Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings

Abstract

Schizophrenia and other psychotic disorders are highly debilitating psychiatric conditions that lack a clear etiology and exhibit polygenic inheritance underlain by pleiotropic genes. The prevailing explanation points to the interplay between predisposing genes and environmental exposure. Accumulated evidence suggests that epigenetic regulation of the genome may mediate dynamic gene–environment interactions at the molecular level by modulating the expression of psychiatric phenotypes through transcription factors. This systematic review summarizes the current knowledge linking schizophrenia and other psychotic disorders to epigenetics, based on PubMed and Web of Science database searches conducted according to the PRISMA guidelines. Three groups of mechanisms in case–control studies  of human tissue (i.e., postmortem brain and bio-fluids) were considered: DNA methylation, histone modifications, and non-coding miRNAs. From the initial pool of 3,204 records, 152 studies met our inclusion criteria (11,815/11,528, 233/219, and 2,091/1,827 cases/controls for each group, respectively). Many of the findings revealed associations with epigenetic modulations of genes regulating neurotransmission, neurodevelopment, and immune function, as well as differential miRNA expression (e.g., upregulated miR-34a, miR-7, and miR-181b). Overall, actual evidence moderately supports an association between epigenetics and schizophrenia and other psychotic disorders. However, heterogeneous results and cross-tissue extrapolations call for future work. Integrating epigenetics into systems biology may critically enhance research on psychosis and thus our understanding of the disorder. This may have implications for psychiatry in risk stratification, early recognition, diagnostics, precision medicine, and other interventional approaches targeting epigenetic fingerprints.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of epigenetic regulatory mechanisms.

Similar content being viewed by others

References

  1. Chong HY, Teoh SL, Wu DBC, Kotirum S, Chiou CF, Chaiyakunapruk N. Global economic burden of schizophrenia: a systematic review. Neuropsychiatr Dis Treat. 2016;12:357–73.

    PubMed  PubMed Central  Google Scholar 

  2. Tsai J, Rosenheck RA. Psychiatric comorbidity among adults with schizophrenia: a latent class analysis. Psychiatry Res 2013;210:16–20.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Laursen TM, Nordentoft M, Mortensen PB. Excess early mortality in schizophrenia. Annu Rev Clin Psychol. 2014;10:425–48.

    Article  PubMed  Google Scholar 

  4. Jaaskelainen E, Juola P, Hirvonen N, McGrath JJ, Saha S, Isohanni M, et al. A systematic review and meta-analysis of recovery in schizophrenia. Schizophrenia Bull 2013;39:1296–306.

    Article  Google Scholar 

  5. van Os J, Rutten BP, Poulton R. Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophrenia Bull 2008;34:1066–82.

    Article  Google Scholar 

  6. Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med. 2009;27:351–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nebbioso A, Tambaro FP, Dell'Aversana C, Altucci L. Cancer epigenetics: moving forward. PLoS Genet 2018;14:e1007362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH, Song H. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 2010;13:1338–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Petronis A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 2010;465:721.

    Article  CAS  PubMed  Google Scholar 

  10. Schmitt A, Martins-de-Souza D, Akbarian S, Cassoli JS, Ehrenreich H, Fischer A, et al. Consensus paper of the WFSBP task force on biological markers: criteria for biomarkers and endophenotypes of schizophrenia, part III: molecular mechanisms. World J Biol Psychiatry. 2017;18:330–56.

    Article  PubMed  Google Scholar 

  11. Pepper E, Cardno GA. Genetics of schizophrenia and other psychotic disorders. Curr Psychiatry Rev. 2014;10:133–42.

    Article  CAS  Google Scholar 

  12. Giegling I, Hosak L, Mossner R, Serretti A, Bellivier F, Claes S, et al. Genetics of schizophrenia: a consensus paper of the WFSBP Task Force on Genetics. World J Biol Psychiatry: Off J World Federation Societies Biol Psychiatry. 2017;18:492–505.

    Article  Google Scholar 

  13. Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008;82:696–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kendler KS. A joint history of the nature of genetic variation and the nature of schizophrenia. Mol psychiatry 2015;20:77–83.

    Article  CAS  PubMed  Google Scholar 

  15. Kavanagh DH, Tansey KE, O'Donovan MC, Owen MJ. Schizophrenia genetics: emerging themes for a complex disorder. Mol Psychiatry 2015;20:72–6.

    Article  CAS  PubMed  Google Scholar 

  16. Carroll LS, Owen MJ. Genetic overlap between autism, schizophrenia and bipolar disorder. Genome Med. 2009;1:102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Rutten BP, Mill J. Epigenetic mediation of environmental influences in major psychotic disorders. Schizophrenia Bull 2009;35:1045–56.

    Article  Google Scholar 

  18. Lemire M, Zaidi SH, Ban M, Ge B, Aïssi D, Germain M, et al. Long-range epigenetic regulation is conferred by genetic variation located at thousands of independent loci. Nat Commun 2015;6:6326.

    Article  CAS  PubMed  Google Scholar 

  19. Probst AV, Dunleavy E, Almouzni G. Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol. 2009;10:192–206.

    Article  CAS  PubMed  Google Scholar 

  20. Pai NB, Vella SC. Reason for clozapine cessation. Acta Psychiatr Scandinavica. 2012;125:39–44.

    Article  CAS  Google Scholar 

  21. Kular L, Kular S. Epigenetics applied to psychiatry: clinical opportunities and future challenges. Psychiatry Clin Neurosci. 2018;72:195–211.

    Article  PubMed  Google Scholar 

  22. Ovenden ES, McGregor NW, Emsley RA, Warnich L. DNA methylation and antipsychotic treatment mechanisms in schizophrenia: progress and future directions. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;81:38–49.

    Article  CAS  Google Scholar 

  23. Schubeler D. Function and information content of DNA methylation. Nature 2015;517:321–6.

    Article  CAS  PubMed  Google Scholar 

  24. Kass SU, Landsberger N, Wolffe AP. DNA methylation directs a time-dependent repression of transcription initiation. Curr Biol 1997;7:157–65.

