Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription factor POU3F2 regulates TRIM8 expression contributing to cellular functions implicated in schizophrenia

Abstract

Schizophrenia (SCZ) is a neuropsychiatric disorder with aberrant expression of multiple genes. However, identifying its exact causal genes remains a considerable challenge. The brain-specific transcription factor POU3F2 (POU domain, class 3, transcription factor 2) has been recognized as a risk factor for SCZ, but our understanding of its target genes and pathogenic mechanisms are still limited. Here we report that POU3F2 regulates 42 SCZ-related genes in knockdown and RNA-sequencing experiments of human neural progenitor cells (NPCs). Among those SCZ-related genes, TRIM8 (Tripartite motif containing 8) is located in SCZ-associated genetic locus and is aberrantly expressed in patients with SCZ. Luciferase reporter and electrophoretic mobility shift assays (EMSA) showed that POU3F2 induces TRIM8 expression by binding to the SCZ-associated SNP (single nucleotide polymorphism) rs5011218, which affects POU3F2-binding efficiency at the promoter region of TRIM8. We investigated the cellular functions of POU3F2 and TRIM8 as they co-regulate several pathways related to neural development and synaptic function. Knocking down either POU3F2 or TRIM8 promoted the proliferation of NPCs, inhibited their neuronal differentiation, and impaired the excitatory synaptic transmission of NPC-derived neurons. These results indicate that POU3F2 regulates TRIM8 expression through the SCZ-associated SNP rs5011218, and both genes may be involved in the etiology of SCZ by regulating neural development and synaptic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: POU3F2 regulates SCZ-related genes involved in neural development.
Fig. 2: POU3F2 may affect TRIM8 expression through three SCZ-related SNPs.
Fig. 3: POU3F2 promoted TRIM8 expression through the regulatory SNP rs5011218.
Fig. 4: Silencing POU3F2 and TRIM8 promote NPCs proliferation through advancing cell cycle progression.
Fig. 5: Suppressing POU3F2 and TRIM8 expression inhibited neuronal differentiation and excitatory synaptic transmission.

Similar content being viewed by others

References

  1. Walker E, Kestler L, Bollini A, Hochman KM. Schizophrenia: etiology and course. Annu Rev Psychol. 2004;55:401–30.

    Article  PubMed  Google Scholar 

  2. Frankle WG, Lerma J, Laruelle M. The synaptic hypothesis of schizophrenia. Neuron. 2003;39:205–16.

    Article  CAS  PubMed  Google Scholar 

  3. Birnbaum R, Weinberger DR. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat Rev Neurosci. 2017;18:727–40.

    Article  CAS  PubMed  Google Scholar 

  4. Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Article  CAS  Google Scholar 

  5. Yang CP, Li X, Wu Y, Shen Q, Zeng Y, Xiong Q, et al. Comprehensive integrative analyses identify GLT8D1 and CSNK2B as schizophrenia risk genes. Nat Commun. 2018;9:838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yin J, Lin J, Luo X, Chen Y, Li Z, Ma G, et al. miR-137: a new player in schizophrenia. Int J Mol Sci. 2014;15:3262–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron. 2014;82:24–45.

    Article  CAS  PubMed  Google Scholar 

  8. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19:1442–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen C, Meng Q, Xia Y, Ding C, Wang L, Dai R, et al. The transcription factor POU3F2 regulates a gene coexpression network in brain tissue from patients with psychiatric disorders. Sci Transl Med. 2018;10:eaat8178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ren Y, Cui Y, Li X, Wang B, Na L, Shi J, et al. A co-expression network analysis reveals lncRNA abnormalities in peripheral blood in early-onset schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2015;63:1–5.

    Article  CAS  PubMed  Google Scholar 

  11. He X, Treacy M, Simmons D, Ingraham H, Swanson L, Rosenfeld M. Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature. 1989;340:35–41.

    Article  CAS  PubMed  Google Scholar 

  12. McEvilly R, de DM, Schonemann M, Hooshmand F, Rosenfeld M. Transcriptional regulation of cortical neuron migration by POU domain factors. Science. 2002;295:1528–32.

    Article  CAS  PubMed  Google Scholar 

  13. Hashizume K, Yamanaka M, Ueda S. POU3F2 participates in cognitive function and adult hippocampal neurogenesis via mammalian-characteristic amino acid repeats. Genes Brain Behav. 2018;17:118–25.

    Article  CAS  PubMed  Google Scholar 

  14. Potkin SG, Turner JA, Guffanti G, Lakatos A, Fallon JH, Nguyen DD, et al. A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. Schizophr Bull. 2009;35:96–108.

