Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Associations of depression status with plasma levels of candidate lipid and amino acid metabolites: a meta-analysis of individual data from three independent samples of US postmenopausal women

Abstract

Recent animal and small clinical studies have suggested depression is related to altered lipid and amino acid profiles. However, this has not been examined in a population-based sample, particularly in women. We identified multiple metabolites associated with depression as potential candidates from prior studies. Cross-sectional data from three independent samples of postmenopausal women were analyzed, including women from the Women’s Health Initiative-Observational Study (WHI-OS, n = 926), the WHI-Hormone Trials (WHI-HT; n = 1,325), and the Nurses’ Health Study II Mind-Body Study (NHSII-MBS; n = 218). Positive depression status was defined as having any of the following: elevated depressive symptoms, antidepressant use, or depression history. Plasma metabolites were measured using liquid chromatography-tandem mass spectrometry (21 phosphatidylcholines (PCs), 7 lysophosphatidylethanolamines, 5 ceramides, 3 branched chain amino acids, and 9 neurotransmitters). Associations between depression status and metabolites were evaluated using multivariable linear regression; results were pooled by random-effects meta-analysis with multiple testing adjustment using the false discovery rate (FDR). Prevalence rates of positive depression status were 24.4% (WHI-OS), 25.7% (WHI-HT), and 44.7% (NHSII-MBS). After multivariable adjustment, positive depression status was associated with higher levels of glutamate and PC 36 : 1/38 : 3, and lower levels of tryptophan and GABA-to-glutamate and GABA-to-glutamine ratio (FDR-p < 0.05). Positive associations with LPE 18 : 0/18 : 1 and inverse associations with valine and serotonin were also observed, although these associations did not survive FDR adjustment. Associations of positive depression status with several candidate metabolites including PC 36 : 1/38 : 3 and amino acids involved in neurotransmission suggest potential depression-related metabolic alterations in postmenopausal women, with possible implications for later chronic disease.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Associations of depression status with plasma lipids, including phosphatidylcholines (PC), lysophosphatidylethanolamines (LPEs), and ceramides (CERs).
Fig. 2: Associations of depression status with branched-chain amino acids and amino acid neurotransmitters in the plasma.
Fig. 3: Pooled associations of depression characteristics with plasma lipid and amino acid metabolites identified in the primary analyses, adjusted for age, race/ethnicity, BMI, hypertension, diabetes, aspirin use, statin use, other lipid-lowering medications, and hormone therapy.

References

  1. Smoller JW, Allison M, Cochrane BB, Curb JD, Perlis RH, Robinson JG, et al. Antidepressant use and risk of incident cardiovascular morbidity and mortality among postmenopausal women in the Women’s Health Initiative study. Arch Intern Med. 2009;169:2128–39.

    Article  PubMed  Google Scholar 

  2. Wassertheil-Smoller S, Shumaker S, Ockene J, Talavera GA, Greenland P, Cochrane B, et al. Depression and cardiovascular sequelae in postmenopausal women. The Women’s Health Initiative (WHI). Arch Intern Med. 2004;164:289–98.

    Article  PubMed  Google Scholar 

  3. Yu M, Zhang X, Lu F, Fang L. Depression and risk for diabetes: a meta-analysis. Can J Diabetes. 2015;39:266–72.

    Article  PubMed  Google Scholar 

  4. Pan A, Keum N, Okereke OI, Sun Q, Kivimaki M, Rubin RR, et al. Bidirectional association between depression and metabolic syndrome: a systematic review and meta-analysis of epidemiological studies. Diabetes Care. 2012;35:1171–80.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pan A, Sun Q, Okereke OI, Rexrode KM, Hu FB. Depression and risk of stroke morbidity and mortality: a meta-analysis and systematic review. JAMA. 2011;306:1241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimaki M. Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain Behav Immun. 2015;49:206–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wesolowska K, Elovainio M, Hintsa T, Jokela M, Pulkki-Raback L, Lipsanen J, et al. Is the association between depressive symptoms and glucose bidirectional? A population-based study. Health Psychol. 2018;37:603–12.

    Article  PubMed  Google Scholar 

  8. Whooley MA, de Jonge P, Vittinghoff E, Otte C, Moos R, Carney RM, et al. Depressive symptoms, health behaviors, and risk of cardiovascular events in patients with coronary heart disease. JAMA. 2008;300:2379–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Whooley MA, Wong JM. Depression and cardiovascular disorders. Annu Rev Clin Psychol. 2013;9:327–54.

