Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cortical volume abnormalities in posttraumatic stress disorder: an ENIGMA-psychiatric genomics consortium PTSD workgroup mega-analysis

This article has been updated

Abstract

Studies of posttraumatic stress disorder (PTSD) report volume abnormalities in multiple regions of the cerebral cortex. However, findings for many regions, particularly regions outside commonly studied emotion-related prefrontal, insular, and limbic regions, are inconsistent and tentative. Also, few studies address the possibility that PTSD abnormalities may be confounded by comorbid depression. A mega-analysis investigating all cortical regions in a large sample of PTSD and control subjects can potentially provide new insight into these issues. Given this perspective, our group aggregated regional volumes data of 68 cortical regions across both hemispheres from 1379 PTSD patients to 2192 controls without PTSD after data were processed by 32 international laboratories using ENIGMA standardized procedures. We examined whether regional cortical volumes were different in PTSD vs. controls, were associated with posttraumatic stress symptom (PTSS) severity, or were affected by comorbid depression. Volumes of left and right lateral orbitofrontal gyri (LOFG), left superior temporal gyrus, and right insular, lingual and superior parietal gyri were significantly smaller, on average, in PTSD patients than controls (standardized coefficients = −0.111 to −0.068, FDR corrected P values < 0.039) and were significantly negatively correlated with PTSS severity. After adjusting for depression symptoms, the PTSD findings in left and right LOFG remained significant. These findings indicate that cortical volumes in PTSD patients are smaller in prefrontal regulatory regions, as well as in broader emotion and sensory processing cortical regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cortical volume differences between PTSD and control subjects.

Similar content being viewed by others

Change history

  • 21 November 2022

    For Author K. Luan Phan, given name and family name tagging is updated.

References

  1. Kessler RC, Aguilar-Gaxiola S, Alonso J, Benjet C, Bromet EJ, Cardoso G, et al. Trauma and PTSD in the WHO World Mental Health Surveys. Eur J Psychotraumatol. 2017;8(sup5):1353383.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rytwinski NK, Scur MD, Feeny NC, Youngstrom EA. The co-occurrence of major depressive disorder among individuals with posttraumatic stress disorder: a meta-analysis. J Trauma Stress. 2013;26:299–309.

    Article  PubMed  Google Scholar 

  3. Spinhoven P, Penninx BW, van Hemert AM, de Rooij M, Elzinga BM. Comorbidity of PTSD in anxiety and depressive disorders: prevalence and shared risk factors. Child Abus Negl. 2014;38:1320–30.

    Article  Google Scholar 

  4. Kessler RC. Posttraumatic stress disorder: the burden to the individual and to society. J Clin Psychiatry. 2000;61(Suppl 5):4–12.

    PubMed  Google Scholar 

  5. Andrews G, Issakidis C, Sanderson K, Corry J, Lapsley H. Utilising survey data to inform public policy: comparison of the cost-effectiveness of treatment of ten mental disorders. Br J Psychiatry. 2004;184:526–33.

    Article  PubMed  Google Scholar 

  6. Liberzon I, Abelson JL. Context Processing and the Neurobiology of Post-Traumatic Stress Disorder. Neuron. 2016;92:14–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Logue MW, van Rooij SJH, Dennis EL, Davis SL, Hayes JP, Stevens JS, et al. Smaller Hippocampal Volume in Posttraumatic Stress Disorder: a Multisite ENIGMA-PGC Study: Subcortical Volumetry Results From Posttraumatic Stress Disorder Consortia. Biol Psychiatry. 2018;83:244–53.

    Article  PubMed  Google Scholar 

  8. Chao L, Weiner M, Neylan T. Regional cerebral volumes in veterans with current versus remitted posttraumatic stress disorder. Psychiatry Res. 2013;213:193–201.

    Article  PubMed  Google Scholar 

  9. Rauch SL, Shin LM, Segal E, Pitman RK, Carson MA, McMullin K, et al. Selectively reduced regional cortical volumes in post-traumatic stress disorder. Neuroreport. 2003;14:913–6.

    PubMed  Google Scholar 

  10. Kitayama N, Quinn S, Bremner JD. Smaller volume of anterior cingulate cortex in abuse-elated posttraumatic stress disorder. J Affect Disord. 2006;90:171–4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Levy-Gigi E, Szabo C, Kelemen O, Keri S. Association among clinical response, hippocampal volume, and FKBP5 gene expression in individuals with posttraumatic stress disorder receiving cognitive behavioral therapy. Biol Psychiatry. 2013;74:793–800.

