Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Somatostatin neurons in the central amygdala mediate anxiety by disinhibition of the central sublenticular extended amygdala

Abstract

Fear and anxiety are two defensive emotional states evoked by threats in the environment. Fear can be initiated by either imminent or future threats, but experimentally, it is typically studied as a phasic response initiated by imminent danger that subsides when the threats is removed. In contrast, anxiety is a sustained response, initiated by imagined or potential threats. The central amygdala (CeA) is a key structure active during both fear and anxiety but thought to engage different neural systems. Fear responses are triggered by activation of somatostatin (SOM) expressing neurons in the lateral division of the CeA (CeL), and downstream projections from the medial division. Anxiety responses engage the central extended amygdala that includes the CeA, central sublenticular extended amygdala (SLEAc) and bed nucleus of the stria terminalis, but the nature of connections between these regions is not understood. Here using a combination of tract tracing, electrophysiology, and behavioral analysis in mice, we show that a population of SOM+ neurons in the CeL project to the SLEAc where they inhibit local GABAergic interneurons. Optogenetic activation of this input to the SLEAc has no effect on movement, but is anxiogenic in both open field and elevated plus maze. Our results define the inhibitory connections between CeL and SLEAc and establish a specific CeL to SLEAc projection as a circuit element in mediating anxiety.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Somatostatin neurons in the CeL project to the SLEAc.
Fig. 2: CeL input to the SLEAc is disinhibitory.
Fig. 3: Somatostatin expressing neurons in the CeL project to GABAergic neurons in the SLEAc.
Fig. 4: Activation of CeL neurons projecting to the SLEAc is anxiogenic.
Fig. 5: Projection-specific excitation of CeL SOM+ afferents in the SLEAc is anxiogenic.

Similar content being viewed by others

References

  1. Perusini JN, Fanselow MS. Neurobehavioral perspectives on the distinction between fear and anxiety. Learn Mem. 2015;22:417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Calhoon GG, Tye KM. Resolving the neural circuits of anxiety. Nat Neurosci. 2015;18:1394–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carola V, D’Olimpio F, Brunamonti E, Mangia F, Renzi P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav Brain Res. 2002;134:49–57.

    Article  PubMed  Google Scholar 

  4. Ennaceur A. Tests of unconditioned anxiety—pitfalls and disappointments. Physiol Behav. 2014;135:55–71.

    Article  CAS  PubMed  Google Scholar 

  5. LeDoux JE. Emotion: clues from the brain. Ann Rev Psychol. 1995;46:209–35.

    Article  CAS  Google Scholar 

  6. Fanselow MS, Wassum KM. The origins and organization of vertebrate pavlovian conditioning. Cold Spring Harb Perspect Biol. 2015;8:a021717.

    Article  PubMed  Google Scholar 

  7. Davis M. The role of the amygdala in fear and anxiety. Annu Rev Neurosci. 1992;15:353–75.

    Article  CAS  PubMed  Google Scholar 

  8. Davis M, Walker DL, Miles L, Grillon C. Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology. 2010;35:105–35.

    Article  PubMed  Google Scholar 

  9. Krypotos AM. How should we measure fear? Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5:377–8.

    PubMed  Google Scholar 

  10. Mobbs D, Adolphs R, Fanselow MS, Barrett LF, LeDoux JE, Ressler K, et al. Viewpoints: approaches to defining and investigating fear. Nat Neurosci. 2019;22:1205–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pare D, Quirk GJ, Ledoux JE. New vistas on amygdala networks in conditioned fear. J Neurophysiol. 2004;92:1–9.

    Article  PubMed  Google Scholar 

  12. Tovote P, Fadok JP, Luthi A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci. 2015;16:317–31.

    Article  CAS  PubMed  Google Scholar 

  13. Duvarci S, Pare D. Amygdala microcircuits controlling learned fear. Neuron. 2014;82:966–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marek R, Sah P. Neural circuits mediating fear learning and extinction. Adv Neurobiol. 2018;21:35–48.

