Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Reduced motor cortex GABABR function following chronic alcohol exposure

Abstract

The GABAB receptor (GABABR) agonist baclofen has been used to treat alcohol and several other substance use disorders (AUD/SUD), yet its underlying neural mechanism remains unclear. The present study aimed to investigate cortical GABABR dynamics following chronic alcohol exposure. Ex vivo brain slice recordings from mice chronically exposed to alcohol revealed a reduction in GABABR-mediated currents, as well as a decrease of GABAB1/2R and G-protein-coupled inwardly rectifying potassium channel 2 (GIRK2) activities in the motor cortex. Moreover, our data indicated that these alterations could be attributed to dephosphorylation at the site of serine 783 (ser-783) in GABAB2 subunit, which regulates the surface expression of GABABR. Furthermore, a human study using paired-pulse-transcranial magnetic stimulation (TMS) analysis further demonstrated a reduced cortical inhibition mediated by GABABR in patients with AUD. Our findings provide the first evidence that chronic alcohol exposure is associated with significantly impaired cortical GABABR function. The ability to promote GABABR signaling may account for the therapeutic efficacy of baclofen in AUD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alcohol exposure decreased GABABR functioning in M1 layer V PNs.
Fig. 2: Alcohol exposure reduced baclofen suppression of neuronal firing.
Fig. 3: Alcohol exposure reduced GABABR and GIRK expression in the motor cortex.
Fig. 4: Reversal of alcohol-induced suppression in the motor cortex.
Fig. 5: Human AUD subjects exhibited reduced cortical GABABR-mediated inhibition.

Similar content being viewed by others

Data availability

The original data are available from the corresponding author upon request.

References

  1. Kranzler HR, Soyka M. Diagnosis and pharmacotherapy of alcohol use disorder: a review. JAMA. 2018;320:815–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agabio R, Colombo G. GABAB receptor ligands for the treatment of alcohol use disorder: preclinical and clinical evidence. Front Neurosci. 2014;8:140.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Addolorato G, Leggio L, Abenavoli L, Agabio R, Caputo F, Capristo E, et al. Baclofen in the treatment of alcohol withdrawal syndrome: a comparative study vs diazepam. Am J Med. 2006;119:276 e213–78.

    Article  Google Scholar 

  4. Rose AK, Jones A. Baclofen: its effectiveness in reducing harmful drinking, craving, and negative mood. A meta-analysis. Addiction. 2018;113:1396–406.

    Article  PubMed  Google Scholar 

  5. Pierce M, Sutterland A, Beraha EM, Morley K, van den Brink W. Efficacy, tolerability, and safety of low-dose and high-dose baclofen in the treatment of alcohol dependence: a systematic review and meta-analysis. Eur Neuropsychopharmacol. 2018;28:795–806.

    Article  CAS  PubMed  Google Scholar 

  6. Spanagel R. Aberrant choice behavior in alcoholism. Science. 2018;360:1298–9.

    Article  CAS  PubMed  Google Scholar 

  7. Padgett CL, Slesinger PA. GABAB receptor coupling to G-proteins and ion channels. Adv Pharmacol. 2010;58:123–47.

    Article  CAS  PubMed  Google Scholar 

  8. Chalifoux JR, Carter AG. GABAB receptor modulation of synaptic function. Curr Opin Neurobiol. 2011;21:339–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Padgett CL, Lalive AL, Tan KR, Terunuma M, Munoz MB, Pangalos MN, et al. Methamphetamine-evoked depression of GABA(B) receptor signaling in GABA neurons of the VTA. Neuron. 2012;73:978–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pitman KA, Puil E, Borgland SL. GABA(B) modulation of dopamine release in the nucleus accumbens core. Eur J Neurosci. 2014;40:3472–80.

    Article  PubMed  Google Scholar 

  11. Claus ED, Ewing SW, Filbey FM, Sabbineni A, Hutchison KE. Identifying neurobiological phenotypes associated with alcohol use disorder severity. Neuropsychopharmacology. 2011;36:2086–96.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Claus ED, Feldstein Ewing SW, Filbey FM, Hutchison KE. Behavioral control in alcohol use disorders: relationships with severity. J Stud Alcohol drugs. 2013;74:141–51.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dalley JW, Everitt BJ, Robbins TW. Impulsivity, compulsivity, and top-down cognitive control. Neuron. 2011;69:680–94.

