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Abstract
Large-scale brain imaging studies by the ENIGMA Consortium identified structural changes associated with attention-
deficit/hyperactivity disorder (ADHD). It is not clear why some brain regions are impaired and others spared by the
etiological risks for ADHD. We hypothesized that spatial variation in brain cell organization and/or pathway expression
levels contribute to selective brain region vulnerability (SBRV) in ADHD. In this study, we used the largest available
collection of magnetic resonance imaging (MRI) results from the ADHD ENIGMA Consortium (subcortical MRI n= 3242;
cortical MRI n= 4180) along with high-resolution postmortem brain microarray data from Allen Brain Atlas (donors n= 6)
from 22 brain regions to investigate our SBRV hypothesis. We performed deconvolution of the bulk transcriptomic data to
determine abundances of neuronal and nonneuronal cells in the brain. We assessed the relationships between gene-set
expression levels, cell abundance, and standardized effect sizes representing regional changes in brain sizes in cases of
ADHD. Our analysis yielded significant correlations between apoptosis, autophagy, and neurodevelopment genes with
smaller brain sizes in ADHD, along with associations to regional abundances of astrocytes and oligodendrocytes. The lack of
enrichment of common genetic risk variants for ADHD within implicated gene sets suggests an environmental etiology to
these differences. This work provides novel mechanistic clues about SBRV in ADHD.

Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a highly
heritable neurodevelopmental disorder characterized by
high levels of inattention, impulsivity, and hyperactivity,
which frequently persist into adulthood [1]. ADHD is
a relatively common disorder that affects about 5% of
school-age children and 2.5% of adults [1]. Many genetic
and environmental risk factors for ADHD have been

documented but the mechanisms ultimately leading to the
symptoms of the disorder are unknown [1].

Multi-site sMRI mega-analyses performed by the
ENIGMA Consortium identified subcortical regions with
significant smaller volumes in children diagnosed with
ADHD compared to unaffected comparison (UC) partici-
pants, including the accumbens, amygdala, caudate, hip-
pocampus, and putamen [2]. Stratification by age group
revealed that smaller subcortical volumes were more pro-
minent for children with ADHD than for adults with the
disorder [2]. More recently, the ENIGMA Consortium
found that fusiform, precentral and paracentral gyri,
entorhinal cortex, and parahippocampal lobe were thinner in
cases of ADHD compared to unaffected individuals span-
ning multiple age groups [3]. Stratifying individuals into
different age groups demonstrated that children with ADHD
show substantially thinner cortical regions compared to
adults with ADHD. These findings reported by the
ENIGMA Consortium [2, 3] join a growing body of work
ascertaining that ADHD-associated deficits in regional brain
volumes and cortical thickness attenuate with aging [4, 5].
It is possible that the phenomenon of selective brain
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region vulnerability (SBRV) may contribute to the varia-
bility of structural differences located across brain regions
in ADHD.

Our conceptualization about SBRV stemmed from the
theory of pathoclisis introduced in 1922 [6]. Pathoclisis
posited that the basis of selective vulnerability of brain
regions to risk factors of disease may be explained by
variation in the constituent cell types and biochemical
pathways of brain regions. Neurons are not evenly dis-
tributed across the brain, rather there is evidence that neu-
ronal density follows an anterior–posterior gradient across
the cortex [7–9]. In addition, there is evidence that gene
expression in the human brain follows a distinct pattern that
mirrors structural and functional organization of brain
regions [10–13]. These underlying patterns related to the
organization of the human brain may hold information
about SBRV. We hypothesize that the organization of brain
cell types and biological pathways has differential vulner-
ability to risk factors for ADHD, which may explain why
some brain regions show structural brain changes associated
with ADHD, while others do not [2, 3]. We sought to
determine whether localized patterns of cell-type abun-
dances and gene-set expression levels in brains of healthy
individuals relate to the regional variation in structural brain
differences seen in ADHD. Previously, we found that
autophagy, apoptosis, and oxidative stress pathways were
associated with smaller subcortical brain region volumes in
ADHD and suggested that they may mediate SBRV [14].

The present work builds on our previous study by including
newly released data from the ENIGMA-ADHD working
group for cortical brain regions. We also investigate the
brain cell types that may mediate SBRV in ADHD. Our
goal was to determine if a distinct gene expression or dis-
tribution of cell types was characteristic of brain regions
implicated in ADHD. Such data could shed light on etio-
logical mechanisms underlying SBRV.