    Article  CAS  PubMed  Google Scholar 

  25. Jones PA. The DNA methylation paradox. Trends Genet. 1999;15:34–7.

    Article  CAS  PubMed  Google Scholar 

  26. Anastasiadi D, Esteve-Codina A, Piferrer F. Consistent inverse correlation between DNA methylation of the first intron and gene expression across tissues and species. Epigenetics chromatin. 2018;11:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. St Laurent G, Wahlestedt C, Kapranov P. The landscape of long noncoding RNA classification. Trends Genet: Tig 2015;31:239–51.

    Article  CAS  Google Scholar 

  29. Cholewa-Waclaw J, Bird A, von Schimmelmann M, Schaefer A, Yu H, Song H, et al. The role of epigenetic mechanisms in the regulation of gene expression in the nervous system. J Neurosci. 2016;36:11427–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yao Q, Chen Y, Zhou X. The roles of microRNAs in epigenetic regulation. Curr Opin Chem Biol. 2019;51:11–7.

    Article  CAS  PubMed  Google Scholar 

  31. Issler O, Chen A. Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci. 2015;16:201–12.

    Article  CAS  PubMed  Google Scholar 

  32. Cromby J, Chung E, Papadopoulos D, Talbot C. Reviewing the epigenetics of schizophrenia. J Ment Health. 2019;28:71–9.

    Article  PubMed  Google Scholar 

  33. Teroganova N, Girshkin L, Suter C, Green M. DNA methylation in peripheral tissue of schizophrenia and bipolar disorder: a systematic review. Bmc Genet. 2016;17:27

  34. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006–12.

    Article  PubMed  Google Scholar 

  35. McHugh M. Interrater reliability: the kappa statistic. Biochemia Med 2012;22:276–82.

    Article  Google Scholar 

  36. Alelú-Paz R, Carmona FJ, Sanchez-Mut JV, Cariaga-Martínez A, González-Corpas A, Ashour N, et al. Epigenetics in Schizophrenia: A Pilot Study of Global DNA Methylation in different brain regions associated with higher cognitive functions. Front Psychol 2016;7:1496.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Viana J, Hannon E, Dempster E, Pidsley R, Macdonald R, Knox O, et al. Schizophrenia-associated methylomic variation: molecular signatures of disease and polygenic risk burden across multiple brain regions. Hum Mol Genet. 2016;26:210–25.

    PubMed Central  Google Scholar 

  38. Nishioka M, Bundo M, Koike S, Takizawa R, Kakiuchi C, Araki T, et al. Comprehensive DNA methylation analysis of peripheral blood cells derived from patients with first-episode schizophrenia. J Hum Genet. 2013;58:91–7.

    Article  CAS  PubMed  Google Scholar 

  39. Li SF, Yang Q, Hou Y, Jiang TY, Zong L, Wang ZJ, et al. Hypomethylation of LINE-1 elements in schizophrenia and bipolar disorder. J Psychiatr Res. 2018;107:68–72.

    Article  PubMed  Google Scholar 

  40. Misiak B, Szmida E, Karpiński P, Loska O, Sąsiadek MM, Frydecka D. Lower LINE-1 methylation in first-episode schizophrenia patients with the history of childhood trauma. Epigenomics 2015;7:1275–85.

    Article  CAS  PubMed  Google Scholar 

  41. Fachim HA, Srisawat U, Dalton CF, Reynolds GP. Parvalbumin promoter hypermethylation in postmortem brain in schizophrenia. Epigenomics 2018;10:519–24.

    Article  CAS  PubMed  Google Scholar 

  42. Melas PA, Rogdaki M, Ösby U, Schalling M, Lavebratt C, Ekström TJ. Epigenetic aberrations in leukocytes of patients with schizophrenia: association of global DNA methylation with antipsychotic drug treatment and disease onset. FASEB J. 2012;26:2712–8.

    Article  CAS  PubMed  Google Scholar 

  43. Jiang T, Zong L, Zhou L, Hou Y, Zhang L, Zheng X, et al. Variation in global DNA hydroxymethylation with age associated with schizophrenia. Psychiatry Res 2017;257:497–500.

    Article  CAS  PubMed  Google Scholar 

  44. Shimabukuro M, Sasaki T, Imamura A, Tsujita T, Fuke C, Umekage T, et al. Global hypomethylation of peripheral leukocyte DNA in male patients with schizophrenia: a potential link between epigenetics and schizophrenia. J Psychiatr Res. 2007;41:1042–6.

    Article  PubMed  Google Scholar 

  45. Bromberg A, Levine J, Nemetz B, Belmaker R, Agam G. No association between global leukocyte DNA methylation and homocysteine levels in schizophrenia patients. Schizophrenia Res 2008;101:50–7.

    Article  CAS  Google Scholar 

  46. Chase KA, Gavin DP, Guidotti A, Sharma RP. Histone methylation at H3K9: evidence for a restrictive epigenome in schizophrenia. Schizophr Res 2013;149:15–20.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sharma RP, Feiner B, Chase KA. Histone H3 phosphorylation is upregulated in PBMCs of schizophrenia patients in comparison to healthy controls. Schizophr Res 2015;169:498–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 2003;300:455.

    Article  CAS  PubMed  Google Scholar 

  49. Howes O, Nour M. Dopamine and the aberrant salience hypothesis of schizophrenia. World Psychiatry 2016;15:3–4.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cheng J, Wang Y, Zhou K, Wang L, Li J, Zhuang Q, et al. Male-specific association between dopamine receptor D4 gene methylation and schizophrenia. PloS ONE 2014;9:e89128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Dai D, Cheng J, Zhou K, Lv Y, Zhuang Q, Zheng R, et al. Significant association between DRD3 gene body methylation and schizophrenia. Psychiatry Res 2014;220:772–7.

    Article  CAS  PubMed  Google Scholar 

  52. Kordi-Tamandani DM, Sahranavard R, Torkamanzehi A. Analysis of association between dopamine receptor genes’ methylation and their expression profile with the risk of schizophrenia. Psychiatr Genet 2013;23:183–7.

    Article  CAS  PubMed  Google Scholar 

  53. Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, et al. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet. 2006;15:3132–45.

    Article  CAS  PubMed  Google Scholar 

  54. Nohesara S, Ghadirivasfi M, Mostafavi S, Eskandari MR, Ahmadkhaniha H, Thiagalingam S, et al. DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res. 2011;45:1432–8.