    Article  CAS  PubMed  Google Scholar 

  14. MacKillop J, Weafer J, Gray JC, Oshri A, Palmer A, de Wit H. The latent structure of impulsivity: impulsive choice, impulsive action, and impulsive personality traits. Psychopharmacology. 2016;233:3361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smith JL, Mattick RP, Jamadar SD, Iredale JM. Deficits in behavioural inhibition in substance abuse and addiction: a meta-analysis. Drug Alcohol Depend. 2014;145:1–33.

    Article  PubMed  Google Scholar 

  16. Ersche KD, Turton AJ, Chamberlain SR, Muller U, Bullmore ET, Robbins TW. Cognitive dysfunction and anxious-impulsive personality traits are endophenotypes for drug dependence. Am J Psychiatry. 2012;169:926–36.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ahmadi A, Pearlson GD, Meda SA, Dager A, Potenza MN, Rosen R, et al. Influence of alcohol use on neural response to Go/No-Go task in college drinkers. Neuropsychopharmacology. 2013;38:2197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caprioli D, Sawiak SJ, Merlo E, Theobald DE, Spoelder M, Jupp B, et al. Gamma aminobutyric acidergic and neuronal structural markers in the nucleus accumbens core underlie trait-like impulsive behavior. Biol Psychiatry. 2014;75:115–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ. High impulsivity predicts the switch to compulsive cocaine-taking. Science. 2008;320:1352–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Voon V, Irvine MA, Derbyshire K, Worbe Y, Lange I, Abbott S, et al. Measuring “waiting” impulsivity in substance addictions and binge eating disorder in a novel analogue of rodent serial reaction time task. Biol Psychiatry. 2014;75:148–55.

    Article  PubMed  PubMed Central  Google Scholar 

  21. He JL, Fuelscher I, Coxon J, Chowdhury N, Teo WP, Barhoun P, et al. Individual differences in intracortical inhibition predict motor-inhibitory performance. Exp Brain Res. 2019;237:2715–27.

    Article  PubMed  Google Scholar 

  22. Franklin K, Paxinos G. The Mouse Brain in Stereotaxic Coordinates, Compact: The Coronal Plates and Diagrams 5th ed. (2019).

  23. Rotaru DC, Yoshino H, Lewis DA, Ermentrout GB, Gonzalez-Burgos G. Glutamate receptor subtypes mediating synaptic activation of prefrontal cortex neurons: relevance for schizophrenia. J Neurosci. 2011;31:142–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jesse S, Brathen G, Ferrara M, Keindl M, Ben-Menachem E, Tanasescu R, et al. Alcohol withdrawal syndrome: mechanisms, manifestations, and management. Acta Neurol Scand. 2017;135:4–16.

    Article  CAS  PubMed  Google Scholar 

  25. Nardone R, Bergmann J, Kronbichler M, Caleri F, Lochner P, Tezzon F, et al. Altered motor cortex excitability to magnetic stimulation in alcohol withdrawal syndrome. Alcohol, Clin Exp Res. 2010;34:628–32.

    Article  Google Scholar 

  26. Chung HJ, Qian X, Ehlers M, Jan YN, Jan LY. Neuronal activity regulates phosphorylation-dependent surface delivery of G protein-activated inwardly rectifying potassium channels. Proc Natl Acad Sci USA. 2009;106:629–34.

    Article  CAS  PubMed  Google Scholar 

  27. Terunuma M, Vargas KJ, Wilkins ME, Ramirez OA, Jaureguiberry-Bravo M, Pangalos MN, et al. Prolonged activation of NMDA receptors promotes dephosphorylation and alters postendocytic sorting of GABAB receptors. Proc Natl Acad Sci USA. 2010;107:13918–23.

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, Cheng Y, Wang X, Roltsch Hellard E, Ma T, Gil H, et al. Alcohol elicits functional and structural plasticity selectively in dopamine D1 receptor-expressing neurons of the dorsomedial striatum. J Neurosci. 2015;35:11634–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fontaine CJ, Patten AR, Sickmann HM, Helfer JL, Christie BR. Effects of pre-natal alcohol exposure on hippocampal synaptic plasticity: sex, age and methodological considerations. Neurosci Biobehav Rev. 2016;64:12–34.

