Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Addiction associated N40D mu-opioid receptor variant modulates synaptic function in human neurons


The OPRM1 A118G single nucleotide polymorphism (SNP rs1799971) gene variant encoding the N40D µ-opioid receptor (MOR) has been associated with dependence on opiates and other drugs of abuse but its mechanism is unknown. The frequency of G-allele carriers is ~40% in Asians, ~16% in Europeans, and ~3% in African-Americans. With opioid abuse-related deaths rising at unprecedented rates, understanding these mechanisms may provide a path to therapy. Here we generated homozygous N40D subject-specific induced inhibitory neuronal cells (iNs) from seven human-induced pluripotent stem (iPS) cell lines from subjects of European descent (both male and female) and probed the impact of N40D MOR regulation on synaptic transmission. We found that D40 iNs exhibit consistently stronger suppression (versus N40) of spontaneous inhibitory postsynaptic currents (sIPSCs) across multiple subjects. To mitigate the confounding effects of background genetic variation on neuronal function, the regulatory effects of MORs on synaptic transmission were recapitulated in two sets of independently engineered isogenic N40D iNs. In addition, we employed biochemical analysis and observed differential N-linked glycosylation of human MOR N40D. This study identifies neurophysiological and molecular differences between human MOR variants that may predict altered opioid responsivity and/or dependence in this subset of individuals.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Centers for Disease Control and Prevention. Opioid overdose: understanding the epidemic. Centers for Disease Control and Prevention; 2017.

  2. Contet C, Kieffer BL, Befort K. Mu opioid receptor: a gateway to drug addiction. Curr Opin Neurobiol. 2004;14:370–8.

    Article  CAS  PubMed  Google Scholar 

  3. Gerrits MA, Lesscher HB, van Ree JM. Drug dependence and the endogenous opioid system. Eur Neuropsychopharmacol. 2003;13:424–34.

    Article  CAS  PubMed  Google Scholar 

  4. Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci. 2007;8:844–58.

    Article  CAS  PubMed  Google Scholar 

  5. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018, Nucleic Acids Research. 2018;46:D754–61.

  6. Mague SD, Blendy JA. OPRM1 SNP (A118G): involvement in disease development, treatment response, and animal models. Drug Alcohol Depend. 2010;108:172–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. LaForge KS, Yuferov V, Kreek MJ. Opioid receptor and peptide gene polymorphisms: potential implications for addictions. Eur J Pharm. 2000;410:249–68.

    Article  CAS  Google Scholar 

  8. Kroslak T, Laforge KS, Gianotti RJ, Ho A, Nielsen DA, Kreek MJ. The single nucleotide polymorphism A118G alters functional properties of the human mu opioid receptor. J Neurochem. 2007;103:77–87.

    CAS  PubMed  Google Scholar 

  9. Bond C, LaForge KS, Tian M, Melia D, Zhang S, Borg L, et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA. 1998;95:9608–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mague SD, Isiegas C, Huang P, Liu-Chen LY, Lerman C, Blendy JA. Mouse model of OPRM1 (A118G) polymorphism has sex-specific effects on drug-mediated behavior. Proc Natl Acad Sci USA. 2009;106:10847–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Befort K, Filliol D, Decaillot FM, Gaveriaux-Ruff C, Hoehe MR, Kieffer BL. A single nucleotide polymorphic mutation in the human mu-opioid receptor severely impairs receptor signaling. J Biol Chem. 2001;276:3130–7.

    Article  CAS  PubMed  Google Scholar 

  12. Beyer A, Koch T, Schroder H, Schulz S, Hollt V. Effect of the A118G polymorphism on binding affinity, potency and agonist-mediated endocytosis, desensitization, and resensitization of the human mu-opioid receptor. J Neurochem. 2004;89:553–60.

    Article  CAS  PubMed  Google Scholar 

  13. Mahmoud S, Thorsell A, Sommer WH, Heilig M, Holgate JK, Bartlett SE, et al. Pharmacological consequence of the A118G mu opioid receptor polymorphism on morphine- and fentanyl-mediated modulation of Ca(2)(+) channels in humanized mouse sensory neurons. Anesthesiology. 2011;115:1054–62.

