Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

miR-323a regulates ERBB4 and is involved in depression

Abstract

Major depressive disorder (MDD) is a complex and debilitating illness whose etiology remains unclear. Small RNA molecules, such as micro RNAs (miRNAs) have been implicated in MDD, where they display differential expression in the brain and the periphery. In this study, we quantified miRNA expression by small RNA sequencing in the anterior cingulate cortex and habenula of individuals with MDD and psychiatrically-healthy controls. Thirty-two miRNAs showed significantly correlated expression between the two regions (False Discovery Rate < 0.05), of which four, miR-204-5p, miR-320b, miR-323a-3p, and miR-331-3p, displayed upregulated expression in MDD. We assessed the expression of predicted target genes of differentially expressed miRNAs in the brain, and found that the expression of erb-b2 receptor tyrosine kinase 4 (ERBB4), a gene encoding a neuregulin receptor, was downregulated in both regions, and was influenced by miR-323a-3p in vitro. Finally, we assessed the effects of manipulating miRNA expression in the mouse ACC on anxiety- and depressive-like behaviors. Mice in which miR-323-3p was overexpressed or knocked-down displayed increased and decreased emotionality, respectively. Additionally, these mice displayed significantly downregulated and upregulated expression of Erbb4, respectively. Overall, our findings indicate the importance of brain miRNAs in the pathology of MDD, and emphasize the involvement of miR-323a-3p and ERBB4 in this phenotype. Future studies further characterizing miR-323a-3p and neuregulin signaling in depression are warranted.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: miRNAs displaying differential expression in both brain regions.
Fig. 2: Overlapping gene targets of miR-204-5p, miR-320b, miR-323a-3p, and miR-331-3p.
Fig. 3: Effects of miRNA treatment on ERBB4 expression in HEK293 cells.
Fig. 4: Manipulation of miR-323-3p in the mouse ACC modulates anxiety- and depression-like behaviors.
Fig. 5: Comparison of Human and Mouse miR-323 binding sites in the 3′UTR of ERBB4.

Similar content being viewed by others

References

  1. Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1789–858.

    Google Scholar 

  2. Lopez JP, Lim R, Cruceanu C, Crapper L, Fasano C, Labonte B, et al. miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat Med. 2014;20:764–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fries GR, Carvalho AF, Quevedo J. The miRNome of bipolar disorder. J Affect Disord. 2018;233:110–6.

    CAS  PubMed  Google Scholar 

  4. Liu Y, Chang X, Hahn CG, Gur RE, Sleiman PAM, Hakonarson H. Non-coding RNA dysregulation in the amygdala region of schizophrenia patients contributes to the pathogenesis of the disease. Transl Psychiatry. 2018;8:44.

    PubMed  PubMed Central  Google Scholar 

  5. Bartel DP. Metazoan MicroRNAs. Cell. 2018;173:20–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Issler O, Chen A. Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci. 2015;16:201–12.

    CAS  PubMed  Google Scholar 

  7. Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016;44:3865–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pons-Espinal M, de Luca E, Marzi MJ, Beckervordersandforth R, Armirotti A, Nicassio F, et al. Synergic functions of miRNAs determine neuronal fate of adult neural stem cells. Stem Cell Rep. 2017;8:1046–61.

    CAS  Google Scholar 

  9. Shin J, Shin Y, Oh SM, Yang H, Yu WJ, Lee JP, et al. MiR-29b controls fetal mouse neurogenesis by regulating ICAT-mediated Wnt/beta-catenin signaling. Cell Death Dis. 2014;5:e1473.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wei CW, Luo T, Zou SS, Wu AS. Research progress on the roles of microRNAs in governing synaptic plasticity, learning and memory. Life Sci. 2017;188:118–22.

    CAS  PubMed  Google Scholar 

  11. Dwivedi Y. MicroRNAs in depression and suicide: recent insights and future perspectives. J Affect Disord. 2018;240:146–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Smalheiser NR, Lugli G, Rizavi HS, Torvik VI, Turecki G, Dwivedi Y. MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS ONE. 2012;7:e33201.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Smalheiser NR, Lugli G, Zhang H, Rizavi H, Cook EH, Dwivedi Y. Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects. PLoS ONE. 2014;9:e86469.