    Article  CAS  PubMed  Google Scholar 

  12. Morey RA, Haswell CC, Hooper SR, De Bellis MD. Amygdala, Hippocampus, and Ventral Medial Prefrontal Cortex Volumes Differ in Maltreated Youth with and without Chronic Posttraumatic Stress Disorder. Neuropsychopharmacology. 2016;41:791–801.

    Article  PubMed  Google Scholar 

  13. Eckart C, Stoppel C, Kaufmann J, Tempelmann C, Hinrichs H, Elbert T, et al. Structural alterations in lateral prefrontal, parietal and posterior midline regions of men with chronic posttraumatic stress disorder. J Psychiatry Neurosci. 2011;36:176–86.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Richert KA, Carrion VG, Karchemskiy A, Reiss AL. Regional differences of the prefrontal cortex in pediatric PTSD: an MRI study. Depress Anxiety. 2006;23:17–25.

    Article  PubMed  Google Scholar 

  15. Starcevic A, Postic S, Radojicic Z, Starcevic B, Milovanovic S, Ilankovic A et al. Volumetric Analysis of Amygdala, Hippocampus, and Prefrontal Cortex in Therapy-Naive PTSD Participants. Biomed Res Int. 2014;2014: https://doi.org/10.1155/2014/968495.

  16. Lindauer RJ, Vlieger EJ, Jalink M, Olff M, Carlier IV, Majoie CB, et al. Effects of psychotherapy on hippocampal volume in out-patients with post-traumatic stress disorder: a MRI investigation. Psychol Med. 2005;35:1421–31.

    Article  PubMed  Google Scholar 

  17. Woodward SH, Schaer M, Kaloupek DG, Cediel L, Eliez S. Smaller Global and Regional Cortical Volume in Combat-Related Posttraumatic Stress Disorder. Arch Gen Psychiatry. 2009;66:1373–82.

    Article  PubMed  Google Scholar 

  18. De Bellis MD, Keshavan MS, Frustaci K, Shifflett H, Iyengar S, Beers SR, et al. Superior temporal gyrus volumes in maltreated children and adolescents with PTSD. Biol Psychiatry. 2002;51:544–52.

    Article  PubMed  Google Scholar 

  19. Liberzon I, Wang X, Xie H. Brain structural abnormalities in posttraumatic stress disorder and relations with sleeping problems. In: Vermetten E, Germain A, Neylan TC, editors. Sleep and combat-related post traumatic stress disorder. New York, NY, USA: Springer-Verlag New York; 2018. p. 145–68.

  20. O’Doherty DCM, Chitty KM, Saddiqui S, Bennett MR, Lagopoulos J. A systematic review and meta-analysis of magnetic resonance imaging measurement of structural volumes in posttraumatic stress disorder. Psychiatry Res Neuroimaging. 2015;232:1–33.

    Article  Google Scholar 

  21. Karl A, Schaefer M, Malta LS, Dörfel D, Rohleder N, Werner A. A meta-analysis of structural brain abnormalities in PTSD. Neurosci Biobehav Rev. 2006;30:1004–31.

    Article  PubMed  Google Scholar 

  22. Hedges DW, Woon FL. Premorbid brain volume estimates and reduced total brain volume in adults exposed to trauma with or without posttraumatic stress disorder: a meta-analysis. Cogn Behav Neurol. 2010;23:124–9.

    Article  PubMed  Google Scholar 

  23. Milani AC, Hoffmann EV, Fossaluza V, Jackowski AP, Mello MF. Does pediatric post-traumatic stress disorder alter the brain? Systematic review and meta-analysis of structural and functional magnetic resonance imaging studies. Psychiatry Clin Neurosci. 2017;71:154–69.

    Article  PubMed  Google Scholar 

  24. Meng Y, Qiu C, Zhu H, Lama S, Lui S, Gong Q, et al. Anatomical deficits in adult posttraumatic stress disorder: a meta-analysis of voxel-based morphometry studies. Behav Brain Res. 2014;270:307–15.

    Article  PubMed  Google Scholar 

  25. Bromis K, Calem M, Reinders A, Williams SCR, Kempton MJ. Meta-analysis of 89 structural mri studies in posttraumatic stress disorder and comparison with major depressive disorder. Am J Psychiatry. 2018;175:989–98.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Meng L, Jiang J, Jin C, Liu J, Zhao Y, Wang W et al. Trauma-specific Grey Matter Alterations in PTSD. Sci Rep. 2016;6: https://doi.org/10.1038/srep33748.