    Article  PubMed  Google Scholar 

  15. Sun Y, Gooch H, Sah P. Fear conditioning and the basolateral amygdala. F1000Research. 2020;9:53.

    Article  CAS  Google Scholar 

  16. Cassell MD, Gray TS. Morphology of peptide-immunoreactive neurons in the rat central nucleus of the amygdala. J Comp Neurol. 1989;281:320–33.

    Article  CAS  PubMed  Google Scholar 

  17. Dumont EC, Martina M, Samson RD, Drolet G, Paré D. Physiological properties of central amygdala neurons: species differences. Eur J Neurosci. 2002;15:544–52.

    Article  Google Scholar 

  18. Lopez de Armentia M, Sah P. Firing properties and connectivity of neurons in the rat lateral central nucleus of the amygdala. J Neurophysiol. 2004;92:1285–94.

    Article  PubMed  Google Scholar 

  19. Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature. 2010;468:270–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hunt S, Sun Y, Kucukdereli H, Klein R, Sah P. Intrinsic circuits in the lateral central amygdala. eNeuro. 2017;4:ENEURO.0367-16.2017 1–18.

  21. Sah P, Faber ES, Lopez De Armentia M, Power J. The amygdaloid complex: anatomy and physiology. Physiol Rev. 2003;83:803–34.

    Article  CAS  PubMed  Google Scholar 

  22. Li H, Penzo MA, Taniguchi H, Kopec CD, Huang ZJ, Li B. Experience-dependent modification of a central amygdala fear circuit. Nat Neurosci. 2013;16:332–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ciocchi S, Herry C, Grenier F, Wolff SB, Letzkus JJ, Vlachos I, et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature. 2010;468:277–82.

    Article  CAS  PubMed  Google Scholar 

  24. Walker DL, Davis M. Role of the extended amygdala in short-duration versus sustained fear: a tribute to Dr. Lennart Heimer. Brain Struct Funct. 2008;213:29–42.

    Article  PubMed  Google Scholar 

  25. Walker DL, Toufexis DJ, Davis M. Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharm. 2003;463:199–216.

    Article  CAS  Google Scholar 

  26. Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature. 2011;471:358–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Felix-Ortiz AC, Beyeler A, Seo C, Leppla CA, Wildes CP, Tye KM. BLA to vHPC inputs modulate anxiety-related behaviors. Neuron. 2013;79:658–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harris AZ, Gordon JA. Long-range neural synchrony in behavior. Annu Rev Neurosci. 2015;38:171–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fox AS, Oler JA, Tromp DPM, Fudge JL, Kalin NH. Extending the amygdala in theories of threat processing. TINS. 2015;38:319–29.

    CAS  PubMed  Google Scholar 

  30. Alheid GF, de Olmos J, Beltramino CA. Amygdala and extended amygdala. In: Paxinos G editor. The rat nervous system. California: Academic Press; 1995. p. 495–578.

  31. Cassell MD, Freedman LJ, Shi C. The intrinsic organization of the central extended amygdala. Ann N Y Acad Sci. 1999;877:217–41.

    Article  CAS  PubMed  Google Scholar 

  32. Oler JA, Tromp DP, Fox AS, Kovner R, Davidson RJ, Alexander AL, et al. Connectivity between the central nucleus of the amygdala and the bed nucleus of the stria terminalis in the non-human primate: neuronal tract tracing and developmental neuroimaging studies. Brain Struct Funct. 2017;222:21–39.

    Article  PubMed  Google Scholar 

  33. Shackman AJ, Fox AS. Contributions of the central extended amygdala to fear and anxiety. J Neurosci. 2016;36:8050–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bourgeais L, Gauriau C, Bernard JF. Projections from the nociceptive area of the central nucleus of the amygdala to the forebrain: a PHA-L study in the rat. Eur J Neurosci. 2001;14:229–55.

