Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ELFN2 is a postsynaptic cell adhesion molecule with essential roles in controlling group III mGluRs in the brain and neuropsychiatric behavior

Abstract

The functional characterization of the GPCR interactome has predominantly focused on intracellular binding partners; however, the recent emergence of transsynaptic GPCR complexes represents an additional dimension to GPCR function that has previously been unaccounted for in drug discovery. Here, we characterize ELFN2 as a novel postsynaptic adhesion molecule with a distinct expression pattern throughout the brain and a selective binding with group III metabotropic glutamate receptors (mGluRs) in trans. Using a transcellular GPCR signaling platform, we report that ELFN2 critically alters group III mGluR secondary messenger signaling by directly altering G protein coupling kinetics and efficacy. Loss of ELFN2 in mice results in the selective downregulation of group III mGluRs and dysregulated glutamatergic synaptic transmission. Elfn2 knockout (Elfn2 KO) mice also feature a range of neuropsychiatric manifestations including seizure susceptibility, hyperactivity, and anxiety/compulsivity, which can be rescued by pharmacological augmentation of group III mGluRs. Thus, we conclude that extracellular transsynaptic scaffolding by ELFN2 in the brain is a cardinal organizational feature of group III mGluRs essential for their signaling properties and brain function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sanes JR, Yamagata M. Many paths to synaptic specificity. Annu Rev Cell Dev Biol. 2009;25:161–95.

    Article  CAS  PubMed  Google Scholar 

  2. Williams ME, de Wit J, Ghosh A. Molecular mechanisms of synaptic specificity in developing neural circuits. Neuron. 2010;68:9–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. de Wit J, Ghosh A. Specification of synaptic connectivity by cell surface interactions. Nat Rev Neurosci. 2016;17:22–35.

    Article  PubMed  CAS  Google Scholar 

  4. Kaeser PS, Regehr WG. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu Rev Physiol. 2014;76:333–63.

    Article  CAS  PubMed  Google Scholar 

  5. Akil H, Brenner S, Kandel E, Kendler KS, King MC, Scolnick E, et al. The future of psychiatric research: genomes and neural circuits. Science. 2010;327:1580–1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Arguello PA, Gogos JA. Genetic and cognitive windows into circuit mechanisms of psychiatric disease. Trends Neurosci. 2012;35:3–13.

    Article  CAS  PubMed  Google Scholar 

  7. Luthi A, Luscher C. Pathological circuit function underlying addiction and anxiety disorders. Nat Neurosci. 2014;17:1635–43.

    Article  CAS  PubMed  Google Scholar 

  8. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 2017;16:19–34.

    Article  CAS  PubMed  Google Scholar 

  9. Leung CCY, Wong YH. Role of G protein-coupled receptors in the regulation of structural plasticity and cognitive function. Molecules. 2017;22:E1239.

    Article  PubMed  CAS  Google Scholar 

  10. Betke KM, Wells CA, Hamm HE. GPCR mediated regulation of synaptic transmission. Prog Neurobiol. 2012;96:304–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Catapano LA, Manji HK. G protein-coupled receptors in major psychiatric disorders. Biochim Biophys Acta. 2007;1768:976–93.

    Article  CAS  PubMed  Google Scholar 

  12. Komatsu H. Novel therapeutic GPCRs for psychiatric disorders. Int J Mol Sci. 2015;16:14109–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, et al. The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci USA. 2003;100:4903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hilger D, Masureel M, Kobilka BK. Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol. 2018;25:4–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pavlos NJ, Friedman PA. GPCR signaling and trafficking: the long and short of it. Trends Endocrinol Metab. 2017;28:213–26.

    Article  CAS  PubMed  Google Scholar 

  16. Eichel K, von Zastrow M. Subcellular organization of GPCR signaling. Trends Pharm Sci. 2018;39:200–8.

    Article  CAS  PubMed  Google Scholar 

  17. Huang Y, Thathiah A. Regulation of neuronal communication by G protein-coupled receptors. FEBS Lett. 2015;589:1607–19.

    Article  CAS  PubMed  Google Scholar 

  18. Pinheiro PS, Mulle C. Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci. 2008;9:423–36.

    Article  CAS  PubMed  Google Scholar 

  19. Edwards SW, Tan CM, Limbird LE. Localization of G-protein-coupled receptors in health and disease. Trends Pharm Sci. 2000;21:304–8.