    Article  PubMed  Google Scholar 

  10. Liu X, Zheng P, Zhao X, Zhang Y, Hu C, Li J, et al. Discovery and validation of plasma biomarkers for major depressive disorder classification based on liquid chromatography-mass spectrometry. J Proteome Res. 2015;14:2322–30.

    Article  CAS  PubMed  Google Scholar 

  11. Shi B, Tian J, Xiang H, Guo X, Zhang L, Du G, et al. A (1)H-NMR plasma metabonomic study of acute and chronic stress models of depression in rats. Behav Brain Res. 2013;241:86–91.

    Article  CAS  PubMed  Google Scholar 

  12. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:593–602.

    Article  PubMed  Google Scholar 

  13. Demmer RT, Gelb S, Suglia SF, Keyes KM, Aiello AE, Colombo PC, et al. Sex differences in the association between depression, anxiety, and type 2 diabetes mellitus. Psychosom Med. 2015;77:467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Möller-Leimkühler AM. Gender differences in cardiovascular disease and comorbid depression. Dialogues Clin Neurosci. 2007;9:71–83.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Karel MJ. Aging and depression: vulnerability and stress across adulthood. Clin Psychol Rev. 1997;17:847–79.

    Article  CAS  PubMed  Google Scholar 

  16. Gordon T, Kannel WB, Hjortland MC, McNamara PM. Menopause and coronary heart disease. The Framingham Study. Ann Intern Med. 1978;89:157–61.

    Article  CAS  PubMed  Google Scholar 

  17. Anderson GL, Manson J, Wallace R, Lund B, Hall D, Davis S, et al. Implementation of the Women’s Health Initiative study design. Ann Epidemiol. 2003;13:S5–17.

    Article  PubMed  Google Scholar 

  18. Paynter NP, Balasubramanian R, Giulianini F, Wang DD, Tinker LF, Gopal S, et al. Metabolic Predictors of Incident Coronary Heart Disease in Women. Circulation. 2018;137:841–53.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang T, Trudel-Fitzgerald C, Poole EM, Sawyer S, Kubzansky LD, Hankinson SE, et al. The Mind-Body Study: study design and reproducibility and interrelationships of psychosocial factors in the Nurses’ Health Study II. Cancer Causes Control. 2019;30:779–90.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Robins LN, Helzer JE, Croughan J, Ratcliff KS. National Institute of Mental Health Diagnostic Interview Schedule. Its history, characteristics, and validity. Arch Gen Psychiatry. 1981;38:381–9.

    Article  CAS  PubMed  Google Scholar 

  21. Andresen EM, Malmgren JA, Carter WB, Patrick DL. Screening for depression in well older adults: evaluation of a short form of the CES-D (Center for Epidemiologic Studies Depression Scale). Am J Prev Med. 1994;10:77–84.

    Article  CAS  PubMed  Google Scholar 

  22. Townsend MK, Clish CB, Kraft P, Wu C, Souza AL, Deik AA, et al. Reproducibility of metabolomic profiles among men and women in 2 large cohort studies. Clin Chem. 2013;59:1657–67.

    Article  CAS  PubMed  Google Scholar 

  23. George SM, Ballard-Barbash R, Manson JE, Reedy J, Shikany JM, Subar AF, et al. Comparing indices of diet quality with chronic disease mortality risk in postmenopausal women in the Women’s Health Initiative Observational Study: evidence to inform national dietary guidance. Am J Epidemiol. 2014;180:616–25.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Langer RD, White E, Lewis CE, Kotchen JM, Hendrix SL, Trevisan M. The Women’s Health Initiative Observational Study: baseline characteristics of participants and reliability of baseline measures. Ann Epidemiol. 2003;13:S107–21.

    Article  PubMed  Google Scholar 

  25. Huang T, Zeleznik OA, Poole EM, Clish CB, Deik AA, Scott JM, et al. Habitual sleep quality, plasma metabolites and risk of coronary heart disease in post-menopausal women. Int J Epidemiol. 2019;48:1262–74.

    Article  PubMed  Google Scholar 

  26. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol. 1985;122:51–65.

    Article  CAS  PubMed  Google Scholar 

  27. Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, et al. Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol. 1994;23:991–9.