    Article  PubMed  Google Scholar 

  55. Walton E, Liu J, Hass J, White T, Scholz M, Roessner V, et al. MB-COMT promoter DNA methylation is associated with working-memory processing in schizophrenia patients and healthy controls. Epigenetics 2014;9:1101–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Murphy BC, O'Reilly RL, Singh SM. Site-specific cytosine methylation in S-COMT promoter in 31 brain regions with implications for studies involving schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2005;133B:37–42.

    Article  PubMed  Google Scholar 

  57. Abdolmaleky HM, Cheng KH, Russo A, Smith CL, Faraone SV, Wilcox M, et al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet. 2005;134B:60–6.

    Article  PubMed  Google Scholar 

  58. Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A, et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci 2005;102:9341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fikri RMN, Norlelawati AT, El-Huda ARN, Hanisah MN, Kartini A, Norsidah K, et al. Reelin (RELN) DNA methylation in the peripheral blood of schizophrenia. J Psychiatr Res. 2017;88:28–37.

    Article  Google Scholar 

  60. Tamura Y, Kunugi H, Ohashi J, Hohjoh H. Epigenetic aberration of the human REELIN gene in psychiatric disorders. Mol Psychiatry 2007;12:519.

    Article  CAS  PubMed  Google Scholar 

  61. Tochigi M, Iwamoto K, Bundo M, Komori A, Sasaki T, Kato N, et al. Methylation status of the reelin promoter region in the brain of schizophrenic patients. Biol psychiatry 2008;63:530–3.

    Article  CAS  PubMed  Google Scholar 

  62. Alfimova MV, Kondratiev NV, Golov AK, Golimbet VE. [Methylation of the Reelin Gene Promoter in Peripheral Blood and Its Relationship with the Cognitive Function of Schizophrenia Patients]. Mol Biol (Mosk). 2018;52:782–92.

    Article  CAS  Google Scholar 

  63. Huang H-S, Akbarian S. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia. PloS ONE 2007;2:e809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Abdolmaleky HM, Nohesara S, Ghadirivasfi M, Lambert AW, Ahmadkhaniha H, Ozturk S, et al. DNA hypermethylation of serotonin transporter gene promoter in drug naïve patients with schizophrenia. Schizophr Res 2014;152:373–80.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cheah S-Y, Lawford B, Young R, Morris C, Voisey J. mRNA expression and DNA methylation analysis of serotonin receptor 2A (HTR2A) in the human schizophrenic brain. Genes 2017;8:14.

    Article  PubMed Central  CAS  Google Scholar 

  66. Carrard A, Salzmann A, Malafosse A, Karege F. Increased DNA methylation status of the serotonin receptor 5HTR1A gene promoter in schizophrenia and bipolar disorder. J Affect Disord. 2011;132:450–3.

    Article  CAS  PubMed  Google Scholar 

  67. Favalli G, Li J, Belmonte-de-Abreu P, Wong AH, Daskalakis ZJ. The role of BDNF in the pathophysiology and treatment of schizophrenia. J Psychiatr Res. 2012;46:1–11.

    Article  PubMed  Google Scholar 

  68. Ikegame T, Bundo M, Sunaga F, Asai T, Nishimura F, Yoshikawa A, et al. DNA methylation analysis of BDNF gene promoters in peripheral blood cells of schizophrenia patients. Neurosci Res 2013;77:208–14.

    Article  CAS  PubMed  Google Scholar 

  69. Kordi-Tamandani DM, Sahranavard R, Torkamanzehi A. DNA methylation and expression profiles of the brain-derived neurotrophic factor (BDNF) and dopamine transporter (DAT1) genes in patients with schizophrenia. Mol Biol Rep. 2012;39:10889–93.

    Article  CAS  PubMed  Google Scholar 

  70. Çöpoğlu ÜS, İğci M, Bozgeyik E, Kokaçya MH, İğci YZ, Dokuyucu R, et al. DNA methylation of BDNF gene in schizophrenia. Med Sci Monit: Int Med J Exp Clin Res. 2016;22:397.

    Article  Google Scholar 

  71. Iwamoto K, Bundo M, Yamada K, Takao H, Iwayama-Shigeno Y, Yoshikawa T, et al. DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia. J Neurosci. 2005;25:5376–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McKinney B, Ding Y, Lewis DA, Sweet RA. DNA methylation as a putative mechanism for reduced dendritic spine density in the superior temporal gyrus of subjects with schizophrenia. Transl Psychiatry 2017;7:e1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kordi-Tamandani DM, Vaziri S, Dahmardeh N, Torkamanzehi A. Evaluation of polymorphism, hypermethylation and expression pattern of CTLA4 gene in a sample of Iranian patients with schizophrenia. Mol Biol Rep. 2013;40:5123–8.

    Article  CAS  PubMed  Google Scholar 

  74. Rubin LH, Connelly JJ, Reilly JL, Carter CS, Drogos LL, Pournajafi-Nazarloo H, et al. Sex and diagnosis-specific associations between DNA methylation of the oxytocin receptor gene with emotion processing and temporal-limbic and prefrontal brain volumes in psychotic disorders. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2016;1:141–51.

    Google Scholar 

  75. Rich ME, Caldwell HK. A role for oxytocin in the etiology and treatment of schizophrenia. Front Endocrinol. 2015;6:90.

    Article  Google Scholar 

  76. Aberg KA, McClay JL, Nerella S, Xie LY, Clark SL, Hudson AD, et al. MBD-seq as a cost-effective approach for methylome-wide association studies: demonstration in 1500 case–control samples. Epigenomics 2012;4:605–21.

    Article  CAS  PubMed  Google Scholar 

  77. Aberg KA, McClay JL, Nerella S, Clark S, Kumar G, Chen W, et al. Methylome-wide association study of schizophrenia: identifying blood biomarker signatures of environmental insults. JAMA Psychiatry. 2014;71:255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen C, Zhang C, Cheng L, Reilly JL, Bishop JR, Sweeney JA, et al. Correlation between DNA methylation and gene expression in the brains of patients with bipolar disorder and schizophrenia. Bipolar Disord 2014;16:790–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wockner LF, Noble EP, Lawford BR, Young RM, Morris CP, Whitehall VL, et al. Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl Psychiatry 2014;4:e339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. van den Oord EJ, Clark SL, Xie LY, Shabalin AA, Dozmorov MG, Kumar G, et al. A whole methylome CpG-SNP association study of psychosis in blood and brain tissue. Schizophrenia Bull 2015;42:1018–26.