    PubMed  PubMed Central  Google Scholar 

  14. Pantazatos SP, Huang YY, Rosoklija GB, Dwork AJ, Arango V, Mann JJ. Whole-transcriptome brain expression and exon-usage profiling in major depression and suicide: evidence for altered glial, endothelial and ATPase activity. Mol Psychiatry. 2017;22:760–73.

    CAS  PubMed  Google Scholar 

  15. Roy B, Wang Q, Palkovits M, Faludi G, Dwivedi Y. Altered miRNA expression network in locus coeruleus of depressed suicide subjects. Sci Rep. 2017;7:4387.

    PubMed  PubMed Central  Google Scholar 

  16. Forero DA, Guio-Vega GP, Gonzalez-Giraldo Y. A comprehensive regional analysis of genome-wide expression profiles for major depressive disorder. J Affect Disord. 2017;218:86–92.

    PubMed  Google Scholar 

  17. Sambataro F, Doerig N, Hanggi J, Wolf RC, Brakowski J, Holtforth MG, et al. Anterior cingulate volume predicts response to psychotherapy and functional connectivity with the inferior parietal cortex in major depressive disorder. Eur Neuropsychopharmacol. 2018;28:138–48.

    CAS  PubMed  Google Scholar 

  18. Liu J, Xu X, Luo Q, Luo Y, Chen Y, Lui S, et al. Brain grey matter volume alterations associated with antidepressant response in major depressive disorder. Sci Rep. 2017;7:10464.

    PubMed  PubMed Central  Google Scholar 

  19. Dandekar MP, Fenoy AJ, Carvalho AF, Soares JC, Quevedo J. Deep brain stimulation for treatment-resistant depression: an integrative review of preclinical and clinical findings and translational implications. Mol Psychiatry. 2018;23:1094–112.

    CAS  PubMed  Google Scholar 

  20. Browne CA, Hammack R, Lucki I. Dysregulation of the Lateral Habenula in major depressive disorder. Front Synaptic Neurosci. 2018;10:46.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang L, Xi Y, Peng Y, Yang Y, Huang X, Fu Y, et al. A visual circuit related to Habenula underlies the antidepressive effects of light therapy. Neuron. 2019;102:128–42.

    CAS  PubMed  Google Scholar 

  22. Gosnell SN, Curtis KN, Velasquez K, Fowler JC, Madan A, Goodman W, et al. Habenular connectivity may predict treatment response in depressed psychiatric inpatients. J Affect Disord. 2019;242:211–9.

    PubMed  Google Scholar 

  23. Dumais A, Lesage AD, Alda M, Rouleau G, Dumont M, Chawky N, et al. Risk factors for suicide completion in major depression: a case-control study of impulsive and aggressive behaviors in men. Am J Psychiatry. 2005;162:2116–24.

    CAS  PubMed  Google Scholar 

  24. Song L, Florea L, Langmead B. Lighter: fast and memory-efficient sequencing error correction without counting. Genome Biol. 2014;15:509.

    PubMed  PubMed Central  Google Scholar 

  25. Chen CJ, Servant N, Toedling J, Sarazin A, Marchais A, Duvernois-Berthet E, et al. ncPRO-seq: a tool for annotation and profiling of ncRNAs in sRNA-seq data. Bioinformatics. 2012;28:3147–9.

    CAS  PubMed  Google Scholar 

  26. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73.

    CAS  PubMed  Google Scholar 

  27. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Google Scholar 

  28. Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12:697.

    CAS  PubMed  Google Scholar 

  29. Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11:R90.

    PubMed  PubMed Central  Google Scholar 

  30. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126:1203–17.

    CAS  PubMed  Google Scholar 

  31. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA. 2004;10:1507–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    CAS  PubMed  Google Scholar 

  33. Schroeder M, Drori Y, Ben-Efraim YJ, Chen A. Hypothalamic miR-219 regulates individual metabolic differences in response to diet-induced weight cycling. Mol Metab. 2018;9:176–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4:721–6.

    CAS  PubMed  Google Scholar 

  35. Guilloux JP, Seney M, Edgar N, Sibille E. Integrated behavioral z-scoring increases the sensitivity and reliability of behavioral phenotyping in mice: relevance to emotionality and sex. J Neurosci Methods. 2011;197:21–31.