  27. Li L, Wu M, Liao Y, Ouyang L, Du M, Lei D, et al. Grey matter reduction associated with posttraumatic stress disorder and traumatic stress. Neurosci Biobehav Rev. 2014;43:163–72.

    Article  PubMed  Google Scholar 

  28. Kuhn S, Gallinat J. Gray matter correlates of posttraumatic stress disorder: a quantitative meta-analysis. Biol Psychiatry. 2013;73:70–4.

    Article  PubMed  Google Scholar 

  29. Salmond CH, Ashburner J, Vargha-Khadem F, Connelly A, Gadian DG, Friston KJ. Distributional Assumptions in Voxel-Based Morphometry. Neuroimage. 2002;17:1027–30.

    Article  CAS  PubMed  Google Scholar 

  30. Mechelli A, Price CJ, Friston KJ, Ashburner J. Voxel-based morphometry of the human brain: methods and applications. Curr Med Imaging Rev. 2005;1:1–9.

    Article  Google Scholar 

  31. Arnone D, McIntosh AM, Ebmeier KP, Munafo MR, Anderson IM. Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. Eur Neuropsychopharmacol. 2012;22:1–16.

    Article  CAS  PubMed  Google Scholar 

  32. Sexton CE, Mackay CE, Ebmeier KP. A Systematic Review and Meta-Analysis of Magnetic Resonance Imaging Studies in Late-Life Depression. Am J Geriatr Psychiatry. 2013;21:184–95.

    Article  PubMed  Google Scholar 

  33. Kempton MJ, Salvador Z, Munafo MR, Geddes JR, Simmons A, Frangou S, et al. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry. 2011;68:675–90.

    Article  PubMed  Google Scholar 

  34. Du MY, Wu QZ, Yue Q, Li J, Liao Y, Kuang WH, et al. Voxelwise meta-analysis of gray matter reduction in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2012;36:11–6.

    Article  PubMed  Google Scholar 

  35. Schmaal L, Hibar DP, Samann PG, Hall GB, Baune BT, Jahanshad N, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry. 2017;22:900–9.

    Article  CAS  PubMed  Google Scholar 

  36. van Erp TGM, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, et al. Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biol Psychiatry. 2018;84:644–54.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry. 2018;23:932–42.

    Article  CAS  PubMed  Google Scholar 

  38. Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA, Renteria ME, et al. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 2014;8:153–82.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Beelen C, Phan TV, Wouters J, Ghesquiere P, Vandermosten M. Investigating the Added Value of FreeSurfer’s Manual Editing Procedure for the Study of the Reading Network in a Pediatric Population. Front Hum Neurosci. 2020;14:143.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ghosh SS, Kakunoori S, Augustinack J, Nieto-Castanon A, Kovelman I, Gaab N, et al. Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 years of age. Neuroimage. 2010;53:85–93.

    Article  PubMed  Google Scholar 

  41. Shalev AY, Gevonden M, Ratanatharathorn A, Laska E, van der Mei WF, Qi W, et al. Estimating the risk of PTSD in recent trauma survivors: results of the International Consortium to Predict PTSD (ICPP). World Psychiatry. 2019;18:77–87.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lorah J. Effect size measures for multilevel models: definition, interpretation, and TIMSS example. Large-scale Assess Educ. 2018;6:8.

    Article  Google Scholar 

  43. Narum SR. Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet. 2006;7:783–7.

    Article  CAS  Google Scholar 

  44. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. J R Stat Soc: Ser B (Methodol). 1995;57:289–300.

    Google Scholar 

  45. Hengartner MP, Lehmann SN. Why Psychiatric Research Must Abandon Traditional Diagnostic Classification and Adopt a Fully Dimensional Scope: Two Solutions to a Persistent Problem. Front Psychiatry. 2017;8:101.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kotov R, Krueger RF, Watson D, Achenbach TM, Althoff RR, Bagby RM, et al. The Hierarchical Taxonomy of Psychopathology (HiTOP): A dimensional alternative to traditional nosologies. J Abnorm Psychol. 2017;126:454–77.