Methods

A diagram summarizing our analytic framework is provided
in Fig. 1.

Gene sets

When identifying candidate pathways, we focused on stu-
dies that performed meta-analysis of experimental mea-
surements among ADHD patients, or hypothesis-free
pathway analysis of genome-wide signals associated with
ADHD. Five biological pathways previously associated
with ADHD (apoptosis, autophagy, neurotransmission,
neurodevelopment, and reactive oxygen species) were
selected for our current analysis [15–18]. We hypothesized
that expression of these gene sets in the human brain may be
associated with SBRV, which builds upon our previous
study of that assessed subcortical SBRV in ADHD [14].

Fig. 1 A diagram showing the general workflow used for our
study. We collected regional postmortem brain transcriptome profiles
from Allen Brain Atlas and summary statistics from two neuroimaging
meta-analyses by the ENIGMA Consortium for ADHD. We analyzed
the postmortem brain data for correlations between gene-set expression
levels of apoptosis, autophagy, neurodevelopment, neurotransmitter,
oxidative stress, and ADHD candidate genes with brain size differ-
ences in ADHD cases from the ENIGMA studies. We also

deconvoluted the regional postmortem brain transcriptome profiles into
discrete cell types and tested for a correlate between cell abundance
and volumetric reductions in ADHD. We tested for enrichment of
GWAS signals associated with ADHD among gene sets of interest
(i.e., cell-type marker genes, Gene Ontology gene sets). GEO Gene
Expression Omnibus, GWAS genome-wide association study, scRNA-
seq single-cell RNA-sequencing.
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The latest version of the Gene Ontology database was
downloaded via R package GO.db (version 3.7.0) [19] to
retrieve the most up-to-date annotations for these five bio-
logical pathways: apoptosis, autophagy, neurotransmission,
neurodevelopment, and reactive oxygen species [15–18].
These pathways are relatively broad and might be asso-
ciated with neuropsychiatric disorders other than ADHD. A
total of 1298 unique HGNC genes were identified. Pre-
cisely, 1203 of these genes had expression data in the Allen
Brain Atlas. Supplementary Fig. 1 shows the number of
genes contained in each gene set and the amount of pairwise
overlap between gene sets.

Structural neuroimaging data for cortical and
subcortical brain regions

We used data from two international multi-site neuroima-
ging meta-analyses conducted by the ENIGMA-ADHD
working group that evaluated structural T1-weighted brain
magnetic resonance imaging (MRI) data from individuals
diagnosed according to DSM-IV, with ADHD and UC
participants. Summary statistics denoting case-control dif-
ferences in cortical thickness and subcortical volume as
standardized effect sizes (Cohen’s d) were obtained from
published papers by the ENIGMA Consortium [2, 3]. For
our primary analysis, we included results from cortical
thickness measures instead of surface area. First, imaging
studies have attributed changes to cortical thickness with
selective vulnerability in neurodegenerative disorders, thus
it is possible that cortical thickness may be sensitive to
molecular cascades of SBRV in ADHD [20–23]. Second,
cortical thickness and surface area both contribute to cor-
tical volume, but cortical thickness has been shown to play
a bigger role in cortical volume [24]. Therefore cortical
thickness may be the better imaging phenotype to include in
our analysis of the patterning of gene expression and cel-
lular abundance across cortical and subcortical structures.
For our secondary analysis, we jointly analyzed cortical
thickness, cortical surface area, and subcortical volumes.
Structural MRI measures had been generated using a vali-
dated MRI processing protocol with the software FreeSurfer
(versions 5.1, 5.3, or 6.0). The age range for children was
4–14 years, adolescents 15–21 years, and adults 22–63
years. Differences in cortical thickness found between cases
and UC participants had been adjusted for age, sex, ethni-
city, and total intracranial volume (ICV), while differences
in subcortical volume had been adjusted for age, sex, and
total ICV. Previous ENIGMA papers showed no differ-
ence in subcortical volumes between ADHD participants
who had never taken the medication compared to patients
who used stimulants during their lifetime [2]. Also,
no significant association was found between psychosti-
mulant medication and cortical dimensions, neither in

case-control nor in population-based designs [3]. The
number of ADHD cases and UC participants included in
the ENIGMA-ADHD studies is presented in Supplemen-
tary Table 1.