    Article  CAS  PubMed  Google Scholar 

  35. Jolkkonen E, Pitkänen A. Intrinsic connections of the rat amygdaloid complex: projections originating in the central nucleus. J Comp Neurol. 1998;395:53–72.

    Article  CAS  PubMed  Google Scholar 

  36. Gastard M, Jensen SL, Martin JR, Williams EA, Zahm DS. The caudal sublenticular region/anterior amygdaloid area is the only part of the rat forebrain and mesopontine tegmentum occupied by magnocellular cholinergic neurons that receives outputs from the central division of extended amygdala. Brain Res. 2002;957:207–22.

    Article  CAS  PubMed  Google Scholar 

  37. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76:116–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wise T, Patrick F, Meyer N, Mazibuko N, Oates AE, van der Bijl AHM, et al. Cholinergic Modulation of Disorder-Relevant Neural Circuits in Generalized Anxiety Disorder. Biol Psychiatry 2020;87:908–15.

  39. Sun N, Cassell MD. Intrinsic GABAergic neurons in the rat central extended amygdala. J Comp Neurol. 1993;330:381–404.

    Article  CAS  PubMed  Google Scholar 

  40. Semba K. Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav Brain Res. 2000;115:117–41.

    Article  CAS  PubMed  Google Scholar 

  41. Zaborszky L, Duque A. Local synaptic connections of basal forebrain neurons. Behav Brain Res. 2000;115:143–58.

    Article  CAS  PubMed  Google Scholar 

  42. Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol. 2003;467:60–79.

    Article  CAS  PubMed  Google Scholar 

  43. Tallini YN, Shui B, Greene KS, Deng KY, Doran R, Fisher PJ, et al. BAC transgenic mice express enhanced green fluorescent protein in central and peripheral cholinergic neurons. Physiol Genomics. 2006;27:391–7.

    Article  CAS  PubMed  Google Scholar 

  44. Alheid GF, Heimer L. New perspectives in basal forebrain organization of special relevance for neubasedropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neurosci. 1988;27:1–39.

    Article  CAS  Google Scholar 

  45. Fox AS, Shackman AJ. The central extended amygdala in fear and anxiety: closing the gap between mechanistic and neuroimaging research. Neurosci Lett. 2019;693:58–67.

    Article  CAS  PubMed  Google Scholar 

  46. LeDoux JE. Emotion circuits in the brain. Ann Rev Neurosci. 2000;23:155–84.

    Article  CAS  PubMed  Google Scholar 

  47. Fanselow MS, Poulos AM. The neuroscience of mammalian associative learning. Annu Rev Psychol. 2005;56:207–34.

    Article  PubMed  Google Scholar 

  48. Duvarci S, Popa D, Pare D. Central amygdala activity during fear conditioning. J Neurosci. 2011;31:289–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim MJ, Loucks RA, Palmer AL, Brown AC, Solomon KM, Marchante AN, et al. The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety. Behav Brain Res. 2011;223:403–10.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kessler RC, Berglund P, Demler O, Jin R, Walters EE. Lifetime prevalence and age-of-onset distributions’ of DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry. 2005;62:593–602.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Woodruff for comments on our paper and the Sah Laboratory for feedback on the experiments. This work was funded by grants from the Australian National Health and Medical Research Council of Australia and the Australian Research Council. Imaging was performed at the Queensland Brain Institute’s Advanced Microscopy Facility.

Author information

Authors and Affiliations

Authors

Contributions

PS designed, supervised all of the experiments, and wrote paper. YS designed experiments, carried out most experiments, analyzed data, and wrote paper. SH did experiments and analyzed data. LX made virus for injections. LQ designed and did behavioral experiments, analyzed data, and wrote paper.

Corresponding author

Correspondence to Pankaj Sah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Qian, L., Xu, L. et al. Somatostatin neurons in the central amygdala mediate anxiety by disinhibition of the central sublenticular extended amygdala. Mol Psychiatry 28, 4163–4174 (2023). https://doi.org/10.1038/s41380-020-00894-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00894-1

This article is cited by

Search

Quick links