The epistatic interaction between the dopamine D3 receptor and dysbindin-1 modulates higher-order cognitive functions in mice and humans

Abstract

The dopamine D2 and D3 receptors are implicated in schizophrenia and its pharmacological treatments. These receptors undergo intracellular trafficking processes that are modulated by dysbindin-1 (Dys). Indeed, Dys variants alter cognitive responses to antipsychotic drugs through D2-mediated mechanisms. However, the mechanism by which Dys might selectively interfere with the D3 receptor subtype is unknown. Here, we revealed an interaction between functional genetic variants altering Dys and D3. Specifically, both in patients with schizophrenia and in genetically modified mice, concomitant reduction in D3 and Dys functionality was associated with improved executive and working memory abilities. This D3/Dys interaction produced a D2/D3 imbalance favoring increased D2 signaling in the prefrontal cortex (PFC) but not in the striatum. No epistatic effects on the clinical positive and negative syndrome scale (PANSS) scores were evident, while only marginal effects on sensorimotor gating, locomotor functions, and social behavior were observed in mice. This genetic interaction between D3 and Dys suggests the D2/D3 imbalance in the PFC as a target for patient stratification and procognitive treatments in schizophrenia.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016;17:524–32.

    CAS  Article  Google Scholar 

  2. 2.

    Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Article  Google Scholar 

  3. 3.

    Weinstein JJ, Chohan MO, Slifstein M, Kegeles LS, Moore H, Abi-Dargham A. Pathway-specific dopamine abnormalities in schizophrenia. Biol Psychiatry. 2017;81:31–42.

    CAS  Article  Google Scholar 

  4. 4.

    Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, Winiger V, et al. Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron. 2006;49:603–15.

    CAS  Article  Google Scholar 

  5. 5.

    Amato D, Vernon AC, Papaleo F. Dopamine, the antipsychotic molecule: a perspective on mechanisms underlying antipsychotic response variability. Neurosci Biobehav Rev. 2018;85:146–59.

    CAS  Article  Google Scholar 

  6. 6.

    Thompson D, Whistler JL. Dopamine D(3) receptors are down-regulated following heterologous endocytosis by a specific interaction with G protein-coupled receptor-associated sorting protein-1. J Biol Chem. 2011;286:1598–608.

    CAS  Article  Google Scholar 

  7. 7.

    Bartlett SE, Enquist J, Hopf FW, Lee JH, Gladher F, Kharazia V, et al. Dopamine responsiveness is regulated by targeted sorting of D2 receptors. Proc Natl Acad Sci USA. 2005;102:11521–6.

    CAS  Article  Google Scholar 

  8. 8.

    Manago F, Mereu M, Mastwal S, Mastrogiacomo R, Scheggia D, Emanuele M, et al. Genetic disruption of Arc/Arg3.1 in mice causes alterations in dopamine and neurobehavioral phenotypes related to schizophrenia. Cell Rep. 2016;16:2116–28.

    CAS  Article  Google Scholar 

  9. 9.

    Miyakawa T, Sumiyoshi S, Deshimaru M, Suzuki T, Tomonari H. Electron microscopic study on schizophrenia. Mechanism of pathological changes. Acta Neuropathol. 1972;20:67–77.

    CAS  Article  Google Scholar 

  10. 10.

    Schubert KO, Focking M, Prehn JH, Cotter DR. Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Mol psychiatry. 2012;17:669–81.

    CAS  Article  Google Scholar 

  11. 11.

    Canfran-Duque A, Barrio LC, Lerma M, de la Pena G, Serna J, Pastor O, et al. First-generation antipsychotic haloperidol alters the functionality of the late endosomal/lysosomal compartment in vitro. Int J Mol Sci. 2016;17:404.

    Article  Google Scholar 

  12. 12.

    Choi KH, Higgs BW, Weis S, Song J, Llenos IC, Dulay JR, et al. Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects. BMC psychiatry. 2009;9:57.

    Article  Google Scholar 

  13. 13.

    Heusler P, Newman-Tancredi A, Loock T, Cussac D. Antipsychotics differ in their ability to internalise human dopamine D2S and human serotonin 5-HT1A receptors in HEK293 cells. Eur J Pharmacol. 2008;581:37–46.

    CAS  Article  Google Scholar 

  14. 14.

    Lester HA, Miwa JM, Srinivasan R. Psychiatric drugs bind to classical targets within early exocytotic pathways: therapeutic effects. Biol psychiatry. 2012;72:907–15.

    CAS  Article  Google Scholar 

  15. 15.

