Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diminished reward responsiveness is associated with lower reward network GluCEST: an ultra-high field glutamate imaging study

Abstract

Low reward responsiveness (RR) is associated with poor psychological well-being, psychiatric disorder risk, and psychotropic treatment resistance. Functional MRI studies have reported decreased activity within the brain’s reward network in individuals with RR deficits, however the neurochemistry underlying network hypofunction in those with low RR remains unclear. This study employed ultra-high field glutamate chemical exchange saturation transfer (GluCEST) imaging to investigate the hypothesis that glutamatergic deficits within the reward network contribute to low RR. GluCEST images were acquired at 7.0 T from 45 participants (ages 15–29, 30 females) including 15 healthy individuals, 11 with depression, and 19 with psychosis spectrum symptoms. The GluCEST contrast, a measure sensitive to local glutamate concentration, was quantified in a meta-analytically defined reward network comprised of cortical, subcortical, and brainstem regions. Associations between brain GluCEST contrast and Behavioral Activation System Scale RR scores were assessed using multiple linear regressions. Analyses revealed that reward network GluCEST contrast was positively and selectively associated with RR, but not other clinical features. Follow-up investigations identified that this association was driven by the subcortical reward network and network areas that encode the salience of valenced stimuli. We observed no association between RR and the GluCEST contrast within non-reward cortex. This study thus provides new evidence that reward network glutamate levels contribute to individual differences in RR. Decreased reward network excitatory neurotransmission or metabolism may be mechanisms driving reward network hypofunction and RR deficits. These findings provide a framework for understanding the efficacy of glutamate-modulating psychotropics such as ketamine for treating anhedonia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of structural and GluCEST processing.
Fig. 2: Association between dimensional reward responsiveness and reward network GluCEST.
Fig. 3: Association between dimensional reward responsiveness and subcortical reward network GluCEST.
Fig. 4: Effect size determined by valence encoding.

Similar content being viewed by others

Code availability

All analytic code is available at https://github.com/PennLINC/sydnor_glucest_rewardresponsiveness_2020.

References

  1. McMakin DL, Olino TM, Porta G, Dietz LJ, Emslie G, Clarke G, et al. Anhedonia predicts poorer recovery among youth with selective serotonin reuptake inhibitor treatment–resistant depression. J Am Acad Child Adolesc Psychiatry. 2012;51:404–11.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Uher R, Perlis RH, Henigsberg N, Zobel A, Rietschel M, Mors O, et al. Depression symptom dimensions as predictors of antidepressant treatment outcome: replicable evidence for interest-activity symptoms. Psychol Med. 2012;42:967–80.

    Article  CAS  PubMed  Google Scholar 

  3. Nutt D, Demyttenaere K, Janka Z, Aarre T, Bourin M, Canonico PL, et al. The other face of depression, reduced positive affect: the role of catecholamines in causation and cure. J Psychopharmacol 2007;21:461–71.

    Article  CAS  PubMed  Google Scholar 

  4. Wolf DH. Anhedonia in schizophrenia. Curr Psychiatry Rep. 2006;8:322–8.

    Article  PubMed  Google Scholar 

  5. Vrieze E, Demyttenaere K, Bruffaerts R, Hermans D, Pizzagalli DA, Sienaert P, et al. Dimensions in major depressive disorder and their relevance for treatment outcome. J Affect Disord. 2014;155:35–41.

    Article  PubMed  Google Scholar 

  6. Winer ES, Bryant J, Bartoszek G, Rojas E, Nadorff MR, Kilgore J. Mapping the relationship between anxiety, anhedonia, and depression. J Affect Disord. 2017;221:289–96.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cressman VL, Schobel SA, Steinfeld S, Ben-David S, Thompson JL, Small SA, et al. Anhedonia in the psychosis risk syndrome: associations with social impairment and basal orbitofrontal cortical activity. NPJ Schizophr. 2015;1:15020.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pizzagalli DA. Depression, stress, and anhedonia: toward a synthesis and integrated model. Annu Rev Clin Psychol. 2014;10:393–423.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Taubitz LE, Pedersen WS, Larson CL. BAS reward responsiveness: a unique predictor of positive psychological functioning. Personal Individ Differ. 2015;80:107–12.