    Article  Google Scholar 

  81. Hannon E, Dempster E, Viana J, Burrage J, Smith A, Macdonald R, et al. An integrated genetic-epigenetic analysis of schizophrenia: evidence for co-localization of genetic associations and differential DNA methylation. Genome Biol. 2016;17:176

  82. Liu J, Chen J, Ehrlich S, Walton E, White T, Perrone-Bizzozero N, et al. Methylation patterns in whole blood correlate with symptoms in schizophrenia patients. Schizophr Bull. 2014;40:769–76.

    Article  PubMed  Google Scholar 

  83. Müller N. Inflammation in Schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull. 2018;44:973–82.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Benros ME, Nielsen PR, Nordentoft M, Eaton WW, Dalton SO, Mortensen PB. Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. Am J Psychiatry. 2011;168:1303–10.

    Article  PubMed  Google Scholar 

  85. Walton E, Hass J, Liu J, Roffman JL, Bernardoni F, Roessner V, et al. Correspondence of DNA methylation between blood and brain tissue and its application to schizophrenia research. Schizophr Bull 2016;42:406–14.

    Article  PubMed  Google Scholar 

  86. Verge B, Alonso Y, Valero J, Miralles C, Vilella E, Martorell L. Mitochondrial DNA (mtDNA) and schizophrenia. Eur Psychiatry 2011;26:45–56.

    Article  CAS  PubMed  Google Scholar 

  87. Pidsley R, Viana J, Hannon E, Spiers H, Troakes C, Al-Saraj S, et al. Methylomic profiling of human brain tissue supports a neurodevelopmental origin for schizophrenia. Genome Biol 2014;15:483.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rukova B, Staneva R, Hadjidekova S, Stamenov G, Milanova V, Toncheva D. Genome-wide methylation profiling of schizophrenia. Balk J Med Genet. 2014;17:15–23.

    Article  CAS  Google Scholar 

  89. Gill K, Grace A. The role of neurotransmitters in schizophrenia. In: Schizophrenia and Psychotic Spectrum Disorders. Oxford University Press; 2016. p.153–84.

  90. Jaffe AE, Gao Y, Deep-Soboslay A, Tao R, Hyde TM, Weinberger DR, et al. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat Neurosci 2016;19:40–7.

    Article  CAS  PubMed  Google Scholar 

  91. Xiao Y, Camarillo C, Ping Y, Arana TB, Zhao H, Thompson PM, et al. The DNA methylome and transcriptome of different brain regions in schizophrenia and bipolar disorder. PLoS ONE 2014;9:e95875.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zhao H, Xu J, Pang L, Zhang Y, Fan H, Liu L, et al. Genome-wide DNA methylome reveals the dysfunction of intronic microRNAs in major psychosis. BMC Med genomics. 2015;8:62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Birnbaum R, Weinberger DR. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat Rev Neurosci. 2017;18:727–40.

    Article  CAS  PubMed  Google Scholar 

  94. Hannon E, Spiers H, Viana J, Pidsley R, Burrage J, Murphy T, et al. Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci. Nat Neurosci 2016;19:48.

    Article  CAS  PubMed  Google Scholar 

  95. Ben-Shachar D, Laifenfeld D. Mitochondria, synaptic plasticity, and schizophrenia. International review of neurobiology. Vol. 59. Elsevier; 2004. p. 273–96.

  96. Rajasekaran A, Venkatasubramanian G, Berk M, Debnath M. Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Neurosci Biobehav Rev. 2015;48:10–21.

    Article  CAS  PubMed  Google Scholar 

  97. Huang HS, Matevossian A, Whittle C, Kim SY, Schumacher A, Baker SP, et al. Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J Neurosci 2007;27:11254–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tang B, Dean B, Thomas EA. Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders. Transl Psychiatry 2011;1:e64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. He EQ, Lozano MAG, Stringer S, Watanabe K, Sakamoto K, den Oudsten F, et al. MIR137 schizophrenia-associated locus controls synaptic function by regulating synaptogenesis, synapse maturation and synaptic transmission. Hum Mol Genet. 2018;27:1879–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Miller BH, Zeier Z, Xi L, Lanz TA, Deng S, Strathmann J, et al. MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proc Natl Acad Sci USA. 2012;109:3125–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cheng H-YM, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, et al. microRNA modulation of circadian-clock period and entrainment. Neuron 2007;54:813–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ, et al. Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet. 2008;17:1156–68.

    Article  CAS  PubMed  Google Scholar 

  103. Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 2010;15:1176–89.

    Article  CAS  PubMed  Google Scholar 

  104. Nowak J, Michlewski G. miRNAs in development and pathogenesis of the nervous system. Biochemical Soc Trans. 2013;41:815–20.

    Article  CAS  Google Scholar 

  105. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. cell 2005;120:15–20.

    Article  CAS  PubMed  Google Scholar 

  106. Miller BH, Wahlestedt C. MicroRNA dysregulation in psychiatric disease. Brain Res 2010;1338:89–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lai X, Bhattacharya A, Schmitz U, Kunz M, Vera J, Wolkenhauer O. A systems’ biology approach to study microRNA-mediated gene regulatory networks. Biomed Res Int. 2013;2013:703849

  108. Abdolmaleky HM, Yaqubi S, Papageorgis P, Lambert AW, Ozturk S, Sivaraman V, et al. Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophr Res 2011;129:183–90.

    Article  PubMed  Google Scholar 

  109. Ruzicka WB, Subburaju S, Benes FM. Circuit-and diagnosis-specific DNA methylation changes at γ-aminobutyric acid–related genes in postmortem human hippocampus in schizophrenia and bipolar disorder. JAMA psychiatry. 2015;72:541–51.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ota VK, Noto C, Gadelha A, Santoro ML, Spindola LM, Gouvea ES, et al. Changes in gene expression and methylation in the blood of patients with first-episode psychosis. Schizophrenia Res 2014;159:358–64.