Postmortem brain transcriptome profiles from adult
donors

We downloaded preprocessed microarray data from the
Allen Brain Atlas website (https://human.brain-map.org/)
[25] containing quantile normalized transcriptome profiles
for a 158 neuroanatomical substructures from five male and
one female healthy donors ranging from 24 to 57 years of
age (Caucasian= 3; Hispanic= 1; African American= 2).
We mapped 49 of the substructures onto 22 brain regions
(Supplementary Table 2) evaluated by the ENIGMA-
ADHD working group (15 cortical and 7 subcortical
regions), including accumbens, amygdala, caudate, cuneus,
fusiform gyrus, globus pallidus, hippocampus, inferior
temporal gyrus, insula, lingual gyrus, middle temporal
gyrus, paracentral lobule, parahippocampal gyrus, post-
central gyrus, precentral gyrus, precuneus, putamen,
superior frontal gyrus, superior parietal cortex, superior
temporal gyrus, supramarginal gyrus, and thalamus. A total
of 58,692 probes were used to assay transcriptome
expression profiles from neuropathologically normal post-
mortem brain specimens harvested from six adult donors.
Brain samples had been screened for trauma, toxicity,
pathology, and history of drug or alcohol abuse, epilepsy,
psychiatric or neurological disease, prion disease, infectious
disease, cancer deaths, chronic renal failure, or on a venti-
lator for >1 h or, had a time of death > 30 h [25]. We only
included microarray profiles generated on the left hemi-
sphere for our analysis, as there were insufficient data from
the right hemisphere across donors. Probe-level data were
collapsed down to 19,274 HGNC genes by calculating the
median log2 expression level of probe clusters (i.e., set of
probes that measure a single gene) within each donor and
brain substructure. Mean log2 gene expression values were
then calculated among brain substructures that mapped to
one of the 22 brain regions of interest evaluated by
ENIGMA-ADHD. Mean log2 expression levels were cal-
culated among genes annotated to each of the five a priori
selected gene sets to arrive at gene-set expression levels
within 22 brain regions. A plot of normalized expression
values across regions of interest from Allen Brain Atlas is
provided in Supplementary Fig. 2.

Deconvolution of bulk brain tissue transcriptomes
into specific brain cell types

We used a statistical cell deconvolution method from the R
package dtangle [26] to infer proportional abundance of
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brain cell types based on expression levels of cell-type-
specific marker genes from the bulk tissue transcriptome
profiles from the Allen Brain Atlas. The dtangle algorithm
uses a multivariate logistic function to estimate cell abun-
dance from gene expression levels [26]. As a reference
panel for deconvolution, we used single-cell RNA-sequen-
cing (scRNA-seq) data collected from postmortem cortex of
five male and three female healthy adult donors, ranging
from 21 to 63 years of age (GEO accession ID: GSE67835)
[27], which was comprised of 285 cells classified into six
broad cell types, including astrocytes (n= 62), endothelial
cells (n= 20), microglia (n= 16), neurons (n= 131), oli-
godendrocytes (n= 38), and oligodendrocyte progenitor
cells (OPCs) (n= 18). We processed the scRNA-seq data
by removing genes expressed at or near background levels
(≤1 read counts in >90% of cells), transforming read counts
for remaining genes to the log2 counts per million (CPM)
scale with the software edgeR (v.3.24.3) [28], and quantile
normalizing CPM values across cells using limma
(v.3.38.3) [29]. Using dtangle, we identified cell-type-
specific marker genes that were expressed above the 90th
percentile in terms of fold-change in one cell type compared
to all other cell types. We then deconvoluted the Allen
Brain Atlas data based on observed expression of cell-type-
specific markers into relative abundances of brain cell types,
which can take on values between 0 and 1.