    Article  CAS  PubMed  Google Scholar 

  20. West C, Hanyaloglu AC. Minireview: spatial programming of G protein-coupled receptor activity: decoding signaling in health and disease. Mol Endocrinol. 2015;29:1095–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sriram K, Insel PA. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharm. 2018;93:251–8.

    Article  CAS  Google Scholar 

  22. Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE, et al. Pharmacogenomics of GPCR drug targets. Cell. 2018;172:41–54 e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16:829–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rudenko G. Dynamic control of synaptic adhesion and organizing molecules in synaptic plasticity. Neural Plast. 2017;2017:6526151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Missler M, Sudhof TC, Biederer T. Synaptic cell adhesion. Cold Spring Harb Perspect Biol. 2012;4:a005694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. de Wit J, Ghosh A. Control of neural circuit formation by leucine-rich repeat proteins. Trends Neurosci. 2014;37:539–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Vawter MP. Dysregulation of the neural cell adhesion molecule and neuropsychiatric disorders. Eur J Pharm. 2000;405:385–95.

    Article  CAS  Google Scholar 

  28. Kasem E, Kurihara T, Tabuchi K. Neurexins and neuropsychiatric disorders. Neurosci Res. 2018;127:53–60.

    Article  CAS  PubMed  Google Scholar 

  29. Sakurai T. The role of cell adhesion molecules in brain wiring and neuropsychiatric disorders. Mol Cell Neurosci. 2017;81:4–11.

    Article  CAS  PubMed  Google Scholar 

  30. Tomioka NH, Yasuda H, Miyamoto H, Hatayama M, Morimura N, Matsumoto Y, et al. Elfn1 recruits presynaptic mGluR7 in trans and its loss results in seizures. Nat Commun. 2014;5:4501.

    Article  CAS  PubMed  Google Scholar 

  31. Dolan J, Mitchell KJ. Mutation of Elfn1 in Mice Causes Seizures and Hyperactivity. PLoS ONE. 2013;8:e80491.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Cavallaro U, Dejana E. Adhesion molecule signalling: not always a sticky business. Nat Rev Mol Cell Biol. 2011;12:189–97.

    Article  CAS  PubMed  Google Scholar 

  33. Boucard AA, Ko JW, Sudhof TC. High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex. J Biol Chem. 2012;287:9399–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu YC, Nazarko OV, Sando R 3rd, Salzman GS, Sudhof TC, Arac D. Structural basis of latrophilin-FLRT-UNC5 interaction in cell adhesion. Structure. 2015;23:1678–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O’Sullivan ML, de Wit J, Savas JN, Comoletti D, Otto-Hitt S, Yates JR, et al. FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron. 2012;73:903–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Silva JP, Lelianova VG, Ermolyuk YS, Vysokov N, Hitchen PG, Berninghausen O, et al. Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. Proc Natl Acad Sci USA. 2011;108:12113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zuko A, Oguro-Ando A, Post H, Taggenbrock RL, van Dijk RE, Altelaar AF, et al. Association of cell adhesion molecules contactin-6 and latrophilin-1 regulates neuronal apoptosis. Front Mol Neurosci. 2016;9:143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Li J, Shalev-Benami M, Sando R, Jiang X, Kibrom A, Wang J, et al. Structural basis for teneurin function in circuit-wiring: a toxin motif at the synapse. Cell. 2018;173:735–48 e715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao Y, Sarria I, Fehlhaber KE, Kamasawa N, Orlandi C, James KN, et al. Mechanism for selective synaptic wiring of rod photoreceptors into the retinal circuitry and its role in vision. Neuron. 2015;87:1248–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tomioka NH, Yasuda H, Miyamoto H, Hatayama M, Morimura N, Matsumoto Y, et al. Elfn1 recruits presynaptic mGluR7 in trans and its loss results in seizures. Nat Commun. 2014;5:4501.

    Article  CAS  PubMed  Google Scholar 

  41. Dunn HA, Patil DN, Cao Y, Orlandi C, Martemyanov KA. Synaptic adhesion protein ELFN1 is a selective allosteric modulator of group III metabotropic glutamate receptors in trans. Proc Natl Acad Sci USA. 2018;115:5022–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stachniak TJ, Sylwestrak EL, Scheiffele P, Hall BJ, Ghosh A. Elfn1-induced constitutive activation of mGluR7 determines frequency-dependent recruitment of SOM interneurons. J Neurosci. 2019;39:4461–74.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Niciu MJ, Kelmendi B, Sanacora G. Overview of glutamatergic neurotransmission in the nervous system. Pharm Biochem Behav. 2012;100:656–64.