    Article  Google Scholar 

  10. Keller J, Young CB, Kelley E, Prater K, Levitin DJ, Menon V. Trait anhedonia is associated with reduced reactivity and connectivity of mesolimbic and paralimbic reward pathways. J Psychiatr Res. 2013;47:1319–28.

    Article  PubMed  Google Scholar 

  11. Wacker J, Dillon DG, Pizzagalli DA. The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques. NeuroImage. 2009;46:327–37.

    Article  PubMed  Google Scholar 

  12. Simon JJ, Walther S, Fiebach CJ, Friederich H-C, Stippich C, Weisbrod M, et al. Neural reward processing is modulated by approach- and avoidance-related personality traits. NeuroImage. 2010;49:1868–74.

    Article  PubMed  Google Scholar 

  13. Harvey P-O, Armony J, Malla A, Lepage M. Functional neural substrates of self-reported physical anhedonia in non-clinical individuals and in patients with schizophrenia. J Psychiatr Res. 2010;44:707–16.

    Article  PubMed  Google Scholar 

  14. Stepien M, Manoliu A, Kubli R, Schneider K, Tobler PN, Seifritz E, et al. Investigating the association of ventral and dorsal striatal dysfunction during reward anticipation with negative symptoms in patients with schizophrenia and healthy individuals. PLOS ONE. 2018;13:e0198215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Smoski MJ, Felder J, Bizzell J, Green SR, Ernst M, Lynch TR, et al. fMRI of alterations in reward selection, anticipation, and feedback in major depressive disorder. J Affect Disord. 2009;118:69–78.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sharma A, Wolf DH, Ciric R, Kable JW, Moore TM, Vandekar SN, et al. Common dimensional reward deficits across mood and psychotic disorders: a connectome-wide association study. Am J Psychiatry. 2017;174:657–66.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35:4–26.

    Article  PubMed  Google Scholar 

  18. Haber SN. Corticostriatal circuitry. Dialogues Clin Neurosci. 2016;18:7–21.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sesack SR, Carr DB, Omelchenko N, Pinto A. Anatomical substrates for glutamate-dopamine interactions: evidence for specificity of connections and extrasynaptic actions. Ann N Y Acad Sci. 2003;1003:36–52.

    Article  CAS  PubMed  Google Scholar 

  20. Sesack SR, Grace AA. Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology. 2010;35:27–47.

    Article  PubMed  Google Scholar 

  21. Höflich A, Michenthaler P, Kasper S, Lanzenberger R. Circuit mechanisms of reward, anhedonia, and depression. Int J Neuropsychopharmacol. 2018;22:105–18.

    Article  PubMed Central  Google Scholar 

  22. Geisler S, Wise RA. Functional implications of glutamatergic projections to the ventral tegmental area. Rev Neurosci. 2008;19:227–44.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stuber GD, Britt JP, Bonci A. Optogenetic modulation of neural circuits that underlie reward seeking. Biol Psychiatry. 2012;71:1061–7.

    Article  PubMed  Google Scholar 

  24. Cox J, Witten IB. Striatal circuits for reward learning and decision-making. Nat Rev Neurosci. 2019;20:482–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D’Souza MS. Glutamatergic transmission in drug reward: implications for drug addiction. Front Neurosci. 2015;9:404.

