Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FOXP1 negatively regulates intrinsic excitability in D2 striatal projection neurons by promoting inwardly rectifying and leak potassium currents

Abstract

Heterozygous loss-of-function mutations in the transcription factor FOXP1 are strongly associated with autism. Dopamine receptor 2 expressing (D2) striatal projection neurons (SPNs) in heterozygous Foxp1 (Foxp1+/−) mice have higher intrinsic excitability. To understand the mechanisms underlying this alteration, we examined SPNs with cell-type specific homozygous Foxp1 deletion to study cell-autonomous regulation by Foxp1. As in Foxp1+/− mice, D2 SPNs had increased intrinsic excitability with homozygous Foxp1 deletion. This effect involved postnatal mechanisms. The hyperexcitability was mainly due to down-regulation of two classes of potassium currents: inwardly rectifying (KIR) and leak (KLeak). Single-cell RNA sequencing data from D2 SPNs with Foxp1 deletion indicated the down-regulation of transcripts of candidate ion channels that may underlie these currents: Kcnj2 and Kcnj4 for KIR and Kcnk2 for KLeak. This Foxp1-dependent regulation was neuron-type specific since these same currents and transcripts were either unchanged, or very little changed, in D1 SPNs with cell-specific Foxp1 deletion. Our data are consistent with a model where FOXP1 negatively regulates the excitability of D2 SPNs through KIR and KLeak by transcriptionally activating their corresponding transcripts. This, in turn, provides a novel example of how a transcription factor may regulate multiple genes to impact neuronal electrophysiological function that depends on the integration of multiple current types – and do this in a cell-specific fashion. Our findings provide initial clues to altered neuronal function and possible therapeutic strategies not only for FOXP1-associated autism but also for other autism forms associated with transcription factor dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell-autonomous Foxp1 deletion leads to increased intrinsic excitability in D2 SPNs but does not affect their morphology.
Fig. 2: Cs+-sensitive inwardly rectifying K+ current (KIR) is downregulated in D2 SPNs with embryonic Foxp1 deletion.
Fig. 3: Cs+-insensitive KLeak is preferentially downregulated by Foxp1 deletion.
Fig. 4: Cell-autonomous, embryonic deletion of Foxp1 increases the intrinsic excitability in D1 SPNs, but subthreshold properties are unchanged.
Fig. 5: Gene expression changes assayed with single-cell RNA-seq implicate specific KIR and KLeak subtypes being downregulated with Foxp1 deletion.

Similar content being viewed by others

References

  1. Ferland RJ, Cherry TJ, Preware PO, Morrisey EE, Walsh CA. Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. J Comp Neurol. 2003;460:266–79.

    Article  CAS  PubMed  Google Scholar 

  2. Meerschaut I, Rochefort D, Revencu N, Petre J, Corsello C, Rouleau GA, et al. FOXP1-related intellectual disability syndrome: a recognisable entity. J Med Genet. 2017;54:613–23.

    Article  CAS  PubMed  Google Scholar 

  3. Siper PM, De Rubeis S, Trelles MDP, Durkin A, Di Marino D, Muratet F, et al. Prospective investigation of FOXP1 syndrome. Mol Autism. 2017;8:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180:568–84.e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron. 2015;87:1215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stessman HA, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet. 2017;49:515–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bacon C, Schneider M, Le Magueresse C, Froehlich H, Sticht C, Gluch C, et al. Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour. Mol Psychiatry. 2015;20:632–9.

    Article  CAS  PubMed  Google Scholar 

  9. Araujo DJ, Anderson AG, Berto S, Runnels W, Harper M, Ammanuel S, et al. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. Genes Dev. 2015;29:2081–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Scott-Van Zeeland AA, McNealy K, Wang AT, Sigman M, Bookheimer SY, Dapretto M. No neural evidence of statistical learning during exposure to artificial languages in children with autism spectrum disorders. Biol Psychiatry. 2010;68:345–51.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Di Martino A, Kelly C, Grzadzinski R, Zuo XN, Mennes M, Mairena MA, et al. Aberrant striatal functional connectivity in children with autism. Biol Psychiatry. 2011;69:847–56.

    Article  PubMed  Google Scholar 

  12. Langen M, Leemans A, Johnston P, Ecker C, Daly E, Murphy CM, et al. Fronto-striatal circuitry and inhibitory control in autism: findings from diffusion tensor imaging tractography. Cortex. 2012;48:183–93.