    Article  Google Scholar 

  111. Kordi-Tamandani DM, Dahmardeh N, Torkamanzehi A. Evaluation of hypermethylation and expression pattern of GMR2, GMR5, GMR8, and GRIA3 in patients with schizophrenia. Gene 2013;515:163–6.

    Article  CAS  PubMed  Google Scholar 

  112. Pesce M, Ferrone A, Rizzuto A, Tatangelo R, Iezzi I, Ladu S, et al. The SHP-1 expression is associated with cytokines and psychopathological status in unmedicated first episode schizophrenia patients. Brain Behav Immun. 2014;41:251–60.

    Article  CAS  PubMed  Google Scholar 

  113. Yoshino Y, Ozaki Y, Yamazaki K, Sao T, Mori Y, Ochi S, et al. DNA Methylation changes in intron 1 of triggering receptor expressed on myeloid cell 2 in Japanese Schizophrenia subjects. Front Neurosci. 2017;11:275.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhou C, Chen J, Tang XW, Feng XT, Yu M, Sha WW, et al. DNA methylation and gene expression of the chemokine (C-X-C motif) ligand 1 in patients with deficit and non-deficit schizophrenia. Psychiatry Res 2018;268:82–6.

    Article  CAS  PubMed  Google Scholar 

  115. Gao J, Yi H, Tang X, Feng X, Yu M, Sha W, et al. DNA methylation and gene expression of matrix metalloproteinase-9 gene in deficit and non-deficit Schizophrenia. Front Genet. 2018;9:646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. D'Addario C, Micale V, Di Bartolomeo M, Stark T, Pucci M, Sulcova A, et al. A preliminary study of endocannabinoid system regulation in psychosis: distinct alterations of CNR1 promoter DNA methylation in patients with schizophrenia. Schizophr Res 2017;188:132–40.

    Article  PubMed  Google Scholar 

  117. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013;38:23–38.

    Article  CAS  PubMed  Google Scholar 

  118. Boks MP, Houtepen LC, Xu Z, He Y, Ursini G, Maihofer AX, et al. Genetic vulnerability to DUSP22 promoter hypermethylation is involved in the relation between in utero famine exposure and schizophrenia. NPJ Schizophr 2018;4:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Keller S, Errico F, Zarrilli F, Florio E, Punzo D, Mansueto S, et al. DNA methylation state of BDNF gene is not altered in prefrontal cortex and striatum of schizophrenia subjects. Psychiatry Res 2014;220:1147–50.

    Article  CAS  PubMed  Google Scholar 

  120. Tolosa A, Sanjuán J, Dagnall AM, Moltó MD, Herrero N, de Frutos R. FOXP2 gene and language impairment in schizophrenia: association and epigenetic studies. BMC Med Genet. 2010;11:114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. El Huda ARN, Norsidah KZ, Fikri MRN, Hanisah MN, Kartini A, Norlelawati AT. DNA methylation of membrane-bound catechol-O-methyltransferase in Malaysian schizophrenia patients. Psychiatry Clin Neurosci. 2018;72:266–79.

    Article  CAS  Google Scholar 

  122. Cheah S-Y, McLeay R, Wockner LF, Lawford BR, Young RM, Morris CP, et al. Expression and methylation of BDNF in the human brain in schizophrenia. World J Biol Psychiatry. 2017;18:392–400.

    Article  PubMed  Google Scholar 

  123. Scarr E, Craig J, Cairns M, Seo M, Galati J, Beveridge N, et al. Decreased cortical muscarinic M1 receptors in schizophrenia are associated with changes in gene promoter methylation, mRNA and gene targeting microRNA. Transl psychiatry. 2013;3:e230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Spainhour JC, Lim HS, Yi SV, Qiu P. Correlation patterns between DNA methylation and gene expression in the cancer genome atlas. Cancer Inform. 2019;18:1176935119828776

  125. Chen Y, Zhang J, Zhang L, Shen Y, Xu Q. Effects of MAOA promoter methylation on susceptibility to paranoid schizophrenia. Hum Genet 2012;131:1081–7.

    Article  CAS  PubMed  Google Scholar 

  126. Gao S, Cheng J, Li G, Sun T, Xu Y, Wang Y, et al. Catechol-O-methyltransferase gene promoter methylation as a peripheral biomarker in male schizophrenia. Eur Psychiatry 2017;44:39–46.

    Article  CAS  PubMed  Google Scholar 

  127. Chase KA, Rosen C, Rubin LH, Feiner B, Bodapati AS, Gin H, et al. Evidence of a sex-dependent restrictive epigenome in schizophrenia. J Psychiatr Res. 2015;65:87–94.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ghadirivasfi M, Nohesara S, Ahmadkhaniha HR, Eskandari MR, Mostafavi S, Thiagalingam S, et al. Hypomethylation of the serotonin receptor type-2A Gene (HTR2A) at T102C polymorphic site in DNA derived from the saliva of patients with schizophrenia and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2011;156B:536–45.

    Article  PubMed  CAS  Google Scholar 

  129. Yoshino Y, Kawabe K, Mori T, Mori Y, Yamazaki K, Numata S, et al. Low methylation rates of dopamine receptor D2 gene promoter sites in Japanese schizophrenia subjects. World J Biol Psychiatry. 2016;17:449–56.

    Article  PubMed  Google Scholar 

  130. Zong L, Zhou L, Hou Y, Zhang L, Jiang W, Zhang W, et al. Genetic and epigenetic regulation on the transcription of GABRB2: genotype-dependent hydroxymethylation and methylation alterations in schizophrenia. J Psychiatr Res. 2017;88:9–17.

    Article  PubMed  Google Scholar 

  131. Abdolmaleky HM, Pajouhanfar S, Faghankhani M, Joghataei MT, Mostafavi A, Thiagalingam S. Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and Psychotic bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2015;168:687–96.

    Article  CAS  PubMed  Google Scholar 

  132. Hu YK, Li CH, Wang YF, Li QH, Liu YD, Liao SD, et al. Analysis of COMT Val158Met polymorphisms and methylation in Chinese male schizophrenia patients with homicidal behavior. Int J Leg Med. 2018;132:1537–44.

    Article  Google Scholar 

  133. Alfimova MV, Kondratiev NV, Golov AK, Golimbet VE. Methylation of the reelin gene promoter in peripheral blood and its relationship with the cognitive function of Schizophrenia patients. Mol Biol 2018;52:676–85.