    Article  CAS  Google Scholar 

  44. Nicoletti E, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, et al. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology. 2011;60:1017–41.

    Article  CAS  PubMed  Google Scholar 

  45. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharm. 2010;50:295–322.

    Article  CAS  Google Scholar 

  46. Amalric M, Lopez S, Goudet C, Fisone G, Battaglia G, Nicoletti F, et al. Group III and subtype 4 metabotropic glutamate receptor agonists: discovery and pathophysiological applications in Parkinson’s disease. Neuropharmacology. 2013;66:53–64.

    Article  CAS  PubMed  Google Scholar 

  47. Becker JAJ, Clesse D, Spiegelhalter C, Schwab Y, Le Merrer J, Kieffer BL. Autistic-like syndrome in Mu opioid receptor null mice is relieved by facilitated mGluR4 activity. Neuropsychopharmacol. 2014;39:2049–60.

    Article  CAS  Google Scholar 

  48. Gregory KJ, Noetzel MJ, Niswender CM. Pharmacology of metabotropic glutamate receptor allosteric modulators: structural basis and therapeutic potential for CNS disorders. Prog Mol Biol Transl. 2013;115:61–121.

    Article  CAS  Google Scholar 

  49. Lavreysen H, Dautzenberg FM. Therapeutic potential of group III metabotropic glutamate receptors. Curr Med Chem. 2008;15:671–84.

    Article  CAS  PubMed  Google Scholar 

  50. Palazzo E, Marabese I, de Novellis V, Rossi F, Maione S. Metabotropic glutamate receptor 7: from synaptic function to therapeutic implications. Curr Neuropharmacol. 2016;14:504–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sarria I, Cao Y, Wang Y, Ingram NT, Orlandi C, Kamasawa N, et al. LRIT1 modulates adaptive changes in synaptic communication of cone photoreceptors. Cell Rep. 2018;22:3562–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ueno A, Omori Y, Sugita Y, Watanabe S, Chaya T, Kozuka T, et al. Lrit1, a retinal transmembrane protein, regulates selective synapse formation in cone photoreceptor cells and visual acuity. Cell Rep. 2018;22:3548–61.

    Article  CAS  PubMed  Google Scholar 

  53. Sylwestrak EL, Ghosh A. Elfn1 regulates target-specific release probability at CA1-interneuron synapses. Science. 2012;338:536–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Masuho I, Ostrovskaya O, Kramer GM, Jones CD, Xie KQ, Martemyanov KA. Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. Sci Signal. 2015;8:ra123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ayala JE, Niswender CM, Luo Q, Banko JL, Conn PJ. Group III mGluR regulation of synaptic transmission at the SC-CA1 synapse is developmentally regulated. Neuropharmacology. 2008;54:804–14.

    Article  CAS  PubMed  Google Scholar 

  56. Gogliotti RG, Senter RK, Fisher NM, Adams J, Zamorano R, Walker AG, et al. mGlu7 potentiation rescues cognitive, social, and respiratory phenotypes in a mouse model of Rett syndrome. Sci Transl Med. 2017;9:eaai7459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Sansig G, Bushell TJ, Clarke VR, Rozov A, Burnashev N, Portet C, et al. Increased seizure susceptibility in mice lacking metabotropic glutamate receptor 7. J Neurosci. 2001;21:8734–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Barker-Haliski M, White HS. Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb Perspect Med. 2015;5:a022863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Dolan J, Walshe K, Alsbury S, Hokamp K, O’Keeffe S, Okafuji T, et al. The extracellular leucine-rich repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns. BMC Genom. 2007;8:320.

