Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lesions causing hallucinations localize to one common brain network

Abstract

The brain regions responsible for hallucinations remain unclear. We studied 89 brain lesions causing hallucinations using a recently validated technique termed lesion network mapping. We found that hallucinations occurred following lesions to a variety of different brain regions, but these lesion locations fell within a single functionally connected brain network. This network was defined by connectivity to the cerebellar vermis, inferior cerebellum (bilateral lobule X), and the right superior temporal sulcus. Within this single hallucination network, additional connections with the lesion location dictated the sensory modality of the hallucination: lesions causing visual hallucinations were connected to the lateral geniculate nucleus in the thalamus while lesions causing auditory hallucinations were connected to the dentate nucleus in the cerebellum. Our results suggest that lesions causing hallucinations localize to a single common brain network, but additional connections within this network dictate the sensory modality, lending insight into the causal neuroanatomical substrate of hallucinations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. American Psychological Association. APA dictionary of psychology. Washington, DC: American Psychological Association. 2018. https://dictionary.apa.org/hallucination.

  2. Aleman A. Hallucinations: the science of idiosyncratic perception. 1st ed. Washington, DC: American Psychological Association; 2008.

  3. Laroi F. The phenomenological diversity of hallucinations: some theoretical and clinical implications. Psychol Belg. 2006;46:163–83.

    Article  Google Scholar 

  4. Clark ML, Waters F, Vatskalis TM, Jablensky A. On the interconnectedness and prognostic value of visual and auditory hallucinations in first-episode psychosis. Eur Psychiatry. 2017;41:122–8.

    Article  CAS  PubMed  Google Scholar 

  5. Barone P, Antonini A, Colosimo C, Marconi R, Morgante L, Avarello TP, et al. The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord. 2009;24:1641–9.

    Article  PubMed  Google Scholar 

  6. Schrag A, Hovris A, Morley D, Quinn N, Jahanshahi M. Caregiver-burden in parkinson’s disease is closely associated with psychiatric symptoms, falls, and disability. Parkinsonism Relat Disord. 2006;12:35–41.

    Article  PubMed  Google Scholar 

  7. Zmigrod L, Garrison JR, Carr J, Simons JS. The neural mechanisms of hallucinations: a quantitative meta-analysis of neuroimaging studies. Neurosci Biobehav Rev. 2016;69:113–23.

    Article  PubMed  Google Scholar 

  8. Asaad G, Shapiro B. Hallucinations: theoretical and clinical overview. Am J Psychiatry. 1986;143:1088–97.

    Article  CAS  PubMed  Google Scholar 

  9. David AS. The cognitive neuropsychiatry of auditory verbal hallucinations: an overview. Cogn Neuropsychiatry. 2004;9:107–23.

    Article  PubMed  Google Scholar 

  10. Allen P, Laroi F, McGuire PK, Aleman A. The hallucinating brain: a review of structural and functional neuroimaging studies of hallucinations. Neurosci Biobehav Rev. 2008;32:175–91.

    Article  PubMed  Google Scholar 

  11. Jardri R, Thomas P, Delmaire C, Delion P, Pins D. The neurodynamic organization of modality-dependent hallucinations. Cereb Cortex. 2013;23:1108–17.

    Article  PubMed  Google Scholar 

  12. Rolland B, Amad A, Poulet E, Bordet R, Vignaud A, Bation R, et al. Resting-state functional connectivity of the nucleus accumbens in auditory and visual hallucinations in schizophrenia. Schizophr Bull. 2015;41:291–9.

    Article  PubMed  Google Scholar 

  13. Garrison JR, Fernyhough C, McCarthy-Jones S, Haggard M, Simons JS. Paracingulate sulcus morphology is associated with hallucinations in the human brain. Nat Commun. 2015;6:8956.

    Article  CAS  PubMed  Google Scholar 

  14. Jardri R, Pouchet A, Pins D, Thomas P. Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am J Psychiatry. 2011;168:73–81.

    Article  PubMed  Google Scholar 

  15. Braun CM, Dumont M, Duval J, Hamel-Hebert I, Godbout L. Brain modules of hallucination: an analysis of multiple patients with brain lesions. J Psychiatry Neurosci. 2003;28:432–49.