    PubMed  PubMed Central  Google Scholar 

  36. Clemm von Hohenberg C, Weber-Fahr W, Lebhardt P, Ravi N, Braun U, Gass N, et al. Lateral habenula perturbation reduces default-mode network connectivity in a rat model of depression. Transl Psychiatry. 2018;8:68.

    PubMed  PubMed Central  Google Scholar 

  37. Kawai T, Yamada H, Sato N, Takada M, Matsumoto M. Roles of the Lateral Habenula and anterior cingulate cortex in negative outcome monitoring and behavioral adjustment in nonhuman primates. Neuron. 2015;88:792–804.

    CAS  PubMed  Google Scholar 

  38. Chiba T, Kayahara T, Nakano K. Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res. 2001;888:83–101.

    CAS  PubMed  Google Scholar 

  39. Pichardo-Casas I, Goff LA, Swerdel MR, Athie A, Davila J, Ramos-Brossier M, et al. Expression profiling of synaptic microRNAs from the adult rat brain identifies regional differences and seizure-induced dynamic modulation. Brain Res. 2012;1436:20–33.

    CAS  PubMed  Google Scholar 

  40. Zucchi FC, Yao Y, Ward ID, Ilnytskyy Y, Olson DM, Benzies K, et al. Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS ONE. 2013;8:e56967.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sheinerman KS, Tsivinsky VG, Crawford F, Mullan MJ, Abdullah L, Umansky SR. Plasma microRNA biomarkers for detection of mild cognitive impairment. Aging. 2012;4:590–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sheinerman KS, Tsivinsky VG, Abdullah L, Crawford F, Umansky SR. Plasma microRNA biomarkers for detection of mild cognitive impairment: biomarker validation study. Aging. 2013;5:925–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang T, Liu Y, Lv M, Xing Q, Zhang Z, He X, et al. miR-323-3p regulates the steroidogenesis and cell apoptosis in polycystic ovary syndrome (PCOS) by targeting IGF-1. Gene. 2019;683:87–100.

    CAS  PubMed  Google Scholar 

  44. Gao Q, Zheng J. microRNA-323 upregulation promotes prostate cancer growth and docetaxel resistance by repressing p73. Biomed Pharmacother. 2018;97:528–34.

    CAS  PubMed  Google Scholar 

  45. Yang L, Xiong Y, Hu XF, Du YH. MicroRNA-323 regulates ischemia/reperfusion injury-induced neuronal cell death by targeting BRI3. Int J Clin Exp Pathol. 2015;8:10725–33.

    PubMed  PubMed Central  Google Scholar 

  46. Yi YH, Sun XS, Qin JM, Zhao QH, Liao WP, Long YS. Experimental identification of microRNA targets on the 3’ untranslated region of human FMR1 gene. J Neurosci Methods. 2010;190:34–8.

    CAS  PubMed  Google Scholar 

  47. Benetatos L, Hatzimichael E, Londin E, Vartholomatos G, Loher P, Rigoutsos I, et al. The microRNAs within the DLK1-DIO3 genomic region: involvement in disease pathogenesis. Cell Mol Life Sci. 2013;70:795–814.

    CAS  PubMed  Google Scholar 

  48. Ferron SR, Charalambous M, Radford E, McEwen K, Wildner H, Hind E, et al. Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature. 2011;475:381–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature. 2010;465:175–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shahar T, Granit A, Zrihan D, Canello T, Charbit H, Einstein O, et al. Expression level of miRNAs on chromosome 14q32.31 region correlates with tumor aggressiveness and survival of glioblastoma patients. J Neurooncol. 2016;130:413–22.

    CAS  PubMed  Google Scholar 

  51. Ravanidis S, Bougea A, Papagiannakis N, Koros C, Simitsi AM, Pachi I, et al. Validation of differentially expressed brain-enriched microRNAs in the plasma of PD patients. Ann Clin Transl Neurol. 2020;7:1594–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Niciu MJ, Ionescu DF, Mathews DC, Richards EM, Zarate CA Jr. Second messenger/signal transduction pathways in major mood disorders: moving from membrane to mechanism of action, part I: major depressive disorder. CNS Spectr. 2013;18:231–41.