    Article  CAS  PubMed  Google Scholar 

  14. Margas W, Zubkoff I, Schuler HG, Janicki PK, Ruiz-Velasco V. Modulation of Ca2+ channels by heterologously expressed wild-type and mutant human micro-opioid receptors (hMORs) containing the A118G single-nucleotide polymorphism. J Neurophysiol. 2007;97:1058–67.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Wang D, Johnson AD, Papp AC, Sadee W. Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G. J Biol Chem. 2005;280:32618–24.

    Article  CAS  PubMed  Google Scholar 

  16. Miller GM, Bendor J, Tiefenbacher S, Yang H, Novak MA, Madras BK. A mu-opioid receptor single nucleotide polymorphism in rhesus monkey: association with stress response and aggression. Mol Psychiatry. 2004;9:99–108.

    Article  CAS  PubMed  Google Scholar 

  17. Ducat E, Ray B, Bart G, Umemura Y, Varon J, Ho A, et al. Mu-opioid receptor A118G polymorphism in healthy volunteers affects hypothalamic-pituitary-adrenal axis adrenocorticotropic hormone stress response to metyrapone. Addict Biol. 2013;18:325–31.

    Article  CAS  PubMed  Google Scholar 

  18. Wand GS, McCaul M, Yang X, Reynolds J, Gotjen D, Lee S, et al. The mu-opioid receptor gene polymorphism (A118G) alters HPA axis activation induced by opioid receptor blockade. Neuropsychopharmacology. 2002;26:106–14.

    Article  CAS  PubMed  Google Scholar 

  19. Wang YJ, Huang P, Ung A, Blendy JA, Liu-Chen LY. Reduced expression of the mu opioid receptor in some, but not all, brain regions in mice with OPRM1 A112G. Neuroscience. 2012;205:178–84.

    Article  CAS  PubMed  Google Scholar 

  20. Wang YJ, Huang P, Blendy JA, Liu-Chen LY. Brain region- and sex-specific alterations in DAMGO-stimulated [S]GTPgammaS binding in mice with Oprm1 A112G. Addiction Biol. 2012;19:354–61.

  21. Ray R, Ruparel K, Newberg A, Wileyto EP, Loughead JW, Divgi C, et al. Human Mu Opioid Receptor (OPRM1 A118G) polymorphism is associated with brain mu-opioid receptor binding potential in smokers. Proc Natl Acad Sci USA. 2011;108:9268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bilbao A, Robinson JE, Heilig M, Malanga CJ, Spanagel R, Sommer WH, et al. A pharmacogenetic determinant of mu-opioid receptor antagonist effects on alcohol reward and consumption: evidence from humanized mice. Biol Psychiatry. 2015;77:850–8.

  23. Moore JC, Sheldon MH, Hart RP. Biobanking in the era of the stem cell: a technical and operational guide. Vol. 78. Morgan & Claypool Life Sciences; 2012.

  24. Oni EN, Halikere A, Li G, Toro-Ramos AJ, Swerdel MR, Verpeut JL, et al. Increased nicotine response in iPSC-derived human neurons carrying the CHRNA5 N398 allele. Sci Rep. 2016;6:34341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D. ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res. 2010;38(Web Server issue):W462–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol. 2015;208:44–53.

    Article  CAS  PubMed  Google Scholar 

  27. Yang N, Chanda S, Marro S, Ng YH, Janas JA, Haag D, et al. Generation of pure GABAergic neurons by transcription factor programming. Nat Methods. 2017;14:621–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maximov A, Pang ZP, Tervo DG, Sudhof TC. Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation. J Neurosci Methods. 2007;161:75–87.

    Article  PubMed  Google Scholar 

  29. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463:1035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Comoletti D, Miller MT, Jeffries CM, Wilson J, Demeler B, Taylor P, et al. The macromolecular architecture of extracellular domain of alphaNRXN1: domain organization, flexibility, and insights into trans-synaptic disposition. Structure. 2010;18:1044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnson SW, North RA. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci. 1992;12:483–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Margolis EB, Hjelmstad GO, Fujita W, Fields HL. Direct bidirectional mu-opioid control of midbrain dopamine neurons. J Neurosci. 2014;34:14707–16.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, et al. Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharm Rev. 2013;65:223–54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Huang P, Chen C, Mague SD, Blendy JA, Liu-Chen LY. A common single nucleotide polymorphism A118G of the mu opioid receptor alters its N-glycosylation and protein stability. Biochem J. 2012;441:379–86.