    PubMed  PubMed Central  Google Scholar 

  16. Fox MD. Mapping symptoms to brain networks with the human connectome. N Engl J Med. 2018;379:2237–45.

    Article  CAS  PubMed  Google Scholar 

  17. Karnath HO, Sperber C, Rorden C. Mapping human brain lesions and their functional consequences. Neuroimage. 2018;165:180–9.

    Article  CAS  PubMed  Google Scholar 

  18. Adolphs R. Human lesion studies in the 21st century. Neuron. 2016;90:1151–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morenas-Rodriguez E, Camps-Renom P, Perez-Cordon A, Horta-Barba A, Simon-Talero M, Cortes-Vicente E, et al. Visual hallucinations in patients with acute stroke: a prospective exploratory study. Eur J Neurol. 2017;24:734–40.

    Article  CAS  PubMed  Google Scholar 

  20. Boes AD, Prasad S, Liu H, Liu Q, Pascual-Leone A, Caviness VS Jr., et al. Network localization of neurological symptoms from focal brain lesions. Brain. 2015;138(Pt 10):3061–75.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Carrera E, Tononi G. Diaschisis: past, present, future. Brain. 2014;137(Pt 9):2408–22.

    Article  PubMed  Google Scholar 

  22. Fox MD, Buckner RL, Liu H, Chakravarty MM, Lozano AM, Pascual-Leone A. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci USA. 2014;111:E4367–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, et al. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol. 2017;82:67–78.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Weigand A, Horn A, Caballero R, Cooke D, Stern AP, Taylor SF, et al. Prospective nMagnetic stimulation sites. Biol Psychiatry. 2018;84:28–37.

    Article  CAS  PubMed  Google Scholar 

  25. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9.

    Article  PubMed  Google Scholar 

  26. Darby RR, Laganiere S, Pascual-Leone A, Prasad S, Fox MD. Finding the imposter: brain connectivity of lesions causing delusional misidentifications. Brain. 2016;140:497–507.

    Article  PubMed Central  Google Scholar 

  27. Corp DT, Joutsa J, Darby RR, Delnooz CCS, van de Warrenburg BPC, Cooke D, et al. Network localization of cervical dystonia based on causal brain lesions. Brain. 2019;142:1660–74.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Darby RR, Horn A, Cushman F, Fox MD. Lesion network localization of criminal behavior. Proc Natl Acad Sci USA. 2018;115:601–6.

    Article  CAS  PubMed  Google Scholar 

  29. Darby RR, Joutsa J, Burke MJ, Fox MD. Lesion network localization of free will. Proc Natl Acad Sci USA. 2018;115:10792–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Joutsa J, Horn A, Hsu J, Fox MD. Localizing parkinsonism based on focal brain lesions. Brain. 2018;141:2445–56.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Joutsa J, Shih LC, Horn A, Reich MM, Wu O, Rost NS, et al. Identifying therapeutic targets from spontaneous beneficial brain lesions. Ann Neurol. 2018;84:153–7.

    Article  PubMed  Google Scholar 

  32. Wu O, Cloonan L, Mocking SJ, Bouts MJ, Copen WA, Cougo-Pinto PT, et al. Role of acute lesion topography in initial ischemic stroke severity and long-term functional outcomes. Stroke. 2015;46:2438–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Powers AR, Mathys C, Corlett P. Pavlovian conditioning–induced hallucinations result from overweighting of perceptual priors. Science. 2017;357:596–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ffytche DH. The hodology of hallucinations. Cortex. 2008;44:1067–83.

    Article  PubMed  Google Scholar 

  35. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.

    Article  CAS  PubMed  Google Scholar 

  36. Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;64:81–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.

    Article  PubMed  Google Scholar 

  38. Okugawa G, Sedvall GC, Agartz I. Smaller cerebellar vermis but not hemisphere volumes in patients with chronic schizophrenia. Am J Psychiatry. 2003;160:1614–7.