    Article  CAS  PubMed  Google Scholar 

  30. Moonat S, Sakharkar AJ, Zhang H, Tang L, Pandey SC. Aberrant histone deacetylase2-mediated histone modifications and synaptic plasticity in the amygdala predisposes to anxiety and alcoholism. Biol Psychiatry. 2013;73:763–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McCool BA. Ethanol modulation of synaptic plasticity. Neuropharmacology. 2011;61:1097–108.

    Article  CAS  PubMed  Google Scholar 

  32. Addolorato G, Leggio L, Ferrulli A, Cardone S, Vonghia L, Mirijello A, et al. Effectiveness and safety of baclofen for maintenance of alcohol abstinence in alcohol-dependent patients with liver cirrhosis: randomised, double-blind controlled study. Lancet. 2007;370:1915–22.

    Article  CAS  PubMed  Google Scholar 

  33. Morley KC, Baillie A, Fraser I, Furneaux-Bate A, Dore G, Roberts M, et al. Baclofen in the treatment of alcohol dependence with or without liver disease: multisite, randomised, double-blind, placebo-controlled trial. Br J Psychiatry. 2018;212:362–9.

    Article  PubMed  Google Scholar 

  34. Mirijello A, Caputo F, Vassallo G, Rolland B, Tarli C, Gasbarrini A, et al. GABAB agonists for the treatment of alcohol use disorder. Curr Pharm Des. 2015;21:3367–72.

    Article  CAS  PubMed  Google Scholar 

  35. McDonnell MN, Orekhov Y, Ziemann U. The role of GABA(B) receptors in intracortical inhibition in the human motor cortex. Exp Brain Res. 2006;173:86–93.

    Article  CAS  PubMed  Google Scholar 

  36. Premoli I, Rivolta D, Espenhahn S, Castellanos N, Belardinelli P, Ziemann U, et al. Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS-EEG. Neuroimage. 2014;103:152–62.

    Article  CAS  PubMed  Google Scholar 

  37. Tran VT, Snyder SH, Major LF, Hawley RJ. GABA receptors are increased in brains of alcoholics. Ann Neurol. 1981;9:289–92.

    Article  CAS  PubMed  Google Scholar 

  38. Laukkanen V, Storvik M, Hakkinen M, Akamine Y, Tupala E, Virkkunen M, et al. Decreased GABA(A) benzodiazepine binding site densities in postmortem brains of cloninger type 1 and 2 alcoholics. Alcohol. 2013;47:103–8.

    Article  CAS  PubMed  Google Scholar 

  39. Mitsuyama H, Little KY, Sieghart W, Devaud LL, Morrow AL. GABA(A) receptor alpha1, alpha4, and beta3 subunit mRNA and protein expression in the frontal cortex of human alcoholics. Alcohol, Clin Exp Res. 1998;22:815–22.

    CAS  Google Scholar 

  40. Korpi ER, Uusi-Oukari M, Wegelius K, Casanova M, Zito M, Kleinman JE. Cerebellar and frontal cortical benzodiazepine receptors in human alcoholics and chronically alcohol-drinking rats. Biol Psychiatry. 1992;31:774–86.

    Article  CAS  PubMed  Google Scholar 

  41. Dodd PR, Buckley ST, Eckert AL, Foley PF, Innes DJ. Genes and gene expression in the brains of human alcoholics. Ann N Y Acad Sci. 2006;1074:104–15.

    Article  CAS  PubMed  Google Scholar 

  42. Enoch MA, Zhou Z, Kimura M, Mash DC, Yuan Q, Goldman D. GABAergic gene expression in postmortem hippocampus from alcoholics and cocaine addicts; corresponding findings in alcohol-naive P and NP rats. PLoS ONE. 2012;7:e29369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee C, Mayfield RD, Harris RA. Altered gamma-aminobutyric acid type B receptor subunit 1 splicing in alcoholics. Biol Psychiatry. 2014;75:765–73.

    Article  CAS  PubMed  Google Scholar 

  44. Naim-Feil J, Bradshaw JL, Rogasch NC, Daskalakis ZJ, Sheppard DM, Lubman DI, et al. Cortical inhibition within motor and frontal regions in alcohol dependence post-detoxification: A pilot TMS-EEG study. World J Biol Psychiatry. 2016;17:547–56.