Statistical analysis

For our primary analysis, Pearson’s correlation tests were
used to determine the association between Cohen’s d values
that reflect brain morphometric changes in ADHD cases,
separated by the four case-control age groups evaluated by
the ENIGMA Consortium and gene-set expression levels in
“postmortem” subcortical and cortical brain regions
obtained from the Allen Brain Atlas. Keeping in line with
our previous study [14], the Bonferroni procedure was used
to correct for multiple comparisons among association tests
performed across all age bins in the imaging cohorts
(children, adolescents, adults, and all participants) [30].
Based on our sample size and predefined significance
threshold of p ≤ 0.0025 (5 gene sets × 4 age bins), we esti-
mated having 80% power to detect a significant correlation
for our primary analysis at a magnitude of Pearson’s r=
0.71. For our secondary analysis, we jointly analyzed all
three brain imaging measurements (subcortical volume,
cortical thickness, and cortical surface area) using a linear
mixed model fit applying restricted maximum likelihood via
the R package lmerTest (v.3.1-2). Gene-set expression was
specified as a fixed-effect term, and a code for brain ima-
ging measure was specified as a random-intercept term.
Degrees of freedom and t-tests were computed using the
Satterthwaite method. p values for our secondary analysis

were corrected across all age groups using the Bonferroni
procedure, but were treated separate from the association
tests derived from our primary analysis.

A post hoc correlation test was performed to examine
the relationship between Cohen’s d effect sizes and
expression levels on a per-gene basis wherein the Bon-
ferroni procedure was used in order to uncover genes with
the strongest association with brain morphometric chan-
ges in the brains of ADHD cases among those gene sets
already associated with ADHD-related brain changes (i.e.,
Bonferroni p < 0.05). Pearson’s correlation test was used
to examine the relationship between abundance of specific
brain cell types across subcortical and cortical brain
regions along with gene-set expression levels, wherein the
effective number of independent tests was the dot product
of the number of independent cell types and the number of
gene sets evaluated. Lastly, Pearson’s correlation tests
were performed on abundance of specific brain cell
types and Cohen’s d effect sizes for brain structural
changes in ADHD separately for each case-control age
group. The Bonferroni procedure was used to adjust the
significance threshold and account for multiple testing
across the age bins. A post hoc multivariate regression
model tested whether multiple significant gene sets had
conditionally independent associations with Cohen’s d
values.

Gene-set analysis with GWAS data for ADHD

We performed a gene-level and gene-set association ana-
lysis using the largest available GWAS meta-analysis
results for ADHD with the software MAGMA (v1.07)
[31, 32]. Identifiers for over 3 million single-nucleotide
polymorphism (SNPs; rsIDs) and p values were supplied to
MAGMA to perform quality control of summary statistics
and compute z scores for gene-level associations with
ADHD by averaging the observed significance values for
intragenic SNPs. Gene-level associations were computed
for a total of 20,274 genes, of which 1171 were included in
our gene sets of interest. A genome-wide significance
threshold was set at 2.47 × 10–6 for the gene-level tests (i.e.,
2.47 × 10−6= ɑ= 0:05

20;274). With MAGMA, a linear regres-
sion model was used to perform a competitive gene-set
enrichment analysis testing for differences in gene-level
association scores for ADHD between a gene set and all
other genes in the genome while covarying for minor allele
count, gene length, number of SNPs per kilo base of the
gene, and linkage disequilibrium between genes. The gene
sets that we tested for GWAS enrichment included the five a
priori gene sets (autophagy, apoptosis, neurodevelopment,
neurotransmission regulation, and oxidative stress) and the
six brain cell-type-specific marker gene lists defined in our
statistical deconvolution analysis.
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Results

Gene sets associated with smaller brain sizes in
ADHD

Anatomical plots of the structural MRI signatures asso-
ciated with ADHD alongside average expression levels of
our five a priori selected gene sets are shown in Fig. 2.
Figure 3 shows the correlations between the Cohen’s d
values indexing differences between ADHD and UC parti-
cipants in regional brain volumes and the gene-set expres-
sion levels for the five a priori selected gene sets. As the
summary statistics for the correlation tests in Table 1 show,
the expression levels of three gene sets were significantly
negatively correlated with smaller brain sizes in ADHD:
autophagy (children with ADHD, Pearson’s r=−0.67, p=
7.0 × 10−4; all ages, Pearson’s r=−0.72, p= 2.0 × 10−4),
apoptosis (all ages, Pearson’s r=−0.66, p= 9.0 × 10−4),
and neurodevelopment (all ages, Pearson’s r=−0.61, p=
2.4 × 10−3). The associations between the autophagy and
apoptosis gene sets with smaller brain sizes disappeared
when the two gene sets were both specified as predictors in
a post hoc multiple linear regression model that used
Cohen’s d values from ENGIMA’s analysis of all ADHD
cases and UC participants as the outcome variable
(p values= 0.072 and 0.76, respectively), suggesting that
these gene sets are not contributing conditionally indepen-
dent effects on brain size differences in ADHD. This finding
is consistent with the fact that the autophagy and apoptosis
gene sets share a significantly greater number of genes than
expected by chance (Supplementary Fig. 1). Our joint