    Article  CAS  PubMed  Google Scholar 

  28. Huang T, Poole EM, Vetter C, Rexrode KM, Kubzansky LD, Schernhammer E, et al. Habitual sleep quality and diurnal rhythms of salivary cortisol and dehydroepiandrosterone in postmenopausal women. Psychoneuroendocrinology. 2017;84:172–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hertzmark E, Spiegelman D. The SAS METAANAL Macro. 2012. https://www.hsph.harvard.edu/donna-spiegelman/software/metaanal/.

  30. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  CAS  PubMed  Google Scholar 

  31. Storey JD. A direct approach false discovery rates. R Stat Soc. 2002;64:479–98.

    Article  Google Scholar 

  32. Dunlop DD, Song J, Lyons JS, Manheim LM, Chang RW. Racial/ethnic differences in rates of depression among preretirement adults. Am J Public Health. 2003;93:1945–52.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Patel MJ, Batch BC, Svetkey LP, Bain JR, Turer CB, Haynes C, et al. Race and sex differences in small-molecule metabolites and metabolic hormones in overweight and obese adults. Omics. 2013;17:627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G, et al. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry. 2002;7:S71–80.

    Article  CAS  PubMed  Google Scholar 

  35. Musazzi L, Treccani G, Mallei A, Popoli M. The action of antidepressants on the glutamate system: regulation of glutamate release and glutamate receptors. Biol Psychiatry. 2013;73:1180–8.

    Article  CAS  PubMed  Google Scholar 

  36. Czysz AH, South C, Gadad BS, Arning E, Soyombo A, Bottiglieri T, et al. Can targeted metabolomics predict depression recovery? Results from the CO-MED trial. Transl Psychiatry. 2019;9:11.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dinoff A, Herrmann N, Lanctot KL. Ceramides and depression: a systematic review. J Affect Disord. 2017;213:35–43.

    Article  CAS  PubMed  Google Scholar 

  38. Demirkan A, Isaacs A, Ugocsai P, Liebisch G, Struchalin M, Rudan I, et al. Plasma phosphatidylcholine and sphingomyelin concentrations are associated with depression and anxiety symptoms in a Dutch family-based lipidomics study. J Psychiatr Res. 2013;47:357–62.

    Article  PubMed  Google Scholar 

  39. Zheng P, Gao HC, Li Q, Shao WH, Zhang ML, Cheng K, et al. Plasma metabonomics as a novel diagnostic approach for major depressive disorder. J Proteome Res. 2012;11:1741–8.

    Article  CAS  PubMed  Google Scholar 

  40. Paige LA, Mitchell MW, Krishnan KR, Kaddurah-Daouk R, Steffens DC. A preliminary metabolomic analysis of older adults with and without depression. Int J Geriatr Psychiatry. 2007;22:418–23.

    Article  PubMed  Google Scholar 

  41. Assies J, Pouwer F, Lok A, Mocking RJ, Bockting CL, Visser I, et al. Plasma and erythrocyte fatty acid patterns in patients with recurrent depression: a matched case-control study. PLoS ONE. 2010;5:e10635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Pan JX, Xia JJ, Deng FL, Liang WW, Wu J, Yin BM, et al. Diagnosis of major depressive disorder based on changes in multiple plasma neurotransmitters: a targeted metabolomics study. Transl Psychiatry. 2018;8:130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Boland EM, Rao H, Dinges DF, Smith RV, Goel N, Detre JA, et al. Meta-analysis of the antidepressant effects of acute sleep deprivation. J Clin Psychiatry. 2017;78:e1020–34.

    Article  PubMed  Google Scholar 

  44. Dallaspezia S, Benedetti F. Sleep deprivation therapy for depression. Curr Top Behav Neurosci. 2015;25:483–502.

    Article  PubMed  Google Scholar 

  45. Davies SK, Ang JE, Revell VL, Holmes B, Mann A, Robertson FP, et al. Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci USA. 2014;111:10761–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Quak J, Doornbos B, Roest AM, Duivis HE, Vogelzangs N, Nolen WA, et al. Does tryptophan degradation along the kynurenine pathway mediate the association between pro-inflammatory immune activity and depressive symptoms? Psychoneuroendocrinology. 2014;45:202–10.

