magnetic resonance imaging and clinical aspects. Ann Neurol. 1998;44:223–33.

    Article  CAS  PubMed  Google Scholar 

  19. Bernasconi N, Kinay D, Andermann F, Antel S, Bernasconi A. Analysis of shape and positioning of the hippocampal formation: an MRI study in patients with partial epilepsy and healthy controls. Brain. 2005;128:2442–52.

    Article  CAS  PubMed  Google Scholar 

  20. Cury C, Toro R, Cohen F, Fischer C, Mhaya A, Samper-González J, et al. Incomplete hippocampal inversion: a comprehensive MRI study of over 2000 subjects. Front Neuroanat. 2015;9:160.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bajic D, Ewald U, Raininko R. Hippocampal development at gestation weeks 23 to 36. An ultrasound study on preterm neonates. Neuroradiology. 2010;52:489–94.

    Article  PubMed  Google Scholar 

  22. Andrade D, Krings T, Chow EWC, Kiehl TR, Bassett AS. Hippocampal malrotation is associated with chromosome 22q11.2 microdeletion. Can J Neurol Sci. 2013;40:652–6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Campbell LE, Daly E, Toal F, Stevens A, Azuma R, Catani M, et al. Brain and behaviour in children with 22q11.2 deletion syndrome: a volumetric and voxel-based morphometry MRI study. Brain. 2006;129:1218–28.

    Article  PubMed  Google Scholar 

  24. Atlas SW, Zimmerman RA, Bilaniuk LT, Rorke L, Hackney DB, Goldberg HI, et al. Corpus callosum and limbic system: neuroanatomic MR evaluation of developmental anomalies. Radiology. 1986;160:355–62.

    Article  CAS  PubMed  Google Scholar 

  25. Cury C, Scelsi MA, Toro R, Frouin V, Artiges E, Grigis A, et al. Genome wide association study of incomplete hippocampal inversion in adolescents. PLoS ONE. 2020;15:e0227355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cachia A, Cury C, Brunelin J, Plaze M, Delmaire C, Oppenheim C, et al. Deviations in early hippocampus development contribute to visual hallucinations in schizophrenia. Transl Psychiatry. 2020;10:1–7.

    Article  Google Scholar 

  27. Fitoz S, Atasoy C, Deda G, Erden I, Akyar S. Hippocampal malrotation with normal corpus callosum in a child with Opitz syndrome. Clin Imaging. 2003;27:75–6.

    Article  PubMed  Google Scholar 

  28. Montenegro MA, Kinay D, Cendes F, Bernasconi A, Bernasconi N, Coan AC, et al. Patterns of hippocampal abnormalities in malformations of cortical development. J Neurol Neurosurg Psychiatry. 2006;77:367–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Riedl SW, Müllner-Eidenböck A, Prayer D, Bernert G, Frisch H. Auxological, ophthalmological, neurological and MRI findings in 25 Austrian patients with septo-optic dysplasia (SOD). Horm Res Paediatr. 2002;58:16–9.

    Article  CAS  Google Scholar 

  30. Sato N, Hatakeyama S, Shimizu N, Hikima A, Aoki J, Endo K. MR evaluation of the hippocampus in patients with congenital malformations of the brain. Am J Neuroradiol. 2001;22:389–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Barsi P, Kenéz J, Solymosi D, Kulin Á, Halász P, Rásonyi G, et al. Hippocampal malrotation with normal corpus callosum: a new entity? Neuroradiology. 2000;42:339–45.

    Article  CAS  PubMed  Google Scholar 

  32. Bajic D, Kumlien E, Mattsson P, Lundberg S, Wang C, Raininko R. Incomplete hippocampal inversion—is there a relation to epilepsy? Eur Radiol. 2009;19:2544–50.

    Article  PubMed  Google Scholar 

  33. Lehericy S, Dormont D, Semah F, Clemenceau S, Granat O, Marsault C, et al. Developmental abnormalities of the medial temporal lobe in patients with temporal lobe epilepsy. Am J Neuroradiol. 1995;16:617–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Beker-Acay M, Köken R, Ünlü E, Kaçar E, Balçık Ç. Evaluation of hippocampal infolding angle and incomplete hippocampal inversion in pediatric patients with epilepsy and febrile seizures. Diagn Interv Radiol. 2017;23:326–30.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Emery SC, Karpinski NC, Hansen L, Masliah E. Abnormalities in central nervous system development in osteogenesis imperfecta type II. Pediatr Dev Pathol. 1999;2:124–30.

    Article  CAS  PubMed  Google Scholar 

  36. Colle R, Cury C, Chupin M, Deflesselle E, Hardy P, Nasser G, et al. Hippocampal volume predicts antidepressant efficacy in depressed patients without incomplete hippocampal inversion. NeuroImage Clin. 2016;12:949–55.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Colenutt J, McCann B, Knight MJ, Coulthard E, Kauppinen RA. Incomplete hippocampal inversion and its relationship to hippocampal subfield volumes and aging. J Neuroimaging. 2018;28:422–8.

    Article  PubMed  Google Scholar 

  38. Connor SEJ, Ng V, McDonald C, Schulze K, Morgan K, Dazzan P, et al. A study of hippocampal shape anomaly in schizophrenia and in families multiply affected by schizophrenia or bipolar disorder. Neuroradiology. 2004;46:523–34.

    Article  CAS  PubMed  Google Scholar 

  39. Kim H, Chupin M, Colliot O, Bernhardt BC, Bernasconi N, Bernasconi A. Automatic hippocampal segmentation in temporal lobe epilepsy: impact of developmental abnormalities. Neuroimage. 2012;59:3178–86.