    Article  CAS  Google Scholar 

  134. Braun PR, Han S, Hing B, Nagahama Y, Gaul LN, Heinzman JT, et al. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl Psychiatry 2019;9:47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Tomita H, Vawter MP, Walsh DM, Evans SJ, Choudary PV, Li J, et al. Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry 2004;55:346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Aberg KA, Xie LY, McClay JL, Nerella S, Vunck S, Snider S, et al. Testing two models describing how methylome-wide studies in blood are informative for psychiatric conditions. Epigenomics 2013;5:367–77.

    Article  CAS  PubMed  Google Scholar 

  137. Edgar RD, Jones MJ, Meaney MJ, Turecki G, Kobor MS. BECon: a tool for interpreting DNA methylation findings from blood in the context of brain. Transl Psychiatry 2017;7:e1187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rahmani E, Shenhav L, Schweiger R, Yousefi P, Huen K, Eskenazi B, et al. Genome-wide methylation data mirror ancestry information. Epigenetics Chromatin. 2017;10:1

  139. Olova N, Krueger F, Andrews S, Oxley D, Berrens RV, Branco MR, et al. Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data. Genome Biol 2018;19:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Walker DL, Bhagwate AV, Baheti S, Smalley RL, Hilker CA, Sun Z, et al. DNA methylation profiling: comparison of genome-wide sequencing methods and the Infinium Human Methylation 450 Bead Chip. Epigenomics 2015;7:1287–302.

    Article  CAS  PubMed  Google Scholar 

  141. Timmons JA, Szkop KJ, Gallagher IJ. Multiple sources of bias confound functional enrichment analysis of global-omics data. Genome Biol 2015;16:186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13:358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Nelson PT, Wang W-X, Wilfred BR, Tang G. Technical variables in high-throughput miRNA expression profiling: much work remains to be done. Biochim Biophys Acta. 2008;1779:758–65.

  144. Kinoshita M, Numata S, Tajima A, Ohi K, Hashimoto R, Shimodera S, et al. Aberrant DNA methylation of blood in schizophrenia by adjusting for estimated cellular proportions. Neuromolecular Med 2014;16:697–703.

    Article  CAS  PubMed  Google Scholar 

  145. Montano C, Taub MA, Jaffe A, Briem E, Feinberg JI, Trygvadottir R, et al. Association of DNA methylation differences with schizophrenia in an Epigenome-Wide Association Study. JAMA Psychiatry 2016;73:506–14.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007;8:272–85.

    Article  CAS  PubMed  Google Scholar 

  147. Do C, Shearer A, Suzuki M, Terry MB, Gelernter J, Greally JM, et al. Genetic–epigenetic interactions in cis: a major focus in the post-GWAS era. Genome Biol 2017;18:120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Sun E, Shi Y. MicroRNAs: small molecules with big roles in neurodevelopment and diseases. Exp Neurol 2015;268:46–53.

    Article  CAS  PubMed  Google Scholar 

  149. Kebir O, Chaumette B, Rivollier F, Miozzo F, Lemieux Perreault LP, Barhdadi A, et al. Methylomic changes during conversion to psychosis. Mol Psychiatry 2017;22:512–8.

    Article  CAS  PubMed  Google Scholar 

  150. Swathy B, Banerjee M. Understanding epigenetics of schizophrenia in the backdrop of its antipsychotic drug therapy. Epigenomics 2017;9:721–36.

    Article  CAS  PubMed  Google Scholar 

  151. Alelú‐Paz R, González‐Corpas A, Ashour N, Escanilla A, Monje A, Guerrero Márquez C, et al. DNA methylation pattern of gene promoters of major neurotransmitter systems in older patients with schizophrenia with severe and mild cognitive impairment. International journal of geriatric psychiatry. 2015;30:558–65.

    Article  PubMed  Google Scholar 

  152. Dempster EL, Mill J, Craig IW, Collier DA. The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression. BMC Med Genet. 2006;7:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Chuang Y-A, Hu T-M, Chen C-H, Hsu S-H, Tsai H-Y, Cheng M-C. Rare mutations and hypermethylation of the ARC gene associated with schizophrenia. Schizophrenia research. 2016;176:106–13.

    Article  PubMed  Google Scholar 

  154. Kordi-Tamandani DM, Mojahed A, Sahranavard R, Najafi M. Association of glutathione s-transferase gene methylation with risk of schizophrenia in an Iranian population. Pharmacology. 2014;94:179–82.

    Article  CAS  PubMed  Google Scholar 

  155. Li YL, Wang KS, Zhang P, Huang JC, An HM, Wang NY, et al. Quantitative DNA Methylation Analysis of DLGAP2 Gene using Pyrosequencing in Schizophrenia with Tardive Dyskinesia: A Linear Mixed Model Approach. Scientific Reports. 2018;8.

  156. Murphy BC, O’Reilly RL, Singh SM. DNA methylation and mRNA expression of SYN III, a candidate gene for schizophrenia. BMC Med Genet. 2008;9:115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Nakata S, Yoshino Y, Okita M, Kawabe K, Yamazaki K, Ozaki Y, et al. Differential expression of the ghrelin-related mRNAs GHS-R1a, GHS-R1b, and MBOAT4 in Japanese patients with schizophrenia. Psychiatry Res. 2019;272:334–9.

    Article  CAS  PubMed  Google Scholar 

  158. Okazaki S, Boku S, Otsuka I, Mouri K, Aoyama S, Shiroiwa K, et al. The cell cycle-related genes as biomarkers for schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2016;70:85–91.

    Article  CAS  PubMed  Google Scholar 

  159. Pun F, Zhao C, Lo W, Ng S, Tsang S, Nimgaonkar V, et al. Imprinting in the schizophrenia candidate gene GABRB2 encoding GABA A receptor β 2 subunit. Molecular psychiatry. 2011;16:557.

    Article  CAS  PubMed  Google Scholar 

  160. Uno K, Kikuchi Y, Iwata M, Uehara T, Matsuoka T, Sumiyoshi T, et al. Decreased DNA Methylation in the Shati/Nat8l Promoter in Both Patients with Schizophrenia and a Methamphetamine-Induced Murine Model of Schizophrenia-Like Phenotype. PloS ONE. 2016;11:e0157959.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Venugopal D, Shivakumar V, Subbanna M, Kalmady SV, Amaresha AC, Agarwal SM, et al. Impact of antipsychotic treatment on methylation status of Interleukin-6 IL-6 gene in Schizophrenia. Journal of Psychiatric Research. 2018;104:88–95.