    Tischbirek CH, Wenzel EM, Zheng F, Huth T, Amato D, Trapp S, et al. Use-dependent inhibition of synaptic transmission by the secretion of intravesicularly accumulated antipsychotic drugs. Neuron. 2012;74:830–44.

    CAS  Article  Google Scholar 

  16. 16.

    Ji Y, Yang F, Papaleo F, Wang HX, Gao WJ, Weinberger DR, et al. Role of dysbindin in dopamine receptor trafficking and cortical GABA function. Proc Natl Acad Sci USA. 2009;106:19593–8.

    CAS  Article  Google Scholar 

  17. 17.

    Talbot K, Ong WY, Blake DJ, Tang J, Louneva N, Carlson GC et al. Dysbindin-1 and its protein family. In: Javitt DC, Kantrowitz J, editors. Handbook of Neurochemistry and Molecular Neurobiology, 3rd edn, vol. 27. Springer Science: New York; 2009, p 107–241.

  18. 18.

    Scheggia D, Mastrogiacomo R, Mereu M, Sannino S, Straub RE, Armando M, et al. Variations in dysbindin-1 are associated with cognitive response to antipsychotic drug treatment. Nat Commun. 2018;9:2265.

    Article  Google Scholar 

  19. 19.

    Prats C, Arias B, Moya-Higueras J, Pomarol-Clotet E, Parellada M, Gonzalez-Pinto A, et al. Evidence of an epistatic effect between dysbindin-1 and neuritin-1 genes on the risk for schizophrenia spectrum disorders. Eur Psychiatry. 2017;40:60–64.

    CAS  Article  Google Scholar 

  20. 20.

    Papaleo F, Burdick MC, Callicott JH, Weinberger DR. Epistatic interaction between COMT and DTNBP1 modulates prefrontal function in mice and in humans. Mol Psychiatry. 2014;19:311–6.

    CAS  Article  Google Scholar 

  21. 21.

    Papaleo F, Weinberger DR. Dysbindin and schizophrenia: it’s dopamine and glutamate all over again. Biol psychiatry. 2011;69:2–4.

    CAS  Article  Google Scholar 

  22. 22.

    Papaleo F, Yang F, Garcia S, Chen J, Lu B, Crawley JN, et al. Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Mol Psychiatry. 2012;17:85–98.

    CAS  Article  Google Scholar 

  23. 23.

    Sokoloff P, Le Foll B. The dopamine D3 receptor, a quarter century later. Eur J Neurosci. 2017;45:2–19.

    Article  Google Scholar 

  24. 24.

    Leggio GM, Bucolo C, Platania CB, Salomone S, Drago F. Current drug treatments targeting dopamine D3 receptor. Pharmacol Ther. 2016;165:164–77.

    CAS  Article  Google Scholar 

  25. 25.

    Gross G, Drescher K. The role of dopamine D(3) receptors in antipsychotic activity and cognitive functions. Handb Exp Pharmacol. 2012;213:167–210.

  26. 26.

    Nakajima S, Gerretsen P, Takeuchi H, Caravaggio F, Chow T, Le Foll B, et al. The potential role of dopamine D(3) receptor neurotransmission in cognition. Eur Neuropsychopharmacol. 2013;23:799–813.

    CAS  Article  Google Scholar 

  27. 27.

    Clarkson RL, Liptak AT, Gee SM, Sohal VS, Bender KJ. D3 receptors regulate excitability in a unique class of prefrontal pyramidal cells. J Neurosci. 2017;37:5846–60.

    CAS  Article  Google Scholar 

  28. 28.

    Pich EM, Collo G. Pharmacological targeting of dopamine D3 receptors: possible clinical applications of selective drugs. Eur Neuropsychopharmacol. 2015;25:1437–47.

    CAS  Article  Google Scholar 

  29. 29.

    Maramai S, Gemma S, Brogi S, Campiani G, Butini S, Stark H, et al. Dopamine D3 receptor antagonists as potential therapeutics for the treatment of neurological diseases. Front Neurosci. 2016;10:451.

    Article  Google Scholar 

  30. 30.

    Stroup TS, McEvoy JP, Swartz MS, Byerly MJ, Glick ID, Canive JM, et al. The National Institute of Mental Health Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) project: schizophrenia trial design and protocol development. Schizophr Bull. 2003;29:15–31.

    Article  Google Scholar 

  31. 31.

    Keefe RS, Mohs RC, Bilder RM, Harvey PD, Green MF, Meltzer HY, et al. Neurocognitive assessment in the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) project schizophrenia trial: development, methodology, and rationale. Schizophr. 2003;29:45–55.

    Article  Google Scholar 

  32. 32.