    Article  PubMed  Google Scholar 

  40. Bajic D, Canto Moreira N, Wikström J, Raininko R. Asymmetric development of the hippocampal region is common: a fetal MR imaging study. Am J Neuroradiol. 2012;33:513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Geschwind N, Galaburda AM. Cerebral lateralization: biological mechanisms, associations, and pathology: III. A hypothesis and a program for research. Arch Neurol. 1985;42:634–54.

    Article  CAS  PubMed  Google Scholar 

  42. Pedraza O, Bowers D, Gilmore R. Asymmetry of the hippocampus and amygdala in MRI volumetric measurements of normal adults. J Int Neuropsychol Soc. 2004;10:664–78.

    Article  PubMed  Google Scholar 

  43. Shi F, Liu B, Zhou Y, Yu C, Jiang T. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: meta-analyses of MRI studies. Hippocampus. 2009;19:1055–64.

    Article  PubMed  Google Scholar 

  44. Woolard AA, Heckers S. Anatomical and functional correlates of human hippocampal volume asymmetry. Psychiatry Res. 2012;201:48–53.

    Article  PubMed  PubMed Central  Google Scholar 

  45. First MB, Spitzer RL, Gibbon M, Williams JB. Structured clinical interview for DSM-IV-TR axis I disorders, research version, patient edition with psychotic screen (SCID-I/P W/PSY SCREEN). Biometrics Research, New York State Psychiatric Institute: New York, NY, 2002.

  46. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825–41.

    Article  PubMed  Google Scholar 

  47. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage. 1999;9:179–94.

    Article  CAS  PubMed  Google Scholar 

  48. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.

    Article  CAS  PubMed  Google Scholar 

  49. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage. 2015;115:117–37.

    Article  PubMed  Google Scholar 

  50. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage. 2006;31:1116–28.

    Article  PubMed  Google Scholar 

  51. McHugo M, Talati P, Woodward ND, Armstrong K, Blackford JU, Heckers S. Regionally specific volume deficits along the hippocampal long axis in early and chronic psychosis. NeuroImage Clin. 2018;20:1106–14.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Family Med. 2005;37:360–3.

    Google Scholar 

  53. Bates D, Machler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.

    Article  Google Scholar 

  54. Lenth R. emmeans: Estimated marginal means, aka least-squares means. R Package Version 1.4.7. 2018. Available from: https://cran.r-project.org/package=emmeans.

  55. Fox J, Weisberg S. Package ‘car’. Companion to applied regression. 2nd ed. Thousand Oaks, CA: Sage; 2011.

  56. Barton K. MuMIn: multi-model inference. R Package Version 1.43.17. 2020. Available from: https://CRAN.R-project.org/package=MuMIn.

  57. Marenco S, Weinberger DR. The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol. 2000;12:501–27.

    Article  CAS  PubMed  Google Scholar 

  58. Weinberger DR. From neuropathology to neurodevelopment. Lancet. 1995;346:552–7.

    Article  CAS  PubMed  Google Scholar 

  59. Lee JM, Kim SH, Jang DP, Ha TH, Kim JJ, Kim IY, et al. Deformable model with surface registration for hippocampal shape deformity analysis in schizophrenia. Neuroimage. 2004;22:831–40.

    Article  PubMed  Google Scholar 

  60. Kalmady SV, Shivakumar V, Arasappa R, Subramaniam A, Gautham S, Venkatasubramanian G, et al. Clinical correlates of hippocampus volume and shape in antipsychotic-naïve schizophrenia. Psychiatry Res. 2017;263:93–102.

    Article  Google Scholar 

  61. Mamah D, Harms MP, Barch D, Styner M, Lieberman JA, Wang L. Hippocampal shape and volume changes with antipsychotics in early stage psychotic illness. Front Psychiatry. 2012;3:96.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Styner M, Lieberman JA, Pantazis D, Gerig G. Boundary and medial shape analysis of the hippocampus in schizophrenia. Med Image Anal. 2004;8:197–203.

    Article  PubMed  Google Scholar 

  63. Maller JJ, Réglade-Meslin C, Thomson RHS, Daigle M, Barr MS, Daskalakis ZJ, et al. Hippocampal sulcal cavities in depression and healthy individuals. J Affect Disord. 2013;150:785–9.

    Article  PubMed  Google Scholar 

  64. Ho BC, Magnotta V. Hippocampal volume deficits and shape deformities in young biological relatives of schizophrenia probands. Neuroimage. 2010;49:3385–93.

    Article  PubMed  Google Scholar 

  65. Cannon TD, Van Erp TGM, Rosso IM, Huttunen M, Lönnqvist J, Pirkola T, et al. Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry. 2002;59:35–41.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the Charlotte and Donald Test Fund, the National Institute of Health (NIMH) grants R01-MH70560 (SH), R01-MH102266 (NDW), and R01-MH123563 (SV), Jack Martin, MD Research Professor in Psychopharmacology (JUB), the Vanderbilt Psychiatric Genotype/Phenotype Project, and the Vanderbilt Institute for Clinical and Translational Research (through grant 1-UL-1-TR000445 from the National Center for Research Resources/NIH) and National Institute of Health (NIH) grant T32-GM007347 (MJR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxwell J. Roeske.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roeske, M.J., McHugo, M., Vandekar, S. et al. Incomplete hippocampal inversion in schizophrenia: prevalence, severity, and impact on hippocampal structure. Mol Psychiatry 26, 5407–5416 (2021). https://doi.org/10.1038/s41380-020-01010-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-01010-z

This article is cited by

Search

Quick links