analysis of cortical thickness, cortical surface area, and
subcortical volume data added further support to the asso-
ciations for autophagy and apoptosis gene sets (Supple-
mentary Table 3). The neurodevelopment gene set was not
significant in the joint linear mixed model. However, the
neurotransmission gene set became significant for two age
groups after Bonferroni correction: children with ADHD
(standardized β= 0.72, SE= 0.19, df= 34.6, p= 5.8 ×
10–4) and all ages (standardized β= 0.69, SE= 0.19, df=
33.52, p= 0.0074).

Among 684 genes tested, 27 showed a significant asso-
ciation with brain size differences in ADHD at a Bonferroni
p < 0.05 (Supplementary Fig. 3). Expression levels of TAO
kinase 2 (TAOK2), a serine/threonine kinase gene, had the
most significant association with smaller brain volumes in
ADHD (Pearson’s r=−0.86, uncorrected p= 2.8 × 10−7,
Bonferroni p= 3.8 × 10−4). A visualization of the devel-
opmental trajectory of TAOK2 gene expression in post-
mortem human brain tissue from 8 postconception weeks
(pcw) to 40 years of age is provided in Supplementary
Fig. 4. TAOK2 expression levels are shown to be lowest at 8
pcw. Expression levels rise during prenatal development
reaching a peak at 25 pcw, followed by a moderate decline
until 4 years old and a slight increase through adulthood.

Association of cell-type abundance with gene sets
and volumetric changes in ADHD

Figure 4A shows significant associations found between four
brain cell types and autophagy, apoptosis, neurodevelopment,
or oxidative stress genes (Bonferroni p < 0.05). The cell types

Fig. 2 Heatmaps showing anatomical representations of neuroi-
maging signatures for ADHD and postmortem brain gene-set
expression levels. A–C Standardized differences in structural MRI
measurements found by the ENIGMA Consortium for ADHD are
shown for subcortical volume, cortical thickness, and surface area.

Larger positive values for Cohen’s d indicate smaller regional brain
sizes among ADHD patients versus controls. D, E Postmortem brain
gene-set expression levels for five a priori selected gene sets are pre-
sented. Expression levels for gene sets were averaged over a reference
panel of six adult neurotypical donors from the Allen Brain Atlas.

Autophagy, apoptosis, and neurodevelopmental genes might underlie selective brain region vulnerability. . . 6647



implicated by these associations were: astrocytes, neurons,
oligodendrocytes, and OPCs. Brain size differences in ADHD
were significantly associated with the abundance of astrocytes
and OPCs (Bonferroni p < 0.05, Fig. 4B).

Association of genes and gene sets with ADHD from
GWAS meta-analysis

Genome-wide significant gene-level associations with
ADHD were found for three genes via gene-based asso-
ciation test with MAGMA, one of which belongs to the
autophagy gene set (KDM4A, p= 2.61 × 10−11). The other
two genes are members of the neurotransmission gene set
(CUBN, p= 5.2 × 10−7 and MEF2C, p= 6.33 × 10−7).
Competitive gene-set enrichment did not uncover a sig-
nificant association between autophagy, apoptosis, neuro-
development, neurotransmission, or oxidative stress gene
sets and ADHD (Supplementary Table 4). Brain cell-type-
specific marker gene lists did not show enrichment of
GWAS signals for ADHD (Supplementary Table 4).

Discussion

This work sought to better understand SBRV in ADHD. It
extends our prior study of subcortical regions [14] by

adding cortical data and by identifying the cell types pos-
sibly contributing to our results. Although we must be
cautious in interpreting our results, they suggest that SBRV
in ADHD may be due to temporo-spatial variation in the
expression levels of autophagy and apoptosis genes. In
adulthood, neurodevelopmental genes also appear to play a
role in SBRV.