    Article  PubMed  Google Scholar 

  15. Pearl JR, Colantuoni C, Bergey DE, Funk CC, Shannon P, Basu B, et al. Genome-scale transcriptional regulatory network models of psychiatric and neurodegenerative disorders. Cell Syst. 2019;8:122–35. e127.

    Article  CAS  PubMed  Google Scholar 

  16. Li Q, Yan J, Mao AP, Li C, Ran Y, Shu HB, et al. Tripartite motif 8 (TRIM8) modulates TNFalpha- and IL-1beta-triggered NF-kappaB activation by targeting TAK1 for K63-linked polyubiquitination. Proc Natl Acad Sci USA. 2011;108:19341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Caratozzolo MF, Micale L, Turturo MG, Cornacchia S, Fusco C, Marzano F, et al. TRIM8 modulates p53 activity to dictate cell cycle arrest. Cell Cycle. 2012;11:511–23.

    Article  CAS  PubMed  Google Scholar 

  18. Wu Y, Yao YG, Luo XJ. SZDB: a database for schizophrenia genetic research. Schizophr Bull. 2017;43:459–71.

    PubMed  Google Scholar 

  19. Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362:eaat8127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roussos P, Mitchell AC, Voloudakis G, Fullard JF, Pothula VM, Tsang J, et al. A role for noncoding variation in schizophrenia. Cell Rep. 2014;9:1417–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huo Y, Li S, Liu J, Li X, Luo XJ. Functional genomics reveal gene regulatory mechanisms underlying schizophrenia risk. Nat Commun. 2019;10:670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wasserman WW, Sandelin A. Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet. 2004;5:276–87.

    Article  CAS  PubMed  Google Scholar 

  23. Glass D, Vinuela A, Davies MN, Ramasamy A, Parts L, Knowles D, et al. Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biol. 2013;14:R75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Jaffe AE, Straub RE, Shin JH, Tao R, Gao Y, Collado-Torres L, et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat Neurosci. 2018;21:1117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res. 2013;41:D56–63.

    Article  CAS  PubMed  Google Scholar 

  26. Xue Y, Qian H, Hu J, Zhou B, Zhou Y, Hu X, et al. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat Neurosci. 2016;19:807–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Consortium GT. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45:580–5.

    Article  CAS  Google Scholar 

  28. Semizarov D, Frost L, Sarthy A, Kroeger P, Halbert DN, Fesik SW. Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci USA. 2003;100:6347–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cui L, Sun W, Yu M, Li N, Guo L, Gu H, et al. Disrupted-in-schizophrenia1 (DISC1) L100P mutation alters synaptic transmission and plasticity in the hippocampus and causes recognition memory deficits. Mol Brain. 2016;9:89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mao W, Watanabe T, Cho S, Frost JL, Truong T, Zhao X, et al. Shank1 regulates excitatory synaptic transmission in mouse hippocampal parvalbumin-expressing inhibitory interneurons. Eur J Neurosci. 2015;41:1025–35.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ruderfer DM, Ripke S, McQuillin A, Boocock J, Stahl EA, Whitehead Pavlides JM, et al. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell. 2018;173:1705–15.

    Article  CAS  PubMed Central  Google Scholar 

  32. Rosso SB, Inestrosa NC. WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci. 2013;7:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Isabella P, Flavia N, Alberto MF, Giorgio DK, Antonio DC, Chiara R, et al. Neurodevelopment in schizophrenia: The role of the Wnt pathways. Curr Neuropharmacol. 2013;11:535–58.

    Article  CAS  Google Scholar 

  34. Massey PV, Bashir ZI. Long-term depression: multiple forms and implications for brain function. Trends Neurosci. 2007;30:176–84.

    Article  CAS  PubMed  Google Scholar 

  35. Hasan A, Nitsche MA, Herrmann M, Schneider-Axmann T, Marshall L, Gruber O, et al. Impaired long-term depression in schizophrenia: a cathodal tDCS pilot study. Brain Stimul. 2012;5:475–83.

    Article  PubMed  Google Scholar 

  36. Russell SA, Bashaw GJ. Axon guidance pathways and the control of gene expression. Dev Dyn. 2018;247:571–80.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Klein R, Kania A. Ephrin signalling in the developing nervous system. Curr Opin Neurobiol. 2014;27:16–24.

    Article  CAS  PubMed  Google Scholar 

  38. Liu YN, Lu SY, Yao J. Application of induced pluripotent stem cells to understand neurobiological basis of bipolar disorder and schizophrenia. Psychiatry Clin Neurosci. 2017;71:579–99.