    Article  PubMed  Google Scholar 

  45. Moran MD, Wilson AA, Elmore CS, Parkes J, Ng A, Sadovski O, et al. Development of new carbon-11 labelled radiotracers for imaging GABAA- and GABAB-benzodiazepine receptors. Bioorg Med Chem. 2012;20:4482–8.

    Article  CAS  PubMed  Google Scholar 

  46. Tang YL, Xiang XJ, Wang XY, Cubells JF, Babor TF, Hao W. Alcohol and alcohol-related harm in China: policy changes needed. Bull World Health Organ. 2013;91:270–6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Grant BF, Chou SP, Saha TD, Pickering RP, Kerridge BT, Ruan WJ, et al. Prevalence of 12-month alcohol use, high-risk drinking, and DSM-IV alcohol use disorder in the United States, 2001-2002 to 2012-2013: results from the National Epidemiologic Survey on Alcohol and Related Conditions. JAMA Psychiatry. 2017;74:911–23.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ait-Daoud N, Blevins D, Khanna S, Sharma S, Holstege CP, Amin P. Women and addiction: an update. Med Clin North Am. 2019;103:699–711.

    Article  PubMed  Google Scholar 

  49. Erol A, Karpyak VM. Sex and gender-related differences in alcohol use and its consequences: Contemporary knowledge and future research considerations. Drug Alcohol Depend. 2015;156:1–13.

    Article  PubMed  Google Scholar 

  50. Becker JB, Koob GF. Sex differences in animal models: focus on addiction. Pharm Rev. 2016;68:242–63.

    Article  CAS  PubMed  Google Scholar 

  51. Hilderbrand ER, Lasek AW. Studying sex differences in animal models of addiction: an emphasis on alcohol-related behaviors. ACS Chem Neurosci. 2018;9:1907–16.

    Article  CAS  PubMed  Google Scholar 

  52. Marco EM, Ballesta JA, Irala C, Hernandez MD, Serrano ME, Mela V, et al. Sex-dependent influence of chronic mild stress (CMS) on voluntary alcohol consumption; study of neurobiological consequences. Pharm Biochem Behav. 2017;152:68–80.

    Article  CAS  Google Scholar 

  53. Heilig M, Augier E, Pfarr S, Sommer WH. Developing neuroscience-based treatments for alcohol addiction: a matter of choice? Transl Psychiatry. 2019;9:255.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Agabio R, Sinclair JM, Addolorato G, Aubin HJ, Beraha EM, Caputo F, et al. Baclofen for the treatment of alcohol use disorder: the Cagliari Statement. Lancet Psychiatry. 2018;5:957–60.

    Article  PubMed  Google Scholar 

  55. Augier E, Dulman RS, Damadzic R, Pilling A, Hamilton JP, Heilig M. The GABAB positive allosteric modulator ADX71441 attenuates alcohol self-administration and relapse to alcohol seeking in rats. Neuropsychopharmacology. 2017;42:1789–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ke Zhang and Zhuang Peng for help during data collection and management.

Funding

The study was supported by NSFC grants (81822017, 81901349, 31771215), the Science and Technology Commission of Shanghai Municipality (18QA1403700, 18JC1420304, 18140901700), Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support (20181715), Hundred-talent Fund from Shanghai Municipal Commission of Health (2018BR21), Medicine and Engineering Interdisciplinary Research Fund of Shanghai Jiao Tong University (ZH2018ZDA30, ZH2018QNA39), and innovative research team of high-level local universities in Shanghai. VV is supported by the Medical Research Council MR/P008747/1.

Author information

Authors and Affiliations

Authors

Contributions

S-YP, ZS, D-SZ, and T-FY designed the study; S-YP, ZS, D-SZ, X-YW, X-XL, X-LL, W-DW, and G-NL performed the study; S-YP, ZS, D-SZ, X-YW, B-XP, VV, AAG, MH, M-LW, and T-FY analyzed the results and wrote the paper together; and all authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Ti-Fei Yuan.

Ethics declarations

Conflict of interest

AAG receives consulting fees from Alkermes, Lundbeck, Takeda, Roche, Lyra, Concert. The rest authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, SY., Shi, Z., Zhou, DS. et al. Reduced motor cortex GABABR function following chronic alcohol exposure. Mol Psychiatry 26, 383–395 (2021). https://doi.org/10.1038/s41380-020-01009-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-01009-6

This article is cited by

Search

Quick links