    Article  PubMed  Google Scholar 

  162. Xu H, Wang B, Su D, Yu Q, Li Q, Kou C, et al. The DNA methylation profile of PLA2G4C gene promoter in schizophrenia. Psychiatry research. 2012;2:1079–81.

    Article  CAS  Google Scholar 

  163. Numata S, Ye T, Herman M, Lipska BK. DNA methylation changes in the postmortem dorsolateral prefrontal cortex of patients with schizophrenia. Front Genet. 2014;5:280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Ruzicka WB, Subburaju S, Benes FM. Variability of DNA Methylation within Schizophrenia Risk Loci across Subregions of Human Hippocampus. Genes (Basel). 2017;8.

  165. Wockner L, Morris C, Noble E, Lawford B, Whitehall V, Young R, et al. Brain-specific epigenetic markers of schizophrenia. Translational psychiatry. 2015;5:e680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kinoshita M, Numata S, Tajima A, Shimodera S, Ono S, Imamura A, et al. DNA methylation signatures of peripheral leukocytes in schizophrenia. Neuromolecular Med. 2013;15:95–101.

    Article  CAS  PubMed  Google Scholar 

  167. Li Y, Camarillo C, Xu J, Arana TB, Xiao Y, Zhao Z, et al. Genome-wide methylome analyses reveal novel epigenetic regulation patterns in schizophrenia and bipolar disorder. BioMed research international. 2015;2015.

  168. van Eijk KR, de Jong S, Strengman E, Buizer-Voskamp JE, Kahn RS, Boks MP, et al. Identification of schizophrenia-associated loci by combining DNA methylation and gene expression data from whole blood. Eur J Hum Genet. 2015;23:1106–10.

    Article  PubMed  CAS  Google Scholar 

  169. Akbarian S, Ruehl MG, Bliven E, Luiz LA, Peranelli AC, Baker SP, et al. Chromatin alterations associated with down-regulated metabolic gene expression in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry. 2005;62:829–40.

    Article  CAS  PubMed  Google Scholar 

  170. Banigan MG, Kao PF, Kozubek JA, Winslow AR, Medina J, Costa J, et al. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PloS ONE. 2013;8:e48814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Burmistrova O, Goltsov A, Abramova L, Kaleda V, Orlova V, Rogaev E. MicroRNA in schizophrenia: genetic and expression analysis of miR-130b (22q11). Biochemistry (Moscow). 2007;72:578–82.

    Article  CAS  PubMed  Google Scholar 

  172. Guella I, Sequeira A, Rollins B, Morgan L, Torri F, van Erp TG, et al. Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex. Journal of psychiatric research. 2013;47:1215–21.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Kim AH, Reimers M, Maher B, Williamson V, McMichael O, McClay JL, et al. MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res. 2010;124:183–91.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Kimoto S, Glausier JR, Fish KN, Volk DW, Bazmi HH, Arion D, et al. Reciprocal alterations in regulator of G protein signaling 4 and microRNA16 in schizophrenia. Schizophrenia bulletin. 2015;42:396–405.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Lai CY, Lee SY, Scarr E, Yu YH, Lin YT, Liu CM, et al. Aberrant expression of microRNAs as biomarker for schizophrenia: from acute state to partial remission, and from peripheral blood to cortical tissue. Transl Psychiatry. 2016;6:e717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Liu YC, Chang X, Hahn CG, Gur RE, Sleiman PAM, Hakonarson H. Non-coding RNA dysregulation in the amygdala region of schizophrenia patients contributes to the pathogenesis of the disease. Translational Psychiatry. 2018;8.

  177. Mellios N, Huang HS, Baker SP, Galdzicka M, Ginns E, Akbarian S. Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry. 2009;65:1006–14.

    Article  CAS  PubMed  Google Scholar 

  178. Mellios N, Galdzicka M, Ginns E, Baker SP, Rogaev E, Xu J, et al. Gender-specific reduction of estrogen-sensitive small RNA, miR-30b, in subjects with schizophrenia. Schizophr Bull. 2012;38:433–43.

    Article  PubMed  Google Scholar 

  179. Moreau MP, Bruse SE, David-Rus R, Buyske S, Brzustowicz LM. Altered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder. Biol Psychiatry. 2011;69:188–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, et al. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol. 2007;8:R27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Pietersen CY, Mauney SA, Kim SS, Lim MP, Rooney RJ, Goldstein JM, et al. Molecular profiles of pyramidal neurons in the superior temporal cortex in schizophrenia. Journal of neurogenetics. 2014;28:53–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pietersen CY, Mauney SA, Kim SS, Passeri E, Lim MP, Rooney RJ, et al. Molecular profiles of parvalbumin-immunoreactive neurons in the superior temporal cortex in schizophrenia. J Neurogenet. 2014;28:70–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ragan C, Patel K, Edson J, Zhang ZH, Gratten J, Mowry B. Small non-coding RNA expression from anterior cingulate cortex in schizophrenia shows sex specific regulation. Schizophr Res. 2017;183:82–7.

    Article  PubMed  Google Scholar 

  184. Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ. Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biological psychiatry. 2011;69:180–7.

    Article  CAS  PubMed  Google Scholar 

  185. Smalheiser NR, Lugli G, Zhang H, Rizavi H, Cook EH, Dwivedi Y. Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects. PLoS ONE. 2014;9:e86469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Wong J, Duncan CE, Beveridge NJ, Webster MJ, Cairns MJ, Weickert CS. Expression of NPAS3 in the human cortex and evidence of its posttranscriptional regulation by miR-17 during development, with implications for schizophrenia. Schizophr Bull. 2013;39:396–406.

    Article  PubMed  Google Scholar 

  187. Zhu Y, Kalbfleisch T, Brennan MD, Li Y. A MicroRNA gene is hosted in an intron of a schizophrenia-susceptibility gene. Schizophrenia research. 2009;109:86–9.