    Article  PubMed  Google Scholar 

  13. Radulescu E, Minati L, Ganeshan B, Harrison NA, Gray MA, Beacher FD, et al. Abnormalities in fronto-striatal connectivity within language networks relate to differences in grey-matter heterogeneity in Asperger syndrome. Neuroimage Clin. 2013;2:716–26.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell. 2008;135:738–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anderson AG, Kulkarni A, Harper M, Konopka G. Single-cell analysis of Foxp1-driven mechanisms essential for striatal development. Cell Rep. 2020;30:3051–66.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Precious SV, Kelly CM, Reddington AE, Vinh NN, Stickland RC, Pekarik V, et al. FoxP1 marks medium spiny neurons from precursors to maturity and is required for their differentiation. Exp Neurol. 2016;282:9–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fong WL, Kuo HY, Wu HL, Chen SY, Liu FC. Differential and overlapping pattern of Foxp1 and Foxp2 expression in the striatum of adult mouse brain. Neuroscience. 2018;388:214–23.

    Article  CAS  PubMed  Google Scholar 

  18. Usui N, Araujo DJ, Kulkarni A, Co M, Ellegood J, Harper M, et al. Foxp1 regulation of neonatal vocalizations via cortical development. Genes Dev. 2017;31:2039–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dasen JS, De Camilli A, Wang B, Tucker PW, Jessell TM. Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1. Cell. 2008;134:304–16.

    Article  CAS  PubMed  Google Scholar 

  20. Rousso DL, Gaber ZB, Wellik D, Morrisey EE, Novitch BG. Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of spinal motor neurons. Neuron. 2008;59:226–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Palmesino E, Rousso DL, Kao TJ, Klar A, Laufer E, Uemura O, et al. Foxp1 and lhx1 coordinate motor neuron migration with axon trajectory choice by gating Reelin signalling. PLoS Biol. 2010;8:e1000446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Li X, Han X, Tu X, Zhu D, Feng Y, Jiang T, et al. An autism-related, nonsense foxp1 mutant induces autophagy and delays radial migration of the cortical neurons. Cereb Cortex. 2019;29:3193–208.

    Article  PubMed  Google Scholar 

  23. Araujo DJ, Toriumi K, Escamilla CO, Kulkarni A, Anderson AG, Harper M, et al. Foxp1 in forebrain pyramidal neurons controls gene expression required for spatial learning and synaptic plasticity. J Neurosci. 2017;37:10917–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shen W, Tian X, Day M, Ulrich S, Tkatch T, Nathanson NM, et al. Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat Neurosci. 2007;10:1458–66.

    Article  CAS  PubMed  Google Scholar 

  25. Cazorla M, Shegda M, Ramesh B, Harrison NL, Kellendonk C. Striatal D2 receptors regulate dendritic morphology of medium spiny neurons via Kir2 channels. J Neurosci. 2012;32:2398–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nisenbaum ES, Wilson CJ. Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons. J Neurosci. 1995;15:4449–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lieberman OJ, McGuirt AF, Mosharov EV, Pigulevskiy I, Hobson BD, Choi S, et al. Dopamine triggers the maturation of striatal spiny projection neuron excitability during a critical period. Neuron. 2018;99:540–54.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fink M, Duprat F, Lesage F, Reyes R, Romey G, Heurteaux C, et al. Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J. 1996;15:6854–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA. Cns distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci. 2001;21:7491–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Feliciangeli S, Chatelain FC, Bichet D, Lesage F. The family of K2P channels: salient structural and functional properties. J Physiol. 2015;593:2587–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M, et al. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J. 2004;23:2684–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maze I, Chaudhury D, Dietz DM, Von Schimmelmann M, Kennedy PJ, Lobo MK, et al. G9a influences neuronal subtype specification in striatum. Nat Neurosci. 2014;17:533–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karschin C, Dissmann E, Stuhmer W, Karschin A. IRK(1-3) and GIRK(1-4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J Neurosci. 1996;16:3559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lieberman OJ, Frier MD, McGuirt AF, Griffey CJ, Rafikian E, Yang M, et al. Cell-type specific regulation of neuronal intrinsic excitability by macroautophagy. Elife. 2020;9:e50843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abrahams, B.S., Arking, D.E., Campbell, D.B. et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Molecular Autism. 2013;4:36.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Harrington AJ, Raissi A, Rajkovich K, Berto S, Kumar J, Molinaro G, et al. MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders. Elife. 2016;5:e20059.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kahanovitch U, Cuddapah VA, Pacheco NL, Holt LM, Mulkey DK, Percy AK, et al. MeCP2 Deficiency Leads to Loss of Glial Kir4.1. eNeuro. 2018;5:ENEURO.0194-17.2018.