We previously reported a significant association between
smaller subcortical brain volumes and spatial variation in
expression of oxidative stress genes [14]. However, after
having nearly tripled our sample size, the association
between oxidative stress genes and SBRV in ADHD was
markedly diminished. Conversely, the significance of the
associations between Cohen’s d and autophagy genes and
apoptosis genes became stronger in this study compared to
our previous findings [14], supporting the idea that the
autophagy and apoptosis pathways (which share expressed
genes) mediate SBRV for both cortical and subcortical
structures. Although not parsimonious, it is plausible that
neuronal or nonneuronal cells within cortical regions are
more tolerant to oxidative stress compared to brain cells in
subcortical regions and that oxidative stress may play a role
only for subcortical structures.

Compared with our previous work, the association
between SBRV in ADHD and the neurodevelopment gene
set is a novel finding. Neurodevelopmental genes play a

Fig. 3 Scatterplots and best-fit
regression lines show
correlations between brain
size differences in ADHD cases
across 22 brain regions (x-axis,
Cohen’s d) with gene-set
expression levels (y-axis).
Cohen’s d effect sizes were
stratified according to the age
groups described by the
ENIGMA-ADHD working
group in their case-control
analyses of subcortical and
cortical brain MRI data. Dots are
color coded by gene set. Table 1
gives the statistical significance
of these correlations.
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critical role in the proliferation and differentiation of pro-
genitor cells and the formation of neural circuits during fetal
life and infancy. In adulthood, neurodevelopmental genes
also play an important role in synaptic and dendritic
development, myelination and adult neurogenesis [33].
Thirty nine of the 263 genes (hypergeometric enrichment p
value= 2.5 × 10−29) in the neurodevelopmental gene set
showed evidence of regulating adult neurogenesis based on
the Mammalian Adult Neurogenesis Gene Ontology data-
base [34]. The neurodevelopmental gene set did not remain
significantly associated with brain size differences asso-
ciated with ADHD when analyzed in our joint linear mixed
model, which is possibly due to the ontogenetic differences
between cortical thickness and cortical surface area.
Nevertheless, further examination into the role of neuro-
developmental genes on SBRV in ADHD is warranted
based on the result from our primary analysis and evidence
from the literature. Support for a role played by neurode-
velopmental genes in ADHD was also reported by Poel-
mans et al.’s [18] analysis of GWAS data. According to our
cell deconvolution analysis, brain regions showing smaller
volumes in ADHD during development also showed ele-
vated numbers of astrocytes and OPCs in adulthood. These
results imply that compensation for volumetric loss seen in
adulthood could be attributed not only to increases in the
number of neurons, but also to a compensatory response of
glial cells. Indeed, animal models of ADHD have shown
increased number of GFAP (astrocyte-specific marker)
positive cells in the spontaneous hypertensive rat model
[35] and astrocytosis in thalamus and cortex of Git1−/−

mice [36]. Importantly, white matter abnormalities have
been reported in ADHD [37]. Oligodendrocytes are the
main myelinating cells in the central nervous system [38].
Myelination accounts for ~40% of human brain parenchyma
and could be an important contributor to the differences in
brain volume [39]. Numerous reports link autophagy, cell
survival pathways, and upstream signaling cascades, such
as PI3K-mTOR, in the regulation of myelination [40].
Furthermore, one of the top GWAS signals for ADHD is
located on chromosome 1 in ST3GAL3, a sialyltransferase
gene linked with intellectual disability [41], which has also
been linked with cognitive deficits and demyelination in
genetically modified mice deficient in St3gal3 [42]. Addi-
tional genetic, neuroimaging, and experimental studies are
warranted to refine our understanding about mechanisms of
myelination in relation to brain volume differences in ADHD.

Taken together, we hypothesize that the upregulation of
neurodevelopment genes during adulthood might compen-
sate for reduced brain volumes early in life. Although we
need mechanistic studies to fully explain why the structural
brain deficits found in ADHD in youth attenuate in adult-
hood [2, 3, 43] and to define the biological substrate for the
brain maturation delay theory of ADHD [4], some clues areTa
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provided by existing genetic epidemiologic data. A review
of twin studies of ADHD show that, after accounting for
rater effects, the heritability of ADHD is stable across the
lifespan [44]. Mathematical modeling of twin data shows
that different gene sets are active at different stages of
development. This latter finding is consistent with the
finding that while the genetic correlation between childhood
and adult GWAS results is high (0.81), it is imperfect [45].
These findings suggest that the gene sets involved in the
onset and persistence of ADHD are not isomorphic. Future
studies should attempt to isolate those gene sets accounting
for persistence. We hypothesize that they will overlap with
those implicated in the present work.