    Article  PubMed  Google Scholar 

  188. Alacam H, Akgun S, Akca H, Ozturk O, Kabukcu BB, Herken H. miR-181b-5p, miR-195-5p and miR-301a-3p are related with treatment resistance in schizophrenia. Psychiatry Res. 2016;245:200–6.

    Article  CAS  PubMed  Google Scholar 

  189. Cattane N, Mora C, Lopizzo N, Borsini A, Maj C, Pedrini L, et al. Identification of a miRNAs signature associated with exposure to stress early in life and enhanced vulnerability for schizophrenia: New insights for the key role of miR-125b-1-3p in neurodevelopmental processes. Schizophrenia research. 2019;205:63–75.

    Article  PubMed  Google Scholar 

  190. Fan HM, Sun XY, Niu W, Zhao L, Zhang QL, Li WS, et al. Altered microRNA Expression in Peripheral Blood Mononuclear Cells from Young Patients with Schizophrenia. J Mol Neurosci. 2015;56:562–71.

    Article  CAS  PubMed  Google Scholar 

  191. Gardiner E, Beveridge N, Wu J, Carr V, Scott R, Tooney P, et al. Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Molecular psychiatry. 2012;17:827.

    Article  CAS  PubMed  Google Scholar 

  192. Lai CY, Yu SL, Hsieh MH, Chen CH, Chen HY, Wen CC, et al. MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS ONE. 2011;6:e21635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Liu S, Zhang F, Shugart YY, Yang L, Li X, Liu Z, et al. The early growth response protein 1-miR-30a-5p-neurogenic differentiation factor 1 axis as a novel biomarker for schizophrenia diagnosis and treatment monitoring. Transl Psychiatry. 2017;7:e998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ma J, Shang SS, Wang JH, Zhang TB, Nie FY, Song XB, et al. Identification of miR-22-3p, miR-92a-3p, and miR-137 in peripheral blood as biomarker for schizophrenia. Psychiatry Research. 2018;265:70–6.

    Article  CAS  PubMed  Google Scholar 

  195. Shi W, Du J, Qi Y, Liang G, Wang T, Li S, et al. Aberrant expression of serum miRNAs in schizophrenia. Journal of psychiatric research. 2012;46:198–204.

    Article  PubMed  Google Scholar 

  196. Song HT, Sun XY, Zhang L, Zhao L, Guo ZM, Fan HM, et al. A preliminary analysis of association between the down-regulation of microRNA-181b expression and symptomatology improvement in schizophrenia patients before and after antipsychotic treatment. J Psychiatr Res. 2014;54:134–40.

    Article  PubMed  Google Scholar 

  197. Sun Xy, Zhang J, Niu W, Guo W, Song Ht, Li Hy, et al. A preliminary analysis of microRNA as potential clinical biomarker for schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2015;168:170–8.

    Article  CAS  Google Scholar 

  198. Sun XY, Lu J, Zhang L, Song HT, Zhao L, Fan HM, et al. Aberrant microRNA expression in peripheral plasma and mononuclear cells as specific blood-based biomarkers in schizophrenia patients. J Clin Neurosci. 2015;22:570–4.

    Article  CAS  PubMed  Google Scholar 

  199. Wei H, Yuan Y, Liu S, Wang C, Yang F, Lu Z, et al. Detection of circulating miRNA levels in schizophrenia. American Journal of Psychiatry. 2015;172:1141–7.

    Article  Google Scholar 

  200. Weigelt K, Bergink V, Burgerhout KM, Pescatori M, Wijkhuijs A, Drexhage HA. Down-regulation of inflammation-protective microRNAs 146a and 212 in monocytes of patients with postpartum psychosis. Brain Behav Immun. 2013;29:147–55.

    Article  CAS  PubMed  Google Scholar 

  201. Wu S, Zhang R, Nie F, Wang X, Jiang C, Liu M, et al. MicroRNA-137 inhibits EFNB2 expression affected by a genetic variant and is expressed aberrantly in peripheral blood of schizophrenia patients. EBioMedicine. 2016;12:133–42.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Xu Y, Li F, Zhang B, Zhang K, Zhang F, Huang X, et al. MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia. Schizophrenia research. 2010;119:219–27.

    Article  PubMed  Google Scholar 

  203. Xu Y, Yue W, Yao Shugart Y, Li S, Cai L, Li Q, et al. Exploring transcription factors-microRNAs co-regulation networks in schizophrenia. Schizophrenia bulletin. 2015;42:1037–45.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Yu HC, Wu J, Zhang HX, Zhang GL, Sui J, Tong WW, et al. Alterations of miR-132 are novel diagnostic biomarkers in peripheral blood of schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry. 2015;63:23–9.

    Article  CAS  PubMed  Google Scholar 

  205. Zhang F, Xu Y, Shugart YY, Yue W, Qi G, Yuan G, et al. Converging evidence implicates the abnormal microRNA system in schizophrenia. Schizophrenia bulletin. 2014;41:728–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Zhang J, Sun X-y, Zhang L-y. MicroRNA-7/Shank3 axis involved in schizophrenia pathogenesis. Journal of Clinical Neuroscience. 2015;22:1254–7.

    Article  CAS  PubMed  Google Scholar 

  207. Kinoshita M, Numata S, Tajima A, Shimodera S, Imoto I, Ohmori T. Plasma total homocysteine is associated with DNA methylation in patients with schizophrenia. Epigenetics. 2013;8:584–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukasz Smigielski.

Ethics declarations

Conflict of interest

SW has received royalties from Thieme Hogrefe, Kohlhammer, Springer, and Beltz and lecture honoraria from Opopharma in the last 5 years. Her research has been supported by the Swiss National Science Foundation (SNSF), several EU FP7s, HSM High Specialized Medicine of the Canton Zurich, Switzerland, Bfarm Germany, the Hartmann Müller Foundation, Olga Mayenfisch Foundation, and Gertrud Thalmann Foundation. Outside professional activities and interests are declared in the following link of the University of Zurich (www.uzh.ch/prof/ssl-dir/interessenbindungen/client/web/). The other authors declare no potential conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smigielski, L., Jagannath, V., Rössler, W. et al. Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol Psychiatry 25, 1718–1748 (2020). https://doi.org/10.1038/s41380-019-0601-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0601-3

This article is cited by

Search

Quick links