Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The neuroendocrine modulation of global DNA methylation in neuropsychiatric disorders

Abstract

There is an increasing body of knowledge on the influence of differential DNA methylation of specific genomic regions in psychiatric disorders. However, fewer studies have addressed global DNA methylation (GMe) levels. GMe is an estimative of biological functioning that is regulated by pervasive mechanisms able to capture the big picture of metabolic and environmental influences upon gene expression. In the present perspective article, we highlighted evidence for the relationships between cortisol and sex hormones and GMe in psychiatric disorders. We argue that the far-reaching effects of cortisol and sexual hormones on GMe may lie on the pathways linking stress and mental health. Further research on these endocrine–epigenetic links may help to explain the role of environmental stress as well as sex differences in the prevalence of psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic representation of the hypotheses given in the main text.

Similar content being viewed by others

References

  1. Assary E, Vincent JP, Keers R, Pluess M. Gene-environment interaction and psychiatric disorders: review and future directions. Semin Cell Dev Biol. 2018;77:133–43.

    CAS  PubMed  Google Scholar 

  2. Bakusik J, Schaufeli W, Claes S, Lode G. Stress, burnout and depression: a systematic review on DNA methylation mechanisms. J Psychosom Res. 2017;92:34–44.

    Google Scholar 

  3. Li M, Arcy CD, Li X, Zhang T. What do DNA methylation studies tell us about depression? A systematic review. Transl Psychiatry. 2019;9:981. https://doi.org/10.1038/s41398-019-0412-y.

    Article  Google Scholar 

  4. Crider KS, Yang TP, Berry RJ, Bailey LB. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr. 2012;3:21–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell.2014;156:45–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19:81–92.

    CAS  PubMed  Google Scholar 

  7. Pérez RF, Tejedor JR, Bayón GF, Fernández AF, Fraga MF. Distinct chromatin signatures of DNA hypomethylation in aging and cancer. Aging Cell. 2018;27:1–16.

    Google Scholar 

  8. Pfeifer GP. Defining driver DNA methylation changes in human cancer. Int J Mol Sci. 2018;19:1–13.

    Google Scholar 

  9. Shimabukuro M, Sasaki T, Imamura A, Tsujita T, Fuke C, Umekage T, et al. Global hypomethylation of peripheral leukocyte DNA in male patients with schizophrenia: a potential link between epigenetics and schizophrenia. J Psychiatr Res. 2007;41:1042–6.

    PubMed  Google Scholar 

  10. Bromberg A, Bersudsky Y, Levine J, Agam G. Global leukocyte DNA methylation is not altered in euthymic bipolar patients. J Affect Disord. 2009;118:234–9.

    CAS  PubMed  Google Scholar 

  11. Jiang T, Zong L, Zhou L, Hou Y, Zhang L, Zheng X, et al. Variation in global DNA hydroxymethylation with age associated with schizophrenia. Psychiatry Res. 2017;257:497–500.

    CAS  PubMed  Google Scholar 

  12. Melas PA, Rogdaki M, Ösby U, Schalling M, Lavebratt C, Ekström TJ. Epigenetic aberrations in leukocytes of patients with schizophrenia: association of global DNA methylation with antipsychotic drug treatment and disease onset. FASEB J. 2012;26:2712–8.

    CAS  PubMed  Google Scholar 

  13. Huzayyin AA, Andreazza AC, Turecki G, Cruceanu C, Rouleau GA, Alda M, et al. Decreased global methylation in patients with bipolar disorder who respond to lithium. Int J Neuropsychopharmacol. 2014;17:561–9.

    CAS  PubMed  Google Scholar 

  14. Li S, Yang Q, Hou Y, Jiang T, Zong L, Wang Z, et al. Hypomethylation of LINE-1 elements in schizophrenia and bipolar disorder. J Psychiatr Res. 2018;107:68–72.

    PubMed  Google Scholar 

  15. Semmler A, Heese P, Stoffel-Wagner B, Muschler M, Heberlein A, Bigler L, et al. Alcohol abuse and cigarette smoking are associated with global DNA hypermethylation: results from the German Investigation on Neurobiology in Alcoholism (GINA). Alcohol. 2015;49:97–101.

    CAS  PubMed  Google Scholar 

  16. Glad CAM, Andersson-assarsson JC, Berglund P, Bergthorsdottir R, Ragnarsson O, Johannsson G. Reduced DNA methylation and psychopathology following endogenous hypercortisolism—a genome-wide study. Sci Rep. 2017;7:1–11.