    Article  PubMed  Google Scholar 

  39. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature. 2011;473:221–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoon K-J, Nguyen HaN, Ursini G, Zhang F, Kim N-S, Wen Z, et al. Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity. Cell Stem Cell. 2014;15:79–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Habela CW, Song H, Ming GL. Modeling synaptogenesis in schizophrenia and autism using human iPSC derived neurons. Mol Cell Neurosci. 2016;73:52–62.

    Article  CAS  PubMed  Google Scholar 

  42. Wang L, Lockstone HE, Guest PC, Levin Y, Palotás A, Pietsch S, et al. Expression profiling of fibroblasts identifies cell cycle abnormalities in schizophrenia. J Proteome Res. 2010;9:521–7.

    Article  CAS  PubMed  Google Scholar 

  43. Allen KM, Fung SJ, Weickert CS. Cell proliferation is reduced in the hippocampus in schizophrenia. Aust N Z J Psychiatry. 2016;50:473–80.

    Article  PubMed  Google Scholar 

  44. Sanches M, Keshavan MS, Brambilla P, Soares JC. Neurodevelopmental basis of bipolar disorder: a critical appraisal. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1617–27.

    Article  PubMed  Google Scholar 

  45. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull. 2009;35:509–27.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wong AHC, Van Tol HHM. Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev. 2003;27:269–306.

    Article  PubMed  Google Scholar 

  48. Karlsgodt KH, Sun D, Cannon TD. Structural and functional brain abnormalities in schizophrenia. Curr Dir Psychol Sci. 2010;19:226–31.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Westphal DS, Riedhammer KM, Kovacs-Nagy R, Meitinger T, Hoefele J, Wagner M. A de novo missense variant in POU3F2 identified in a child with global developmental delay. Neuropediatrics. 2018;49:401–4.

    Article  CAS  PubMed  Google Scholar 

  50. Kasher PR, Schertz KE, Thomas M, Jackson A, Annunziata S, Ballesta-Martinez MJ, et al. Small 6q16.1 deletions encompassing POU3F2 cause susceptibility to obesity and variable developmental delay with intellectual disability. Am J Hum Genet. 2016;98:363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Assoum M, Lines MA, Elpeleg O, Darmency V, Whiting S, Edvardson S, et al. Further delineation of the clinical spectrum of de novo TRIM8 truncating mutations. Am J Med Genet A. 2018;176:2470–8.

    Article  CAS  PubMed  Google Scholar 

  52. Sakai Y, Fukai R, Matsushita Y, Miyake N, Saitsu H, Akamine S, et al. De novo truncating mutation of TRIM8 causes early-onset epileptic encephalopathy. Ann Hum Genet. 2016;80:235–40.

    Article  CAS  PubMed  Google Scholar 

  53. Dominguez MH, Ayoub AE, Rakic P. POU-III transcription factors (Brn1, Brn2, and Oct6) influence neurogenesis, molecular identity, and migratory destination of upper-layer cells of the cerebral cortex. Cereb Cortex. 2013;23:2632–43.

    Article  PubMed  Google Scholar 

  54. Castro DS, Skowronska-Krawczyk D, Armant O, Donaldson IJ, Parras C, Hunt C, et al. Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif. Dev Cell. 2006;11:831–44.

    Article  CAS  PubMed  Google Scholar 

  55. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci USA. 2011;108:10343–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Venuto S, Castellana S, Monti M, Appolloni I, Fusilli C, Fusco C, et al. TRIM8-driven transcriptomic profile of neural stem cells identified glioma-related nodal genes and pathways. Biochim Biophys Acta Gen Subj. 2019;1863:491–501.

    Article  CAS  PubMed  Google Scholar 

  57. Kohlbrenner EA, Shaskan N, Pietersen CY, Sonntag KC, Woo TW. Gene expression profile associated with postnatal development of pyramidal neurons in the human prefrontal cortex implicates ubiquitin ligase E3 in the pathophysiology of schizophrenia onset. J Psychiatr Res. 2018;102:110–7.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ma Q, Ruan H, Peng L, Zhang M, Gack MU, Yao WD. Proteasome-independent polyubiquitin linkage regulates synapse scaffolding, efficacy, and plasticity. Proc Natl Acad Sci USA. 2017;114:E8760–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Kesteren CF, Gremmels H, de Witte LD, Hol EM, Van Gool AR, Falkai PG, et al. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry. 2017;7:e1075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Georgala PA, Carr CB, Price DJ. The role of Pax6 in forebrain development. Dev Neurobiol. 2011;71:690–709.