  38. Mermelstein PG, Song WJ, Tkatch T, Yan Z, Surmeier DJ. Inwardly rectifying potassium (IRK) currents are correlated with IRK subunit expression in rat nucleus accumbens medium spiny neurons. J Neurosci. 1998;18:6650–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hagiwara S, Miyazaki S, Rosenthal NP. Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. J Gen Physiol. 1976;67:621–38.

    Article  CAS  PubMed  Google Scholar 

  40. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010;90:291–366.

    Article  CAS  PubMed  Google Scholar 

  41. Shen W, Hamilton SE, Nathanson NM, Surmeier DJ. Cholinergic suppression of KCNQ channel currents enhances excitability of striatal medium spiny neurons. J Neurosci. 2005;25:7449–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, et al. Molecular diversity of K+ channels. Ann NY Acad Sci. 1999;868:233–85.

    Article  CAS  PubMed  Google Scholar 

  43. Ma XY, Yu JM, Zhang SZ, Liu XY, Wu BH, Wei XL, et al. External Ba2+ block of the two-pore domain potassium channel TREK-1 defines conformational transition in its selectivity filter. J Biol Chem. 2011;286:39813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sandoz G, Douguet D, Chatelain F, Lazdunski M, Lesage F. Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue. Proc Natl Acad Sci USA. 2009;106:14628–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mazella J, Petrault O, Lucas G, Deval E, Beraud-Dufour S, Gandin C, et al. Spadin, a sortilin-derived peptide, targeting rodent TREK-1 channels: a new concept in the antidepressant drug design. PLoS Biol. 2010;8:e1000355.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Djillani A, Pietri M, Mazella J, Heurteaux C, Borsotto M. Fighting against depression with TREK-1 blockers: past and future. A focus on spadin. Pharm Ther. 2019;194:185–98.

    Article  CAS  Google Scholar 

  47. Djillani A, Pietri M, Moreno S, Heurteaux C, Mazella J, Borsotto M. Shortened spadin analogs display better TREK-1 inhibition, in vivo stability and antidepressant activity. Front Pharm. 2017;8:643.

    Article  CAS  Google Scholar 

  48. Lesage F, Lazdunski M. Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Ren Physiol. 2000;279:F793–801.

    Article  CAS  Google Scholar 

  49. Tang B, Becanovic K, Desplats PA, Spencer B, Hill AM, Connolly C, et al. Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: implications for transcriptional dysregulation in Huntington disease. Hum Mol Genet. 2012;21:3097–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ghazalpour A, Bennett B, Petyuk VA, Orozco L, Hagopian R, Mungrue IN, et al. Comparative analysis of proteome and transcriptome variation in mouse. PLoS Genet. 2011;7:e1001393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13:227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bauernfeind AL, Babbitt CC. The predictive nature of transcript expression levels on protein expression in adult human brain. BMC Genomics. 2017;18:322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Vernes SC, Oliver PL, Spiteri E, Lockstone HE, Puliyadi R, Taylor JM, et al. Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain. PLoS Genet. 2011;7:e1002145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks to Mathew Harper for technical help. Funding provided by the Simons Foundation (SFARI 573689 and 401220) and NIH (MH102603) to GK and JG.

Author information

Authors and Affiliations

Authors

Contributions

NK, designed and performed experiments, analyzed data, wrote manuscript; SC, performed experiments, analyzed data; VR, designed and performed experiments, analyzed data; AK, analyzed data, created figures; AGA, analyzed data; GK, designed experiments, wrote manuscript; JRG, designed experiments, wrote manuscript.

Corresponding authors

Correspondence to Genevieve Konopka or Jay R. Gibson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandelwal, N., Cavalier, S., Rybalchenko, V. et al. FOXP1 negatively regulates intrinsic excitability in D2 striatal projection neurons by promoting inwardly rectifying and leak potassium currents. Mol Psychiatry 26, 1761–1774 (2021). https://doi.org/10.1038/s41380-020-00995-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00995-x

Search

Quick links