    Article  PubMed  Google Scholar 

  39. Park HS, KIm BS, Kim YK, Yang YS, Cho SS, Kim SY, et al. Different cerebral metabolic features in dementia with Lewy bodies with/without visual hallucination. J Nucl Med. 2008;49(supplement 1):36P–P.

    Google Scholar 

  40. Pagonabarraga J, Soriano-Mas C, Llebaria G, Lopez-Sola M, Pujol J, Kulisevsky J. Neural correlates of minor hallucinations in non-demented patients with Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:290–6.

    Article  PubMed  Google Scholar 

  41. McAuley T, Brahmbhatt S, Barch DM. Performance on an episodic encoding task yields further insight into functional brain development. Neuroimage. 2007;34:815–26.

    Article  PubMed  Google Scholar 

  42. Mesulam MM. From sensation to cognition. Brain. 1998;121(Pt 6):1013–52.

    Article  PubMed  Google Scholar 

  43. Jones E, Powell T. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain. 1970;93:793–820.

    Article  CAS  PubMed  Google Scholar 

  44. Beauchamp MS, Lee KE, Argall BD, Martin A. Integration of auditory and visual information about objects in superior temporal sulcus. Neuron. 2004;41:809–23.

    Article  CAS  PubMed  Google Scholar 

  45. Santhouse AM, Howard RJ, ffytche DH. Visual hallucinatory syndromes and the anatomy of the visual brain. Brain. 2000;123:2055–64.

    Article  PubMed  Google Scholar 

  46. Friston KJ. Hallucinations and perceptual inference. Behav Brain Sci. 2005;28:764–6.

    Article  Google Scholar 

  47. Rajesh PNR, Dana HB. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999;2:79.

    Article  Google Scholar 

  48. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Palaniyappan L, Mallikarjun P, Joseph V, White TP, Liddle PF. Reality distortion is related to the structure of the salience network in schizophrenia. Psychol Med. 2011;41:1701–8.

    Article  CAS  PubMed  Google Scholar 

  50. White TP, Joseph V, Francis ST, Liddle PF. Aberrant salience network (bilateral insula and anterior cingulate cortex) connectivity during information processing in schizophrenia. Schizophr Res. 2010;123:105–15.

    Article  PubMed  Google Scholar 

  51. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.

    Article  PubMed  Google Scholar 

  52. Jones EG. The Thalamus. New York: Plenum Press; 1985.

  53. Manford M, Andermann F. Complex visual hallucinations. Clin neurobiological insights Brain. 1998;121(Pt 10):1819.

    Google Scholar 

  54. Geddes MR, Tie Y, Gabrieli JD, McGinnis SM, Golby AJ, Whitfield-Gabrieli S. Altered functional connectivity in lesional peduncular hallucinosis with REM sleep behavior disorder. Cortex. 2016;74:96–106.

    Article  PubMed  Google Scholar 

  55. Weil RS, Hsu JK, Darby RR, Soussand L, Fox MD. Neuroimaging in Parkinson’s disease dementia: connecting the dots. Brain Commun. 2019;1. https://doi.org/10.1093/braincomms/fcz006. [Epub ahead of print].

  56. Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16:444–7.

    Article  CAS  PubMed  Google Scholar 

  57. Kotz SA, Schwartze M. Cortical speech processing unplugged: a timely subcortico-cortical framework. Trends Cogn Sci. 2010;14:392–9.

    Article  PubMed  Google Scholar 

  58. Thürling M, Küper M, Stefanescu R, Maderwald S, Gizewski E, Ladd ME, et al. Activation of the dentate nucleus in a verb generation task: a 7 T MRI study. Neuroimage. 2011;57:1184–91.

    Article  PubMed  Google Scholar 

  59. Curcic-Blake B, Ford JM, Hubl D, Orlov ND, Sommer IE, Waters F, et al. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations. Prog Neurobiol. 2017;148:1–20.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cheng DT, Meintjes EM, Stanton ME, Desmond JE, Pienaar M, Dodge NC, et al. Functional MRI of cerebellar activity during eyeblink classical conditioning in children and adults. Hum Brain Mapp. 2014;35:1390–403.