    Article  CAS  PubMed  Google Scholar 

  61. Zamani A, Xiao J, Turnley AM, Murray SS. Tropomyosin-related kinase B (TrkB) regulates neurite outgrowth via a novel interaction with suppressor of cytokine signalling 2 (SOCS2). Mol Neurobiol. 2019;56:1262–75.

    Article  CAS  PubMed  Google Scholar 

  62. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609–42.

    Article  CAS  PubMed  Google Scholar 

  63. Takahashi K, Yamada M, Ohata H, Honda K, Yamada M. Ndrg2 promotes neurite outgrowth of NGF-differentiated PC12 cells. Neurosci Lett. 2005;388:157–62.

    Article  CAS  PubMed  Google Scholar 

  64. Lin K, Yin A, Yao L, Li Y. N-myc downstream-regulated gene 2 in the nervous system: from expression pattern to function. Acta Biochim Biophys Sin. 2015;47:761–6.

    Article  PubMed  CAS  Google Scholar 

  65. Christa KP, Len AP, Kimberly L, Wufang F, Gregory GL. Characterization of the human neurocan gene, CSPG3. Gene. 1998;221:199–205.

    Article  Google Scholar 

  66. Logan S, Arzua T, Canfield SG, Seminary ER, Sison SL, Ebert AD, et al. Studying human neurological disorders using induced pluripotent stem cells: from 2D monolayer to 3D organoid and blood brain barrier models. Compr Physiol. 2019;9:565–611.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hu Z, Zhou M, Wu Y, Li Z, Liu X, Wu L, et al. ssODN-mediated in-frame deletion with CRISPR/Cas9 to restore the FVIII function in hemophilia A patient-derived iPSCs and ECs. Mol Ther Nucleic Acids. 2019;17:198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Andrews S. FastQC: a quality control tool for high throughput sequence data. Cambridge: Babraham Bioinformatics, Babraham Institute; 2010.

    Google Scholar 

  69. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  71. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2013;30:923–30.

    Article  PubMed  CAS  Google Scholar 

  72. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  73. Popko J, Fernandes A, Brites D, Lanier LM. Automated analysis of NeuronJ tracing data. Cytom A. 2009;75:371–6.

    Article  Google Scholar 

  74. Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45:W130–W137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Glatt’s lab at Upstate Medical University for providing technical support.

Funding

This work was supported by National Natural Science Foundation of China (NSFC) grants 31970572, 31871276, 31571312, and 81401114, National Key R&D Project of China 2016YFC1306000 and 2017YFC0908701, Innovation-driven Project of Central South University 2020CX003 (to CC) and NIH grants 1U01MH103340, 1U01MH116489, and 1R01MH110920, New York State Empire Innovation Program (to CL).

Author information

Authors and Affiliations

Authors

Contributions

CL and CC designed and guided the study. CD, LW, and QM performed the gene knockdown, NPC proliferation, dual-luciferase reporter and neuronal differentiation assays. CZ, YX, YJ, SM, and RD analyzed the RNA-seq data and ran the enrichment analysis. HR did the electrophysiological recordings. CD wrote the manuscript with substantive edits from RK, LK, MW, WY, CL, and CC.

Corresponding authors

Correspondence to Hongyu Ruan, Chunyu Liu or Chao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Materials

Table S1. 545 coexpression module genes

Table S2. 3,421 genes with expression altered by POU3F2 knockdown

Table S3. 60 genes in common from the 3421 POU3F2-regulated genes and 545 module genes

Table S4. 4,096 differentially expressed genes from PsychENCODE

Table S5. 42 genes in common from 60 POU3F2-regulated module genes and 6235 SCZ-related genes

Table S6. Predicted POU3F2 binding sequences in the TRIM8 regulatory region

Table S7. eQTL SNPs in TRIM8’s regulatory region

Table S8. Upstream regulatory sequences of TRIM8

Table S9. EMSA probe sequences

Table S10. 1040 genes with expression altered by TRIM8 knockdown

Table S11. 548 POU3F2 and TRIM8 co-regulated genes

Table S12. 202 POU3F2 and TRIM8 co-regulated SCZ-related genes

Table S13. Significantly enriched pathways of POU3F2 and TRIM8 co-regulated genes

Table S14. qPCR primer sequences

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Zhang, C., Kopp, R. et al. Transcription factor POU3F2 regulates TRIM8 expression contributing to cellular functions implicated in schizophrenia. Mol Psychiatry 26, 3444–3460 (2021). https://doi.org/10.1038/s41380-020-00877-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00877-2

This article is cited by

Search

Quick links