    PubMed  PubMed Central  Google Scholar 

  26. Bisaga A, Danysz W, Foltin RW. Antagonism of glutamatergic NMDA and mGluR5 receptors decreases consumption of food in baboon model of binge-eating disorder. Eur Neuropsychopharmacol. 2008;18:794–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. You Z-B, Wang B, Zitzman D, Azari S, Wise RA. A role for conditioned ventral tegmental glutamate release in cocaine seeking. J Neurosci. 2007;27:10546–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee B, Platt DM, Rowlett JK, Adewale AS, Spealman RD. Attenuation of behavioral effects of cocaine by the metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)-pyridine in squirrel monkeys: comparison with dizocilpine. J Pharm Exp Ther. 2005;312:1232–40.

    Article  CAS  Google Scholar 

  29. Koike H, Iijima M, Chaki S. Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav Brain Res. 2011;224:107–11.

    Article  CAS  PubMed  Google Scholar 

  30. Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron. 2019;102:75–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lally N, Nugent AC, Luckenbaugh DA, Niciu MJ, Roiser JP, Zarate CA. Neural correlates of change in major depressive disorder anhedonia following open-label ketamine. J Psychopharmacol. 2015;29:596–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ballard ED, Wills K, Lally N, Richards EM, Luckenbaugh DA, Walls T, et al. Anhedonia as a clinical correlate of suicidal thoughts in clinical ketamine trials. J Affect Disord. 2017;218:195–200.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Henning A. Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: a review. NeuroImage. 2018;168:181–98.

    Article  CAS  PubMed  Google Scholar 

  34. Wu B, Warnock G, Zaiss M, Lin C, Chen M, Zhou Z, et al. An overview of CEST MRI for non-MR physicists. EJNMMI Phys. 2016;3:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu J, Yang S, Xuan Y, Jiang Q, Yang Y, Haacke EM. Simultaneous detection of resolved glutamate, glutamine, and γ-aminobutyric acid at 4 Tesla. J Magn Reson. 2007;185:204–13.

    Article  CAS  PubMed  Google Scholar 

  36. Cai K, Haris M, Singh A, Kogan F, Greenberg JH, Hariharan H, et al. Magnetic resonance imaging of glutamate. Nat Med. 2012;18:302–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nanga RPR, DeBrosse C, Kumar D, Roalf D, McGeehan B, D’Aquilla K, et al. Reproducibility of 2D GluCEST in healthy human volunteers at 7 T. Magn Reson Med. 2018;80:2033–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carver CS, White TL. Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS Scales. J Pers Soc Psychol. 1994;67:319–33.

    Article  Google Scholar 

  39. Jorm AF, Christensen H, Henderson AS, Jacomb PA, Korten AE, Rodgers B. Using the BIS/BAS scales to measure behavioural inhibition and behavioural activation: factor structure, validity and norms in a large community sample. Personal Individ Differ. 1998;26:49–58.

    Article  Google Scholar 

  40. Campbell-Sills L, Liverant GI, Brown TA. Psychometric evaluation of the behavioral inhibition/behavioral activation scales in a large sample of outpatients with anxiety and mood disorders. Psychol Assess. 2004;16:244–54.

    Article  PubMed  Google Scholar 

  41. Kasch KL, Rottenberg J, Arnow BA, Gotlib IH. Behavioral activation and inhibition systems and the severity and course of depression. J Abnorm Psychol. 2002;111:589–97.

    Article  PubMed  Google Scholar 

  42. Kobayashi H, Nemoto T, Koshikawa H, Osono Y, Yamazawa R, Murakami M, et al. A self-reported instrument for prodromal symptoms of psychosis: testing the clinical validity of the PRIME screen-revised (PS-R) in a Japanese population. Schizophr Res. 2008;106:356–62.

    Article  PubMed  Google Scholar 

  43. Miller T, Cicchetti D, Markovich P, McGlashan T, Woods S. The SIPS screen: a brief self-report screen to detect the schizophrenia prodrome. Schizophr Res. 2004;70:78.

    Google Scholar 

  44. Roalf DR, Nanga RPR, Rupert PE, Hariharan H, Quarmley M, Calkins ME, et al. Glutamate imaging (GluCEST) reveals lower brain GluCEST contrast in patients on the psychosis spectrum. Mol Psychiatry. 2017;22:1298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele P-F, Gruetter R. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage. 2010;49:1271–81.