    PubMed  PubMed Central  Google Scholar 

  53. Goes FS, Rongione M, Chen YC, Karchin R, Elhaik E, Bipolar Genome S, et al. Exonic DNA sequencing of ERBB4 in bipolar disorder. PLoS ONE. 2011;6:e20242.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chung DW, Chung Y, Bazmi HH, Lewis DA. Altered ErbB4 splicing and cortical parvalbumin interneuron dysfunction in schizophrenia and mood disorders. Neuropsychopharmacology. 2018;43:2478–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chong VZ, Thompson M, Beltaifa S, Webster MJ, Law AJ, Weickert CS. Elevated neuregulin-1 and ErbB4 protein in the prefrontal cortex of schizophrenic patients. Schizophr Res. 2008;100:270–80.

    PubMed  PubMed Central  Google Scholar 

  56. Bi LL, Sun XD, Zhang J, Lu YS, Chen YH, Wang J, et al. Amygdala NRG1-ErbB4 is critical for the modulation of anxiety-like behaviors. Neuropsychopharmacology. 2015;40:974–86.

    CAS  PubMed  Google Scholar 

  57. Dang R, Cai H, Zhang L, Liang D, Lv C, Guo Y, et al. Dysregulation of Neuregulin-1/ErbB signaling in the prefrontal cortex and hippocampus of rats exposed to chronic unpredictable mild stress. Physiol Behav. 2016;154:145–50.

    CAS  PubMed  Google Scholar 

  58. Wang N, Zhang GF, Liu XY, Sun HL, Wang XM, Qiu LL, et al. Downregulation of neuregulin 1-ErbB4 signaling in parvalbumin interneurons in the rat brain may contribute to the antidepressant properties of ketamine. J Mol Neurosci. 2014;54:211–8.

    CAS  PubMed  Google Scholar 

  59. Su LN, Song XQ, Xue ZX, Zheng CQ, Yin HF, Wei HP. Network analysis of microRNAs, transcription factors, and target genes involved in axon regeneration. J Zhejiang Univ Sci B. 2018;19:293–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mohammed CP, Rhee H, Phee BK, Kim K, Kim HJ, Lee H, et al. miR-204 downregulates EphB2 in aging mouse hippocampal neurons. Aging Cell. 2016;15:380–8.

    PubMed  Google Scholar 

  61. Lepko T, Pusch M, Muller T, Schulte D, Ehses J, Kiebler M, et al. Choroid plexus-derived miR-204 regulates the number of quiescent neural stem cells in the adult brain. EMBO J. 2019;38:e100481.

    PubMed  PubMed Central  Google Scholar 

  62. Xiang L, Ren Y, Li X, Zhao W, Song Y. MicroRNA-204 suppresses epileptiform discharges through regulating TrkB-ERK1/2-CREB signaling in cultured hippocampal neurons. Brain Res. 2016;1639:99–107.

    CAS  PubMed  Google Scholar 

  63. Shi Y, Chen X, Xi B, Yu X, Ouyang J, Han C, et al. SNP rs3202538 in 3’UTR region of ErbB3 regulated by miR-204 and miR-211 promote gastric cancer development in Chinese population. Cancer Cell Int. 2017;17:81.

    PubMed  PubMed Central  Google Scholar 

  64. Cammaerts S, Strazisar M, Smets B, Weckhuysen S, Nordin A, De Jonghe P. et al. Schizophrenia-associated MIR204 regulates noncoding RNAs and and ion channel gene sets. PLoS ONE. 2015;10:e0144428

    PubMed  PubMed Central  Google Scholar 

  65. Ignacio C, Mooney SM, Middleton FA. Effects of acute prenatal exposure to ethanol on microRNA expression are ameliorated by social enrichment. Front Pediatr. 2014;2:103.

    PubMed  PubMed Central  Google Scholar 

  66. Wang Y, Wang J, Guo T, Peng Y, Wang K, Bai K, et al. Screening of schizophrenia associated miRNAs and the regulation of miR-320a-3p on integrin beta1. Medicines. 2019;98:e14332.

    CAS  Google Scholar 

  67. Somel M, Liu X, Tang L, Yan Z, Hu H, Guo S, et al. MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates. PLoS Biol. 2011;9:e1001214.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tadano T, Kakuta Y, Hamada S, Shimodaira Y, Kuroha M, Kawakami Y, et al. MicroRNA-320 family is downregulated in colorectal adenoma and affects tumor proliferation by targeting CDK6. World J Gastrointest Oncol. 2016;8:532–42.