Expression of the gene encoding TAOK2 had the stron-
gest correlation with SBRV for adults with ADHD. Spatial
expression profiles taken from the latest RNA-sequencing
data from Genotype-Tissue Expression version 7 [46] show
that TAOK2 is widely expressed in the central nervous
system, especially the cerebellum. TAOK2 is part of the
neurodevelopment gene set and has been shown to regulate
brain size and neural connectivity, and is present in the
16p11.2 microdeletion region, a rare structural variant that
has been associated with range of neurodevelopmental
phenotypes including autism, ADHD, and intellectual dis-
ability [47–51]. Deletion of Taok2 in mice was found to
lead to deficits in dendritic growth, synaptic formation,
cortical layering, and autism-associated phenotypes [51].

TAOK2 expression levels typically peak during prenatal
brain development, but levels remain fairly consistent
through development and maturation (Supplementary
Fig. 4). We postulate that the upregulation of TAOK2
affects brain development and ultimately results in smaller
brain regions seen in ADHD, but postmortem brain data
from ADHD patients are needed to confirm this hypothesis.

There is indirect support for the hypothesis that SBRV in
ADHD may have an environmental etiology. We found that
none of the biological pathways we identified as associated
with SBRV were associated with ADHD in gene-set analyses
of a very large GWAS of ADHD. The 27 genes that were
significantly correlated with SBRV in ADHD were not sig-
nificantly associated with ADHD as a gene set based on the
most current GWAS meta-analysis GWAS of ADHD [32]. It
is possible that our chosen gene sets could be significantly
impacted by trans-acting genetic variants related to ADHD,
but those signals are not detected by the gene-set enrichment
analysis approach used in our study. The gene sets chosen for
our current study could be refined through gene expression
analysis in ADHD patients, which increases the likelihood of
uncovering genes that are impacted by DNA variants related
to ADHD. Consistent with the idea that SBRV may have a
primarily environmental etiology, another study used linkage
disequilibrium score regression (LDSC) to show that,
although ADHD was genetically correlated with ICV (rg=
−0.23, p= 1.5 × 10−4), it was not genetically correlated with

Fig. 4 Brain cell abundances show correlations with gene-set
expression levels and brain size differences seen in ADHD. A
Correlation of gene-set expression levels from 22 brain regions with
abundances of brain cells estimated through deconvolution of tran-
scriptome profiles from bulk tissue samples of adult postmortem brain
samples in Allen Brain Atlas. This analysis was limited to gene sets
that showed a significant association from our primary analysis that

examined the correlation between gene-set expression levels and brain
size changes associated with ADHD. B Estimates of neuronal and
nonneuronal cell abundance based on deconvolution of Allen Brain
Atlas guided by scRNA-seq data from adult cortex samples show
correlations with brain size differences in ADHD. Associations
marked by asterisks (*) reached a Bonferroni-corrected significance
level of p < 0.05. OPC oligodendrocyte progenitor cells.
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subcortical brain structure volumes corrected for ICV [52].
Those findings indicate little or no overlap between the
common genetic variants that cause ADHD and those that
regulate subcortical SBRV. In contrast to these findings,
Grasby et al. [53] found that ADHD showed significant
genetic correlations with variation in cortical thickness of the
inferior parietal (rg= 0.22, SE= 0.069, p= 0.001), lingual
cortex (rg= 0.19, SE= 0.093, p= 0.039), and fusiform gyrus
(rg=−0.23, SE= 0.11, p= 0.033) based on LDSC, sug-
gesting that common risk variants could play a small role in
cortical SBRV in ADHD. The literature on rare variants in
ADHD is too sparse [54, 55] to assess what role they might
play in the disorder.