    Article  PubMed  Google Scholar 

  46. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29:1310–20.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001;20:45–57.

    Article  CAS  PubMed  Google Scholar 

  48. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;12:26–41.

    Article  CAS  PubMed  Google Scholar 

  49. Bartra O, McGuire JT, Kable JW. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage. 2013;76:412–27.

    Article  PubMed  Google Scholar 

  50. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006;31:968–80.

    Article  PubMed  Google Scholar 

  51. Colic L, von Düring F, Denzel D, Demenescu LR, Lord AR, Martens L, et al. Rostral anterior cingulate glutamine/glutamate disbalance in major depressive disorder depends on symptom severity. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4:1049–58.

    PubMed  Google Scholar 

  52. Walter M, Henning A, Grimm S, Schulte RF, Beck J, Dydak U, et al. The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Arch Gen Psychiatry. 2009;66:478–86.

    Article  CAS  PubMed  Google Scholar 

  53. Gabbay V, Mao X, Klein RG, Ely BA, Babb JS, Panzer AM, et al. Anterior cingulate cortex γ-aminobutyric acid in depressed adolescents. Arch Gen Psychiatry. 2012;69:139–49.

    Article  CAS  PubMed  Google Scholar 

  54. Gabbay V, Bradley KA, Mao X, Ostrover R, Kang G, Shungu DC. Anterior cingulate cortex γ-aminobutyric acid deficits in youth with depression. Transl Psychiatry. 2017;7:e1216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sydnor VJ, Roalf DR. A meta-analysis of ultra-high field glutamate, glutamine, GABA and glutathione 1HMRS in psychosis: implications for studies of psychosis risk. Schizophr Res. 2020. https://doi.org/10.1016/j.schres.2020.06.028.

  56. Moriguchi S, Takamiya A, Noda Y, Horita N, Wada M, Tsugawa S, et al. Glutamatergic neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol Psychiatry. 2019;24:952–64.

    Article  CAS  PubMed  Google Scholar 

  57. Godlewska BR, Masaki C, Sharpley AL, Cowen PJ, Emir UE. Brain glutamate in medication-free depressed patients: a proton MRS study at 7 Tesla. Psychol Med. 2018;48:1731–7.

    Article  PubMed  Google Scholar 

  58. Bradley KA, Alonso CM, Mehra LM, Xu J, Gabbay V. Elevated striatal γ-aminobutyric acid in youth with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2018;86:203–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moser E, Stahlberg F, Ladd ME, Trattnig S. 7-T MR–from research to clinical applications? NMR Biomed. 2012;25:695–716.

    Article  PubMed  Google Scholar 

  60. Batten SR, Pomerleau F, Quintero J, Gerhardt GA, Beckmann JS. The role of glutamate signaling in incentive salience: second-by-second glutamate recordings in awake Sprague-Dawley rats. J Neurochem. 2018;145:276–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Berridge KC. From prediction error to incentive salience: mesolimbic computation of reward motivation. Eur J Neurosci. 2012;35:1124–43.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron. 2012;76:790–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Qi J, Zhang S, Wang H-L, Wang H, de Jesus Aceves Buendia J, Hoffman AF, et al. A glutamatergic reward input from the dorsal raphe to ventral tegmental area dopamine neurons. Nat Commun. 2014;5:5390.

    Article  CAS  PubMed  Google Scholar 

  64. Yoo JH, Zell V, Wu J, Punta C, Ramajayam N, Shen X, et al. Activation of pedunculopontine glutamate neurons is reinforcing. J Neurosci. 2017;37:38–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Atluri PP, Ryan TA. The kinetics of synaptic vesicle reacidification at hippocampal nerve terminals. J Neurosci. 2006;26:2313–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Egashira Y, Takase M, Watanabe S, Ishida J, Fukamizu A, Kaneko R, et al. Unique pH dynamics in GABAergic synaptic vesicles illuminates the mechanism and kinetics of GABA loading. Proc Natl Acad Sci USA. 2016;113:10702–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McKenna MC. The glutamate-glutamine cycle is not stoichiometric: Fates of glutamate in brain. J Neurosci Res. 2007;85:3347–58.