    PubMed  PubMed Central  Google Scholar 

  69. Laxman N, Mallmin H, Nilsson O, Kindmark A. miR-203 and miR-320 regulate bone morphogenetic protein-2-induced osteoblast differentiation by targeting distal-less homeobox 5 (Dlx5). Genes. 2016;8:4.

    PubMed Central  Google Scholar 

  70. Kretschmann A, Danis B, Andonovic L, Abnaof K, van Rikxoort M, Siegel F, et al. Different microRNA profiles in chronic epilepsy versus acute seizure mouse models. J Mol Neurosci. 2015;55:466–79.

    CAS  PubMed  Google Scholar 

  71. Hunsberger JG, Fessler EB, Wang Z, Elkahloun AG, Chuang DM. Post-insult valproic acid-regulated microRNAs: potential targets for cerebral ischemia. Am J Transl Res. 2012;4:316–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Epis MR, Giles KM, Barker A, Kendrick TS, Leedman PJ. miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem. 2009;284:24696–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Epis MR, Giles KM, Candy PA, Webster RJ, Leedman PJ. miR-331-3p regulates expression of neuropilin-2 in glioblastoma. J Neurooncol. 2014;116:67–75.

    CAS  PubMed  Google Scholar 

  74. Chen L, Ma G, Cao X, An X, Liu X. MicroRNA-331 inhibits proliferation and invasion of melanoma cells by targeting astrocyte-elevated gene-1. Oncol Res. 2018;26:1429–37.

    Google Scholar 

  75. Lopez JP, Diallo A, Cruceanu C, Fiori LM, Laboissiere S, Guillet I, et al. Biomarker discovery: quantification of microRNAs and other small non-coding RNAs using next generation sequencing. BMC Med Genom. 2015;8:35.

    Google Scholar 

  76. Azevedo JA, Carter BS, Meng F, Turner DL, Dai M, Schatzberg AF, et al. The microRNA network is altered in anterior cingulate cortex of patients with unipolar and bipolar depression. J Psychiatr Res. 2016;82:58–67.

    PubMed  PubMed Central  Google Scholar 

  77. Svenningsen K, Veno MT, Henningsen K, Mallien AS, Jensen L, Christensen T, et al. MicroRNA profiling in the medial and lateral Habenula of rats exposed to the learned helplessness paradigm: candidate biomarkers for susceptibility and resilience to inescapable shock. PLoS ONE. 2016;11:e0160318.

    PubMed  PubMed Central  Google Scholar 

  78. Paxinos G, Franklin KBJ, Franklin KBJ. The mouse brain in stereotaxic coordinates. 2nd edn. San Diego: Academic Press; 2001.

    Google Scholar 

Download references

Acknowledgements

GT holds a Canada Research Chair (Tier 1) and is supported by grants from the Canadian Institute of Health Research (CIHR) (FDN148374, FRN 141899, ENP161427), and by the Fonds de recherche du Québec—Santé (FRQS) (EGM141899) through the Quebec Network on Suicide, Mood Disorders and Related Disorders. This project was jointly funded by FRQS (EGM141899), the Canadian Institutes of Health Research (FRN 141899), the German Bundesministerium für Bildung and Forschung (01KU1504) and the French Agence Nationale de la Recherche (ANR-15-EPIG-0003-03 and ANR-15-EPIG-0003-04). In addition, this research was undertaken thanks in part to funding from the Canada First Research Excellence Fund, awarded to McGill University for the Healthy Brains for Healthy Lives (HBHL) initiative (4b-CF-5). AC is the incumbent of the Vera and John Schwartz Family Professorial Chair at the Weizmann Institute and is the Head of the Max Planck Society–Weizmann Institute of Science Laboratory for Experimental Neuropsychiatry and Behavioral Neurogenetics. This project was funded by the Federal Ministry of Education and Research under the funding code 01KU1501A (AC) and supported by a research grant from the Israel Science Foundation (1565/15, AC). We thank A. Varga and all the caretakers of the Max Planck Institute of Psychiatry for their devoted assistance with animal care.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alon Chen or Gustavo Turecki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiori, L.M., Kos, A., Lin, R. et al. miR-323a regulates ERBB4 and is involved in depression. Mol Psychiatry 26, 4191–4204 (2021). https://doi.org/10.1038/s41380-020-00953-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00953-7

This article is cited by

Search

Quick links