    Article  CAS  PubMed  Google Scholar 

  47. Shabel SJ, Proulx CD, Piriz J, Malinow R. Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science. 2014;345:1494–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ussher JR, Elmariah S, Gerszten RE, Dyck JR. The emerging role of metabolomics in the diagnosis and prognosis of cardiovascular disease. J Am Coll Cardiol. 2016;68:2850–70.

    Article  CAS  PubMed  Google Scholar 

  49. Guasch-Ferre M, Hruby A, Toledo E, Clish CB, Martinez-Gonzalez MA, Salas-Salvado J, et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care. 2016;39:833–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, McCabe E, et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest. 2011;121:1402–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheng S, Rhee EP, Larson MG, Lewis GD, McCabe EL, Shen D, et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation. 2012;125:2222–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wurtz P, Havulinna AS, Soininen P, Tynkkynen T, Prieto-Merino D, Tillin T, et al. Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation. 2015;131:774–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Shah SH, Bain JR, Muehlbauer MJ, Stevens RD, Crosslin DR, Haynes C, et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc Genet. 2010;3:207–14.

    Article  CAS  PubMed  Google Scholar 

  54. Yu E, Ruiz-Canela M, Guasch-Ferre M, Zheng Y, Toledo E, Clish CB, et al. Increases in plasma tryptophan are inversely associated with incident cardiovascular disease in the Prevencion con Dieta Mediterranea (PREDIMED) Study. J Nutr. 2017;147:314–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ruiz-Canela M, Toledo E, Clish CB, Hruby A, Liang L, Salas-Salvado J, et al. Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED Trial. Clin Chem. 2016;62:582–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Magnusson M, Lewis GD, Ericson U, Orho-Melander M, Hedblad B, Engstrom G, et al. A diabetes-predictive amino acid score and future cardiovascular disease. Eur Heart J. 2013;34:1982–9.

    Article  CAS  PubMed  Google Scholar 

  58. Puyat JH, Kazanjian A, Wong H, Goldner E. Comorbid chronic general health conditions and depression care: a population-based analysis. Psychiatr Serv. 2017;68:907–15.

    Article  PubMed  Google Scholar 

  59. Menear M, Dore I, Cloutier AM, Perrier L, Roberge P, Duhoux A, et al. Chronic physical comorbidity burden and the quality of depression treatment in primary care: a systematic review. J Psychosom Res. 2015;78:314–23.

    Article  PubMed  Google Scholar 

  60. Pan A, Lucas M, Sun Q, van Dam RM, Franco OH, Manson JE, et al. Bidirectional association between depression and type 2 diabetes mellitus in women. Arch Intern Med. 2010;170:1884–91.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Whang W, Kubzansky LD, Kawachi I, Rexrode KM, Kroenke CH, Glynn RJ, et al. Depression and risk of sudden cardiac death and coronary heart disease in women: results from the Nurses’ Health Study. J Am Coll Cardiol. 2009;53:950–8.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Huang T, Poole EM, Okereke OI, Kubzansky LD, Eliassen AH, Sood AK, et al. Depression and risk of epithelial ovarian cancer: results from two large prospective cohort studies. Gynecol Oncol. 2015;139:481–6.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yin P, Lehmann R, Xu G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal Bioanal Chem. 2015;407:4879–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Townsend MK, Bao Y, Poole EM, Bertrand KA, Kraft P, Wolpin BM, et al. Impact of pre-analytic blood sample collection factors on metabolomics. Cancer Epidemiol Biomark Prev. 2016;25:823–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Metabolomic analysis in the Women’s Health Initiative (WHI) was funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contract HHSN268201300008C. The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts HHSN268201600018C, HHSN268201600001C, HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C. We thank the participants and the staff of the Nurses’ Health Study II for their valuable contributions. The Nurses’ Health Study II is supported by the National Institutes of Health (UM1 CA176726, R01 CA67262). This work was supported by the National Institutes of Health (R01 AG051600, R01 CA163451). T.H. is supported by K01 HL143034. The authors assume full responsibility for analyses and interpretation of these data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyi Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Balasubramanian, R., Yao, Y. et al. Associations of depression status with plasma levels of candidate lipid and amino acid metabolites: a meta-analysis of individual data from three independent samples of US postmenopausal women. Mol Psychiatry 26, 3315–3327 (2021). https://doi.org/10.1038/s41380-020-00870-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00870-9

This article is cited by

Search

Quick links