    Article  PubMed  Google Scholar 

  61. Ffytche DH, Howard RJ, Brammer MJ, David A, Woodruff P, Williams S. The anatomy of conscious vision: an fMRI study of visual hallucinations. Nat Neurosci. 1998;1:738–42.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang S, Xu M, Kamigaki T, Hoang Do JP, Chang WC, Jenvay S, et al. Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science. 2014;345:660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hirsch JA, Wang X, Sommer FT, Martinez LM. How inhibitory circuits in the thalamus serve vision. Annu Rev Neurosci. 2015;38:309–29.

    Article  CAS  PubMed  Google Scholar 

  64. Carcea I, Froemke RC. Cortical plasticity, excitatory-inhibitory balance, and sensory perception. Prog Brain Res. 2013;207:65–90.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jardri R, Hugdahl K, Hughes M, Brunelin J, Waters F, Alderson-Day B, et al. Are hallucinations due to an imbalance between excitatory and inhibitory influences on the brain? Schizophr Bull. 2016;42:1124–34.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lee I, Nielsen K, Nawaz U, Hall MH, Ongur D, Keshavan M, et al. Diverse pathophysiological processes converge on network disruption in mania. J Affect Disord. 2019;244:115–23.

    Article  PubMed  Google Scholar 

  67. Waters F, Fernyhough C. Hallucinations: a systematic review of points of similarity and difference across diagnostic classes. Schizophr Bull. 2017;43:32–43.

    Article  PubMed  Google Scholar 

  68. Padmanabhan JL, Cooke D, Joutsa J, Siddiqi SH, Ferguson M, Darby RR, et al. A human depression circuit derived from focal brain lesions. Biol Psychiatry. 2019. https://doi.org/10.1016/j.biopsych.2019.07.023.

  69. Orlov ND, Giampietro V, O’Daly O, Lam SL, Barker GJ, Rubia K, et al. Real-time fMRI neurofeedback to down-regulate superior temporal gyrus activity in patients with schizophrenia and auditory hallucinations: a proof-of-concept study. Transl Psychiatry. 2018;8:46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Slotema CW, Blom JD, van Lutterveld R, Hoek HW, Sommer IE. Review of the efficacy of transcranial magnetic stimulation for auditory verbal hallucinations. Biol Psychiatry. 2014;76:101–10.

    Article  PubMed  Google Scholar 

  71. Merabet LB, Kobayashi M, Barton J, Pascual-Leone A. Suppression of complex visual hallucinatory experiences by occipital transcranial magnetic stimulation: a case report. Neurocase. 2003;9:436–40.

    Article  PubMed  Google Scholar 

  72. Bürgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K. White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage. 2006;29:1092–105.

    Article  PubMed  Google Scholar 

  73. Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski E, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage. 2011;54:1786–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

DT was supported by a DuPont-Warren Fellowship Award from Harvard Medical School. JJ was supported by funding from the Academy of Finland #295580, the Finnish Medical Foundation, and a grant from the Orion Research Foundation. JMF was supported by RETICS INVICTUS PLUS (RD06/0019/0010) and FEDER. MDF was supported by the National Institute of Mental Health (R01MH113929), Nancy Lurie Marks Foundation, and Mathers Foundation. None of the institutions mentioned above have a role in the design and conduct of the study, in the collection, management, analysis, and interpretation of the data, in the preparation, review, or approval of the manuscript, nor in the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

NYK, JH, and MDF conceived and designed the work; NYK, JJ, OW, NR, EMR, and JMF acquired the data; NYK, JH, JJ, LS, APL, and MDF analyzed and interpreted data; NYK, DT, and MDF drafted the work; PRC, APL, and MDF revised the manuscript critically for important intellectual content; all authors approved the final version to be published and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. NYK and MDF had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding authors

Correspondence to Na Young Kim or Michael D. Fox.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, N.Y., Hsu, J., Talmasov, D. et al. Lesions causing hallucinations localize to one common brain network. Mol Psychiatry 26, 1299–1309 (2021). https://doi.org/10.1038/s41380-019-0565-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0565-3

This article is cited by

Search

Quick links