Given these weak genetic findings, we hypothesize that
environmental risks and their interactions with genes may
explain SBRV in ADHD, although this idea should be
viewed with caution until additional supportive data are
available. Given the observational nature of the ENIGMA
studies, we cannot firmly conclude that structural MRI
differences seen in ADHD are causal of the disorder, or
occur as a consequence of ADHD. A possible consequential
effect on brain size differences in medication use. Although
medication use was accounted for in the ENIGMA studies,
Hoogman et al. [3] found that psychostimulant use was
nominally significant associated with smaller surface area
among children with ADHD, suggesting that medications
may explain some of the brain size differences seen in
ADHD. In contrast, Hoogman et al. [3] found through
familial analysis that non-ADHD siblings had similar
structural MRI characteristics as their ADHD-affected sib-
lings, demonstrating that ADHD diagnosis was not neces-
sary for brain size differences to be observed, implying that
shared genetic or environmental factors play an intimate
role in brain size differences seen in ADHD. Alternatively,
it is possible that weak genetic correlations of ADHD with
structural brain phenotypes suggest that complex genetic
relationships mediate SBRV. This led us to propose the
following theoretical model of SBRV in ADHD which
currently promotes an environmental explanation, but
leaves open the potential role of genetic factors (illustrated
in Supplementary Fig. 5). Our model attributes the initial
etiology of SBRV to environmental events that threaten
neural integrity. Examples of relevant environmental risks
known to be associated with ADHD are pregnancy and
delivery complications, low birth weight, and maternal
alcohol consumption during pregnancy [56]. In our model,
these events lead to a cascade of events that cause: (a)
stressed neurons and astrocytes, (b) dysregulated autophagy
and apoptosis pathways, and (c) cell death. SBRV occurs
because some brain regions are better protected from this
cascade due to the degree to which they express genes in
pathways that regulate apoptosis and autophagy. Those

regions that are weakly protected suffer more cell loss than
other regions leading to SBRV. Some cases of ADHD and
ADHD-associated volumetric reductions persist into adult-
hood [2, 4, 43, 57]. Our results from the adult ADHD
analyses suggest that the association of the neurodevelop-
mental gene set with SBRV in adult ADHD may account
for this persistence. Because the neurodevelopmental gene
set is involved in neurogenesis, synaptic and dendritic
development, and myelination in adolescence and adult-
hood, we postulate that those brain regions that express
these pathways to a greater degree are more likely than
other brain regions to recover from SBRV.

There are limitations in our study that must be considered
when interpreting our results. Our work is motivated by our
theory of SBRV in ADHD, which is based on many
assumptions as described above. If our results are not robust
to violations of these assumptions our conclusion would be
called into questions. We cannot quantify this robustness
but can point out weaknesses as follows. We could only
provide indirect evidence of pathways potentially relevant
to SBRV in ADHD, as causal inferences could not be drawn
from the cross-sectional data used in our study. Ideally,
studies of gene expression in brain tissue from ADHD
patients could be used to confirm our results but no such
tissue resources exist. The use of neurotypical samples from
the Allen Brain Atlas is informative because it allows us to
infer biological pathways that might be affected by the
DNA variants associated with ADHD. The Allen Brain
Atlas postmortem brain transcriptome data were based on a
relatively small sample of normal adult brains; thus, our
results might not generalize to all populations. Additionally,
as the gene expression data and brain volume data are not
from the same sample, it is difficult to infer whether path-
ways are upregulated or downregulated. The small sample
size was prohibitive for assessing sex-specific profiles of
brain gene expression; however, sex-related differences are
unlikely to explain our findings since ENIGMA showed that
brain volumetric changes associated with ADHD were not
different between males and females. The use of summary
statistics from ENIGMA limited the ability to assess for the
familial effects; however, two subsets of ENIGMA-ADHD
samples show no difference in cortical regions and level of
ADHD symptoms in unaffected siblings compared to the
controls. Interhemispheric differences could not be
accounted for since Allen Brain Atlas assessed a single
(left) hemisphere, and the ENIGMA-ADHD working group
averaged volumetric differences in ADHD across right and
left hemispheres. Different brain structure nomenclatures
were used by the Allen Brain Atlas (neuroanatomical
ontology) and ENIGMA-ADHD (Desikan–Killian Atlas for
cortical parcellation), which could have potentially added
unwanted variation to our analysis.
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Despite these limitations, our work is beginning to clarify
potential causes of SBRV in ADHD and to provide
hypotheses for testing in future research. By identifying
specific cell types and biological pathways affected in
ADHD, we provide guidance for future in vitro studies to
test our theoretical model. Such studies may uncover
genetic or environmental factors that influence SBRV and
lead to cellular models that can be used to develop new
medications for the disorder.
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