    Article  CAS  PubMed  Google Scholar 

  68. Bennik EC, Nederhof E, Ormel J, Oldehinkel AJ. Anhedonia and depressed mood in adolescence: course, stability, and reciprocal relation in the TRAILS study. Eur Child Adolesc Psychiatry. 2014;23:579–86.

    Article  PubMed  Google Scholar 

  69. Stanton CH, Holmes AJ, Chang SWC, Joormann J. From stress to anhedonia: molecular processes through functional circuits. Trends Neurosci. 2019;42:23–42.

    Article  CAS  PubMed  Google Scholar 

  70. Duman RS. Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections. Dialogues Clin Neurosci. 2014;16:11–27.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Shimizu M, Suzuki Y, Yamada K, Ueki S, Watanabe M, Igarashi H, et al. Maturational decrease of glutamate in the human cerebral cortex from childhood to young adulthood: a 1H-MR spectroscopy study. Pediatr Res. 2017;82:749–52.

    Article  CAS  PubMed  Google Scholar 

  72. Stringaris A, Vidal-Ribas Belil P, Artiges E, Lemaitre H, Gollier-Briant F, Wolke S, et al. The brain’s response to reward anticipation and depression in adolescence: dimensionality, specificity, and longitudinal predictions in a community-based sample. Am J Psychiatry. 2015;172:1215–23.

    Article  PubMed  Google Scholar 

  73. Winer ES, Drapeau CW, Veilleux JC, Nadorff MR. The association between anhedonia, suicidal ideation, and suicide attempts in a large student sample. Arch Suicide Res. 2016;20:265–72.

    Article  PubMed  Google Scholar 

  74. Hawes M, Galynker I, Barzilay S, Yaseen ZS. Anhedonia and suicidal thoughts and behaviors in psychiatric outpatients: the role of acuity. Depress Anxiety. 2018;35:1218–27.

    Article  PubMed  Google Scholar 

  75. Winer ES, Nadorff MR, Ellis TE, Allen JG, Herrera S, Salem T. Anhedonia predicts suicidal ideation in a large psychiatric inpatient sample. Psychiatry Res. 2014;218:124–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the recruitment team at the Penn-CHOP Lifespan Brain Institute, led by Thomas Hohing, Karthik Prabhakaran, and Jacqueline Meeks, for assistance with 7.0 T MRI data collection.

Funding

This work was supported by National Institute of Mental Health R01s MH119185 (DRR) and MH120174 (DRR), a National Institute of Aging R56 AG066656 (DRR), a NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation (DRR), a University of Pennsylvania Research Foundation Grant (DRR), and the University of Pennsylvania Institute for Translational Medicine and Therapeutics (TDS, JFY). Additional support was provided by R01 MH119219 (REG, RCG), R01 MH113565 (DHW), R01 MH107703 (TDS), R01 MH112847 (TDS, RTS), T32 MH014654-43 (BL), P41 NIBIB EB015893 (RR), and the Lifespan Brain Institute—a collaboration between the University of Pennsylvania School of Medicine and Children’s Hospital of Philadelphia. The funding sources were not directly involved in study design, data collection, data analysis, data interpretation, or manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Roalf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sydnor, V.J., Larsen, B., Kohler, C. et al. Diminished reward responsiveness is associated with lower reward network GluCEST: an ultra-high field glutamate imaging study. Mol Psychiatry 26, 2137–2147 (2021). https://doi.org/10.1038/s41380-020-00986-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00986-y

This article is cited by

Search

Quick links