    Ceaser AE, Goldberg TE, Egan MF, McMahon RP, Weinberger DR, Gold JM. Set-shifting ability and schizophrenia: a marker of clinical illness or an intermediate phenotype? Biol psychiatry. 2008;64:782–8.

    Article  Google Scholar 

  33. 33.

    Eling P, Derckx K, Maes R. On the historical and conceptual background of the Wisconsin Card Sorting Test. Brain Cognit. 2008;67:247–53.

    Article  Google Scholar 

  34. 34.

    Scheggia D, Bebensee A, Weinberger DR, Papaleo F. The ultimate intra-/extra-dimensional attentional set-shifting task for mice. Biol psychiatry. 2014;75:660–70.

    Article  Google Scholar 

  35. 35.

    Accili D, Fishburn CS, Drago J, Steiner H, Lachowicz JE, Park BH, et al. A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc Natl Acad Sci USA. 1996;93:1945–9.

    CAS  Article  Google Scholar 

  36. 36.

    Papaleo F, Lipska BK, Weinberger DR. Mouse models of genetic effects on cognition: relevance to schizophrenia. Neuropharmacology. 2012;62:1204–20.

    CAS  Article  Google Scholar 

  37. 37.

    Mereu M, Contarini G, Buonaguro EF, Latte G, Manago F, Iasevoli F, et al. Dopamine transporter (DAT) genetic hypofunction in mice produces alterations consistent with ADHD but not schizophrenia or bipolar disorder. Neuropharmacology. 2017;121:179–94.

    CAS  Article  Google Scholar 

  38. 38.

    Torrisi SA, Salomone S, Geraci F, Caraci F, Bucolo C, Drago F, et al. Buspirone counteracts MK-801-induced schizophrenia-like phenotypes through dopamine D3 receptor blockade. Front Pharmacol. 2017;8:710.

    Article  Google Scholar 

  39. 39.

    Papaleo F, Crawley JN, Song J, Lipska BK, Pickel J, Weinberger DR, et al. Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J Neurosci. 2008;28:8709–23.

    CAS  Article  Google Scholar 

  40. 40.

    Huang H, Michetti C, Busnelli M, Manago F, Sannino S, Scheggia D, et al. Chronic and acute intranasal oxytocin produce divergent social effects in mice. Neuropsychopharmacology. 2014;39:1102–14.

    CAS  Article  Google Scholar 

  41. 41.

    Scheggia D, Zamberletti E, Realini N, Mereu M, Contarini G, Ferretti V et al. Remote memories are enhanced by COMT activity through dysregulation of the endocannabinoid system in the prefrontal cortex. Mol Psychiatry. 2018;23:1040–50.

    Article  Google Scholar 

  42. 42.

    Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005;353:1209–23.

    CAS  Article  Google Scholar 

  43. 43.

    Jeanneteau F, Funalot B, Jankovic J, Deng H, Lagarde JP, Lucotte G, et al. A functional variant of the dopamine D3 receptor is associated with risk and age-at-onset of essential tremor. Proc Natl Acad Sci USA. 2006;103:10753–8.

    CAS  Article  Google Scholar 

  44. 44.

    Papaleo F, Sannino S, Piras F, Spalletta G. Sex-dichotomous effects of functional COMT genetic variations on cognitive functions disappear after menopause in both health and schizophrenia. Eur Neuropsychopharmacol. 2015;25:2349–63.

    CAS  Article  Google Scholar 

  45. 45.

    Sannino S, Gozzi A, Cerasa A, Piras F, Scheggia D, Manago F, et al. COMT genetic reduction produces sexually divergent effects on cortical anatomy and working memory in mice and humans. Cereb Cortex. 2015;25:2529–41.

    Article  Google Scholar 

  46. 46.

    Lidow MS, Wang F, Cao Y, Goldman-Rakic PS. Layer V neurons bear the majority of mRNAs encoding the five distinct dopamine receptor subtypes in the primate prefrontal cortex. Synapse. 1998;28:10–20.

    CAS  Article  Google Scholar 

  47. 47.

    Elvevag B, Goldberg TE. Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol. 2000;14:1–21.

    CAS  Article  Google Scholar 

  48. 48.

    Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF. Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci. 2007;10:376–84.

    CAS  Article  Google Scholar 

  49. 49.

    Joyce JN, Millan MJ. Dopamine D3 receptor antagonists as therapeutic agents. Drug Discov today. 2005;10:917–25.

    CAS  Article  Google Scholar 

  50. 50.

    Hida H, Mouri A, Mori K, Matsumoto Y, Seki T, Taniguchi M, et al. Blonanserin ameliorates phencyclidine-induced visual-recognition memory deficits: the complex mechanism of blonanserin action involving D(3)-5-HT(2)A and D(1)-NMDA receptors in the mPFC. Neuropsychopharmacology. 2015;40:601–13.