    Article  PubMed  Google Scholar 

  47. Sekiguchi A, Sugiura M, Taki Y, Kotozaki Y, Nouchi R, Takeuchi H, et al. Brain structural changes as vulnerability factors and acquired signs of post-earthquake stress. Mol Psychiatry. 2012;18:618–23.

    Article  PubMed  Google Scholar 

  48. Tan L, Zhang L, Qi R, Lu G, Li L, Liu J, et al. Brain structure in post-traumatic stress disorder: a voxel-based morphometry analysis. Neural Regen Res. 2013;8:2405–14.

    PubMed  PubMed Central  Google Scholar 

  49. Miller GA, Chapman JP. Misunderstanding analysis of covariance. J Abnorm Psychol. 2001;110:40–8.

    Article  CAS  PubMed  Google Scholar 

  50. Fonzo GA, Flagan TM, Sullivan S, Allard CB, Grimes EM, Simmons AN, et al. Neural functional and structural correlates of childhood maltreatment in women with intimate-partner violence-related posttraumatic stress disorder. Psychiatry Res. 2013;211:93–103.

    Article  PubMed  Google Scholar 

  51. Bremner JD, Vythilingam M, Vermetten E, Southwick SM, McGlashan T, Nazeer A, et al. MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. Am J Psychiatry. 2003;160:924–32.

    Article  PubMed  Google Scholar 

  52. Hooker CI, Knight RT. The role of lateral orbitofrontal cortex in the inhibitory control of emotion. In: Zald D, Rauch S, editors. The orbitofrontal cortex. New York: Oxford University Press, New York; 2006. p. 307–24.

  53. Aupperle RL, Allard CB, Grimes EM, Simmons AN, Flagan T, Behrooznia M, et al. Dorsolateral Prefrontal Cortex Activation During Emotional Anticipation and Neuropsychological Performance in Posttraumatic Stress Disorder Dorsolateral Prefrontal Cortex Activation in PTSD. JAMA Psychiatry. 2012;69:360–71.

    Google Scholar 

  54. Rule RR, Shimamura AP, Knight RT. Orbitofrontal cortex and dynamic filtering of emotional stimuli. Cogn Affect Behav Neurosci. 2002;2:264–70.

    Article  PubMed  Google Scholar 

  55. Kasai K, Yamasue H, Gilbertson MW, Shenton ME, Rauch SL, Pitman RK. Evidence for Acquired Pregenual Anterior Cingulate Gray Matter Loss from a Twin Study of Combat-Related Posttraumatic Stress Disorder. Biol Psychiatry. 2008;63:550–6.

    Article  PubMed  Google Scholar 

  56. Herringa R, Phillips M, Almeida J, Insana S, Germain A. Post-traumatic stress symptoms correlate with smaller subgenual cingulate, caudate, and insula volumes in unmedicated combat veterans. Psychiatry Res. 2012;203:139–45.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci. 2012;13:769–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends Neurosci. 1992;15:20–5.

    Article  CAS  PubMed  Google Scholar 

  59. Kravitz DJ, Saleem KS, Baker CI, Mishkin M. A new neural framework for visuospatial processing. Nat Rev Neurosci. 2011;12:217–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gao C, Weber CE, Shinkareva SV. The brain basis of audiovisual affective processing: Evidence from a coordinate-based activation likelihood estimation meta-analysis. Cortex. 2019;120:66–77.