    Article  CAS  Google Scholar 

  60. Zhang YQ, Zhang JJ, Song HJ, Li DW. Overexpression of CST4 promotes gastric cancer aggressiveness by activating the ELFN2 signaling pathway. Am J Cancer Res. 2017;7:2290–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu C, Fu H, Liu X, Lei Q, Zhang Y, She X, et al. LINC00470 coordinates the epigenetic regulation of ELFN2 to distract GBM cell autophagy. Mol Ther. 2018;26:2267–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rice HC, de Malmazet D, Schreurs A, Frere S, Van Molle I, Volkov AN, et al. Secreted amyloid-beta precursor protein functions as a GABABR1a ligand to modulate synaptic transmission. Science. 2019;363:eaao4827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Orlandi C, Omori Y, Wang Y, Cao Y, Ueno A, Roux MJ, et al. Transsynaptic binding of orphan receptor GPR179 to dystroglycan-pikachurin complex is essential for the synaptic organization of photoreceptors. Cell Rep. 2018;25:130–45 e135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Condomitti G, Wierda KD, Schroeder A, Rubio SE, Vennekens KM, Orlandi C, et al. An input-specific orphan receptor GPR158-HSPG interaction organizes hippocampal mossy fiber-CA3 synapses. Neuron. 2018;100:201–15 e209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Becker JA, Clesse D, Spiegelhalter C, Schwab Y, Le Merrer J, Kieffer BL. Autistic-like syndrome in mu opioid receptor null mice is relieved by facilitated mGluR4 activity. Neuropsychopharmacol. 2014;39:2049–60.

    Article  CAS  Google Scholar 

  66. Park S, Jung SW, Kim BN, Cho SC, Shin MS, Kim JW, et al. Association between the GRM7rs3792452 polymorphism and attention deficit hyperacitiveity disorder in a Korean sample. Behav Brain Funct. 2013;9:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Snead OC 3rd, Banerjee PK, Burnham M, Hampson D. Modulation of absence seizures by the GABA(A) receptor: a critical rolefor metabotropic glutamate receptor 4 (mGluR4). J Neurosci. 2000;20:6218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stachowicz K, Branski P, Klak K, van der Putten H, Cryan JF, Flor PJ, et al. Selective activation of metabotropic G-protein-coupled glutamate 7 receptor elicits anxiolytic-like effects in mice by modulating GABAergic neurotransmission. Behav Pharm. 2008;19:597–603.

    Article  CAS  Google Scholar 

  69. Linden AM, Johnson BG, Peters SC, Shannon HE, Tian M, Wang Y, et al. Increased anxiety-related behavior in mice deficient for metabotropic glutamate 8 (mGlu8) receptor. Neuropharmacology. 2002;43:251–9.

    Article  CAS  PubMed  Google Scholar 

  70. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharm Toxicol. 2010;50:295–322.

    Article  CAS  Google Scholar 

  71. Moon SL, Sonenberg N, Parker R. Neuronal regulation of eIF2alpha function in health and neurological disorders. Trends Mol Med. 2018;24:575–89.

    Article  CAS  PubMed  Google Scholar 

  72. Kabir ZD, Che A, Fischer DK, Rice RC, Rizzo BK, Byrne M, et al. Rescue of impaired sociability and anxiety-like behavior in adult cacna1c-deficient mice by pharmacologically targeting eIF2alpha. Mol Psychiatry. 2017;22:1096–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pereira MSL, Klamt F, Thome CC, Worm PV, de Oliveira DL. Metabotropic glutamate receptors as a new therapeutic target for malignant gliomas. Oncotarget. 2017;8:22279–98.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Teh J, Chen S. mGlu receptors and cancerous growth. Wiley Inter Rev Membr Transp Signal. 2012;1:211–20.

    Article  CAS  Google Scholar 

  75. Dermietzel R. The cytoskeleton: imaging, isolation, and interaction. New York: Humana Press/Springer; 2013. p. 359. xiv

    Book  Google Scholar 

  76. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) Method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  77. Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR. Assessment of social interaction behaviors. J Vis Exp. 2011;25:2473.

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grants EY028033 and MH105482 (to KAM). HAD is the recipient of a Canadian Institutes of Health Research Postdoctoral Fellowship award. SZ is the recipient of National Institute of Health F32 Award DA048579.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed research; HAD, SZ, MD, and CO performed research; all authors analyzed data; and HAD and KAM wrote the paper with the input from all authors.

Corresponding author

Correspondence to Kirill A. Martemyanov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunn, H.A., Zucca, S., Dao, M. et al. ELFN2 is a postsynaptic cell adhesion molecule with essential roles in controlling group III mGluRs in the brain and neuropsychiatric behavior. Mol Psychiatry 24, 1902–1919 (2019). https://doi.org/10.1038/s41380-019-0512-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0512-3

This article is cited by

Search

Quick links