    Google Scholar 

  17. Santos A, Resmini E, Antonia M, Momblán M, Valassi E, Martel L, et al. Quality of life in patients with Cushing’s disease. Front Endocrinol. 2019;10:1–10.

    Google Scholar 

  18. Dorn LD, Kolkob DJ, Susman EJ, Huang B, Howard S, Music E, et al. Salivary gonadal and adrenal hormone differences in boys and girls with and without disruptive behavior disorders: contextual variants. Biol Psychol. 2010;81:31–9.

    Google Scholar 

  19. Pivonello R, Simeoli C, De Martino MC, Cozzolino A, De Leo M, Iacuaniello D, et al. Neuropsychiatric disorders in Cushing’ s syndrome. Front Neurosci. 2015;9:1–6.

    Google Scholar 

  20. Dick A, Provencal N. Central neuroepigenetic regulation of the hypothalamic–pituitary–adrenal axis. In: Bart P. F. Rutten editor. Neuroepigenetics and mental illness. 1st ed. Vol. 158. Cambridge, MA: Elsevier Inc.; 2018. pp. 105–127.

  21. Khoury JE, Enlow MB, Plamondon A, Lyons-Ruth K. The association between adversity and hair cortisol levels in humans: a meta-analysis. Psychoneuroendocrinology. 2019;103:104–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuehl LK, Schultebraucks K, Deuter CE, May A, Spitzer C, Otte C, et al. Stress effects on cognitive function in patients with major depressive disorder: does childhood trauma play a role? Dev Psychopathol. 2020;32:1007–16.

    PubMed  Google Scholar 

  23. Jaworska-andryszewska P, Rybakowski JK. Childhood trauma in mood disorders: neurobiological mechanisms and implications for treatment. Pharmacol Rep. 2019;71:112–20.

    PubMed  Google Scholar 

  24. Johnson SA, Fournier NM, Kalynchuk LE. Effect of different doses of corticosterone on depression-like behavior and HPA axis responses to a novel stressor. Behav Brain Res. 2006;168:280–8.

    CAS  PubMed  Google Scholar 

  25. Zhao Y, Ma R, Shen J, Su H, Xing D, Du L. A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol. 2008;581:113–20.

    CAS  PubMed  Google Scholar 

  26. Starnawska A, Tan Q, Soerensen M, McGue M, Mors O, Børglum AD, et al. Epigenome-wide association study of depression symptomatology in elderly monozygotic twins. Transl Psychiatry. 2019;9:321–38.

    Google Scholar 

  27. Talarowska M. Epigenetic mechanisms in the neurodevelopmental theory of depression. Depression Res Treat. 2020;2020:6357873.

    Google Scholar 

  28. Kennis M, Gerritsen L, Van Dalen M, Williams A, Cuijpers P, Bockting C. Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis. Mol Psychiatry. 2019;25:321–38.

    PubMed  PubMed Central  Google Scholar 

  29. Byrne EM, Henders AK, Bowdler L, Mcrae AF, Heath AC, Martin NG, et al. Monozygotic twins affected with major depressive disorder have greater variance in methylation than their unaffected co-twin. Transl Psychiatry. 2013;3:e269–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tseng P, Lin P, Lee Y, Lung F, Chen C-S, Chong M-Y. Age-associated decrease in global DNA methylation in patients with major depression. Neuropsychiatr Dis Treat. 2014;10:2105–14.

    PubMed  PubMed Central  Google Scholar 

  31. McCoy CR, Jackson NL, Day J, Clinton SM. Genetic predisposition to high anxiety- and depression-like behavior coincides with diminished DNA methylation in the adult rat amygdala. Behav Brain Res. 2017;320:165–78.

    CAS  PubMed  Google Scholar 

  32. Shen X, Yuan H, Wang G, Xue H, Liu Y, Zhang C-X. Role of DNA hypomethylation in lateral habenular nucleus in the development of depressive-like behavior in rats. J Affect Disord. 2019;252:373–81.

    CAS  PubMed  Google Scholar 

  33. Rowson SA, Bekhbat M, Kelly SD, Binder EB, Hyer MM, Shaw G, et al. Chronic adolescent stress sex-specifically alters the hippocampal transcriptome in adulthood. Neuropsychopharmacology. 2019;44:1207–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dirven BCJ, Homberg JR, Kozicz T, Henckens MJAG. Epigenetic programming of the neuroendocrine stress response by adult life stress. J Mol Endocrinol. 2017;59:R11–31.