    Article  PubMed  Google Scholar 

  61. Deen B, Koldewyn K, Kanwisher N, Saxe R. Functional Organization of Social Perception and Cognition in the Superior Temporal Sulcus. Cereb Cortex. 2015;25:4596–609.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Berman Z, Assaf Y, Tarrasch R, Joel D. Assault-related self-blame and its association with PTSD in sexually assaulted women: an MRI inquiry. Soc Cogn Affect Neurosci. 2018;13:775–84.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Brewin CR, Gregory JD, Lipton M, Burgess N. Intrusive images in psychological disorders: characteristics, neural mechanisms, and treatment implications. Psychol Rev. 2010;117:210–32.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kroes MC, Whalley MG, Rugg MD, Brewin CR. Association between flashbacks and structural brain abnormalities in posttraumatic stress disorder. Eur Psychiatry. 2011;26:525–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The individual cohorts were supported by following grants: 1R21MH102634, 5U01AA021681-08, Academic Medical Center Research Council (110614), Anonymous Women’s Health Fund, Barlow Family Fund, BOF 01J05415, CDMRP W81XWH-08–2–0038, Center for Brain and Behavior Research Pilot Grant, CX001600 VA CDA, Dana Foundation, DoD W81XWH08-2-0159, DoD W81XWH-10-1-0925, DoD W81XWH-12-2-0012, F32MH109274, German Research Foundation (DA 1222/4-1 and WA 1539/8-2), German Research Society (Deutsche Forschungsgemeinschaft, DFG; SFB/TRR 58: C06, C07), HD071982, HD085850, K01MH118428, K23MH090366-01, K24DA028773, K24MH71434, K99NS096116, Kasparian Fund, L30MH114379, M01RR00039, MH071537, MH098212, MH101380, MJFF 14848, NARSAD- Young Investigator Grant, National Institute of Child Health and Human Development (P30-HD003352), NCATS (CTSA)- Yale Center for Clinical Investigation, The Netherlands Organization for Health Research and Development (40-00812-98-10041), NHMRC Program Grant (1073041), NIAAA (P50)- Center for the Translational Neuroscience in Alcohol, P30HD003352, P41EB015922, R01AA12479, R01AG059874, R01MH043454, R01MH096987, R01MH103291, R01MH105355, R01MH105535, R01MH110483, R01MH111671, R01MH116147, R01MH117601, R01MH61744, R01MH63407, R21MH097196, R21MH098198, R21MH112956, R56AG058854, South African Medical Research Council, South Dakota Governor’s Research Center Grant, T32MH018931, Trauma Scholars Fund, U54EB020403, UCI-LBVA Biumvirate Grant, UL1TR000153, UL1TR000454, The University of Wisconsin Institute for Clinical and Translational Research, VA CSR&D 1IK2CX001680, VA Merit Review Program, VA National Center for PTSD, VA RR&D1IK2RX000709, VA RR&D1K1RX002325, VA RR&D1K2RX002922, VA RR&DI01RX000622, VISN6 MIRECC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang.

Ethics declarations

Conflict of interest

Dr CGA has served as a consultant, speaker and/or on advisory boards for FSV7, Lundbeck, Psilocybin Labs, Genentech and Janssen, and editor of Chronic Stress for Sage Publications, Inc.; he has filed a patent for using mTOR inhibitors to augment the effects of antidepressants (filed on August 20, 2018). Dr RJD is the founder and president of, and serves on the board of directors for, the non-profit organization Healthy Minds Innovations, Inc. Dr NJ received partial research support from Biogen, Inc. (Boston, USA) for research unrelated to the content of this paper. Dr JHK is a consultant for AbbVie, Inc., Amgen, Astellas Pharma Global Development, Inc., AstraZeneca Pharmaceuticals, Biomedisyn Corporation, Bristol-Myers Squibb, Eli Lilly and Company, Euthymics Bioscience, Inc., Neurovance, Inc., FORUM Pharmaceuticals, Janssen Research & Development, Lundbeck Research USA, Novartis Pharma AG, Otsuka America Pharmaceutical, Inc., Sage Therapeutics, Inc., Sunovion Pharmaceuticals, Inc., and Takeda Industries; is on the Scientific Advisory Board for Lohocla Research Corporation, Mnemosyne Pharmaceuticals, Inc., Naurex, Inc., and Pfizer; is a stockholder in Biohaven Pharmaceuticals; holds stock options in Mnemosyne Pharmaceuticals, Inc.; holds patents for Dopamine and Noradrenergic Reuptake Inhibitors in Treatment of Schizophrenia, US Patent No. 5,447,948 (issued September 5, 1995), and Glutamate Modulating Agents in the Treatment of Mental Disorders, U.S. Patent No. 8,778,979 (issued July 15, 2014); filed a patent for Intranasal Administration of Ketamine to Treat Depression. U.S. Application No. 14/197,767 (filed on March 5, 2014); filed US application or Patent Cooperation Treaty international application No. 14/306,382 (filed on June 17, 2014); and filed a patent for using mTOR inhibitors to augment the effects of antidepressants (filed on August 20, 2018). Dr PMT received partial research support from Biogen, Inc. (Boston, USA) for research unrelated to the topic of this paper. No other authors reported conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xie, H., Chen, T. et al. Cortical volume abnormalities in posttraumatic stress disorder: an ENIGMA-psychiatric genomics consortium PTSD workgroup mega-analysis. Mol Psychiatry 26, 4331–4343 (2021). https://doi.org/10.1038/s41380-020-00967-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00967-1

This article is cited by

Search

Quick links