    CAS  Article  Google Scholar 

  51. 51.

    Swerdlow NR. Update: studies of prepulse inhibition of startle, with particular relevance to the pathophysiology or treatment of Tourette Syndrome. Neurosci Biobehav Rev. 2013;37:1150–6.

    Article  Google Scholar 

  52. 52.

    Mohr D, Pilz PK, Plappert CF, Fendt M. Accumbal dopamine D2 receptors are important for sensorimotor gating in C3H mice. Neuroreport. 2007;18:1493–7.

    CAS  Article  Google Scholar 

  53. 53.

    Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology. 2001;156:234–58.

    CAS  Article  Google Scholar 

  54. 54.

    Swerdlow NR, Light GA, Cadenhead KS, Sprock J, Hsieh MH, Braff DL. Startle gating deficits in a large cohort of patients with schizophrenia: relationship to medications, symptoms, neurocognition, and level of function. Arch Gen psychiatry. 2006;63:1325–35.

    Article  Google Scholar 

  55. 55.

    Paylor R, Glaser B, Mupo A, Ataliotis P, Spencer C, Sobotka A, et al. Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc Natl Acad Sci USA. 2006;103:7729–34.

    CAS  Article  Google Scholar 

  56. 56.

    van den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr. 2010;36:246–70.

    Article  Google Scholar 

  57. 57.

    Halberstadt AL, Geyer MA. Habituation and sensitization of acoustic startle: opposite influences of dopamine D1 and D2-family receptors. Neurobiol Learn Mem. 2009;92:243–8.

    CAS  Article  Google Scholar 

  58. 58.

    Plappert CF, Pilz PK, Schnitzler HU. Factors governing prepulse inhibition and prepulse facilitation of the acoustic startle response in mice. Behav brain Res. 2004;152:403–12.

    Article  Google Scholar 

  59. 59.

    Winterer G, Weinberger DR. Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci. 2004;27:683–90.

    CAS  Article  Google Scholar 

  60. 60.

    Glickstein SB, Desteno DA, Hof PR, Schmauss C. Mice lacking dopamine D2 and D3 receptors exhibit differential activation of prefrontal cortical neurons during tasks requiring attention. Cereb cortex. 2005;15:1016–24.

    Article  Google Scholar 

  61. 61.

    Schmieg N, Rocchi C, Romeo S, Maggio R, Millan MJ, Mannoury la Cour C. Dysbindin-1 modifies signaling and cellular localization of recombinant, human D(3) and D(2) receptors. J Neurochem. 2016;136:1037–51.

    CAS  Article  Google Scholar 

  62. 62.

    Dembrow NC, Chitwood RA, Johnston D. Projection-specific neuromodulation of medial prefrontal cortex neurons. J Neurosci. 2010;30:16922–37.

    CAS  Article  Google Scholar 

  63. 63.

    Gee S, Ellwood I, Patel T, Luongo F, Deisseroth K, Sohal VS. Synaptic activity unmasks dopamine D2 receptor modulation of a specific class of layer V pyramidal neurons in prefrontal cortex. J Neurosci. 2012;32:4959–71.

    CAS  Article  Google Scholar 

  64. 64.

    Gurevich EV, Bordelon Y, Shapiro RM, Arnold SE, Gur RE, Joyce JN. Mesolimbic dopamine D3 receptors and use of antipsychotics in patients with schizophrenia. A postmortem study. Arch Gen Psychiatry. 1997;54:225–32.

    CAS  Article  Google Scholar 

  65. 65.

    Cui Y, Prabhu V, Nguyen TB, Yadav BK, Chung YC. The mRNA expression status of dopamine receptor D2, dopamine receptor D3 and DARPP-32 in T lymphocytes of patients with early psychosis. Int J Mol Sci. 2015;16:26677–86.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. M. Morini, D. Cantatore, R. Navone, G. Pruzzo, A. Parodi, B. Chiarenza, A. Monteforte, and C. Chiabrera for technical support. This work was supported by funding from the Istituto Italiano di Tecnologia, the University of Catania, the Brain and Behavior Research Foundation (2015 NARSAD 23234), and the Compagnia di San Paolo (2015–0321).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to G. M. Leggio or F. Papaleo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary materials

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leggio, G.M., Torrisi, S.A., Mastrogiacomo, R. et al. The epistatic interaction between the dopamine D3 receptor and dysbindin-1 modulates higher-order cognitive functions in mice and humans. Mol Psychiatry (2019). https://doi.org/10.1038/s41380-019-0511-4

Download citation

Further reading

Search