    CAS  PubMed  Google Scholar 

  35. van Der Voorn B, Hollanders JJ, Ket JCF, Rotteveel J, Finken MJJ. Gender-specific differences in hypothalamus–pituitary–adrenal axis activity during childhood: a systematic review and meta-analysis. Biol Sex Differ. 2017;8:1–9.

    Google Scholar 

  36. Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K, et al. Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet. 2004;68:196–204.

    CAS  PubMed  Google Scholar 

  37. Suderman M, Simpkin A, Sharp G, Gaunt T, Lyttleton O, Mcardle W, et al. Sex-associated autosomal DNA methylation differences are wide-spread and stable throughout childhood. bioRvix. 2017;1–63. https://www.biorxiv.org/content/10.1101/118265v1.full.

  38. Sahakyan A, Plath K, Rougeulle C. Regulation of X-chromosome dosage compensation in human: mechanisms and model systems. Philos Trans R Soc B Biol Sci. 2017;372:1–9.

    Google Scholar 

  39. McCarthy NS, Melton PE, Cadby G, Yazar S, Franchina M, Moses EK, et al. Meta-analysis of human methylation data for evidence of sex-specific autosomal patterns. BMC Genom. 2014;15:981. https://doi.org/10.1186/1471-2164-15-981.

    Article  CAS  Google Scholar 

  40. Dipietro JA, Costigan KA, Kivlighan KT, Chen P, Laudenslager ML. Maternal salivary cortisol differs by fetal sex during the second halfhalf of pregnancy. Psychoneuroendocrinology. 2011;36:588–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Forger NG. Past, present and future of epigenetics in brain sexual differentiation. J Neuroendocrinol. 2018;30:e12492.

    Google Scholar 

  42. Ghahramani NM, Ngun TC, Chen PY, Tian Y, Krishnan S, Muir S, et al. The effects of perinatal testosterone exposure on the DNA methylome of the mouse brain are late-emerging. Biol Sex Differ. 2014;5:1–18.

    Google Scholar 

  43. Gabory A, Attig L, Junien C. Sexual dimorphism in environmental epigenetic programming. Mol Cell Endocrinol. 2009;304:8–18.

    CAS  PubMed  Google Scholar 

  44. Fairchild G, Baker E, Eaton S. Hypothalamic–pituitary–adrenal axis function in children and adults with severe antisocial behavior and the impact of early adversity. Curr Psychiatry Rep. 2018;20:84. https://doi.org/10.1007/s11920-018-0952-5.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hawes DJ, Brennan J, Dadds MR. Cortisol, callous-unemotional traits, and pathways to antisocial behavior. Curr Opin Psychiatry. 2009;22:357–62.

    PubMed  Google Scholar 

  46. Alink LRA, van IJzendoorn MH, Bakermans-Kranenburg MJ, Mesman J, Juffer F, Koot HM. Cortisol and externalizing behavior in children and adolescents: mixed meta-analytic evidence for the inverse relation of basal cortisol and cortisol reactivity with externalizing behavior. Dev Psychobiol. 2008;50:427–50.

    CAS  PubMed  Google Scholar 

  47. Teicher MH, Samson JA, Anderson CM, Ohashi K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci. 2016;17:652–66.

    CAS  PubMed  Google Scholar 

  48. Romanowska J, Joshi A. From genotype to phenotype: through chromatin. Genes. 2019;10:76. https://doi.org/10.3390/genes10020076.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work received financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grants 466722/2014-1, 424041/2016-2, 426905/2016-2, 431472/2018-1, 140853/2019-7). Also, this study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and FIPE-HCPA 160600, GPPG-HCPA 01-321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claiton H. D. Bau.

Ethics declarations

Conflict of interest

EHG was on the speaker’s bureau for Novartis and Shire for the last 3 years. He also received travel awards (air tickets and hotel accommodations) for participating in three psychiatric meetings from Shire and Novartis. The remaining authors declare no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, D., Grevet, E.H., da Silva, B.S. et al. The neuroendocrine modulation of global DNA methylation in neuropsychiatric disorders. Mol Psychiatry 26, 66–69 (2021). https://doi.org/10.1038/s41380-020-00924-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00924-y

This article is cited by

Search

Quick links