    Article  CAS  PubMed  Google Scholar 

  35. Al-Hasani R, Bruchas MR. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology. 2011;115:1363–81.

    CAS  PubMed  Google Scholar 

  36. Scarnati MS, Halikere A, Pang ZP. Using human stem cells as a model system to understand the neural mechanisms of alcohol use disorders: current status and outlook. Alcohol. 2019;74:83–93.

  37. Lopez Soto EJ, Raingo J. A118G Mu Opioid Receptor polymorphism increases inhibitory effects on CaV2.2 channels. Neurosci Lett. 2012;523:190–4.

    Article  CAS  PubMed  Google Scholar 

  38. Perkins KA, Lerman C, Grottenthaler A, Ciccocioppo MM, Milanak M, Conklin CA, et al. Dopamine and opioid gene variants are associated with increased smoking reward and reinforcement owing to negative mood. Behav Pharm. 2008;19:641–9.

    Article  CAS  Google Scholar 

  39. Bart G, Kreek MJ, Ott J, LaForge KS, Proudnikov D, Pollak L, et al. Increased attributable risk related to a functional mu-opioid receptor gene polymorphism in association with alcohol dependence in central Sweden. Neuropsychopharmacology. 2005;30:417–22.

    Article  CAS  PubMed  Google Scholar 

  40. Ehlers CL, Lind PA, Wilhelmsen KC. Association between single nucleotide polymorphisms in the mu opioid receptor gene (OPRM1) and self-reported responses to alcohol in American Indians. BMC Med Genet. 2008;9:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Enoch MA. Genetic influences on the development of alcoholism. Curr Psychiatry Rep. 2013;15:412.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Enoch MA. Genetic influences on response to alcohol and response to pharmacotherapies for alcoholism. Pharm Biochem Behav. 2014;123:17–24.

    Article  CAS  Google Scholar 

  43. Kim SG, Kim CM, Kang DH, Kim YJ, Byun WT, Kim SY, et al. Association of functional opioid receptor genotypes with alcohol dependence in Koreans. Alcohol Clin Exp Res. 2004;28:986–90.

    Article  CAS  PubMed  Google Scholar 

  44. Koller G, Zill P, Rujescu D, Ridinger M, Pogarell O, Fehr C, et al. Possible association between OPRM1 genetic variance at the 118 locus and alcohol dependence in a large treatment sample: relationship to alcohol dependence symptoms. Alcohol Clin Exp Res. 2012;36:1230–6.

    Article  CAS  PubMed  Google Scholar 

  45. Miranda R, Ray L, Justus A, Meyerson LA, Knopik VS, McGeary J, et al. Initial evidence of an association between OPRM1 and adolescent alcohol misuse. Alcohol Clin Exp Res. 2010;34:112–22.

    Article  CAS  PubMed  Google Scholar 

  46. Nishizawa D, Han W, Hasegawa J, Ishida T, Numata Y, Sato T, et al. Association of mu-opioid receptor gene polymorphism A118G with alcohol dependence in a Japanese population. Neuropsychobiology. 2006;53:137–41.

    Article  CAS  PubMed  Google Scholar 

  47. Ray LA, Hutchison KE. A polymorphism of the mu-opioid receptor gene (OPRM1) and sensitivity to the effects of alcohol in humans. Alcohol Clin Exp Res. 2004;28:1789–95.

    Article  CAS  PubMed  Google Scholar 

  48. Rommelspacher H, Smolka M, Schmidt LG, Samochowiec J, Hoehe MR. Genetic analysis of the mu-opioid receptor in alcohol-dependent individuals. Alcohol. 2001;24:129–35.

    Article  CAS  PubMed  Google Scholar 

  49. Szeto CY, Tang NL, Lee DT, Stadlin A. Association between mu opioid receptor gene polymorphisms and Chinese heroin addicts. Neuroreport. 2001;12:1103–6.

    Article  CAS  PubMed  Google Scholar 

  50. Robinson JE, Vardy E, DiBerto JF, Chefer VI, White KL, Fish EW, et al. Receptor reserve moderates mesolimbic responses to opioids in a humanized mouse model of the OPRM1 A118G polymorphism. Neuropsychopharmacology. 2015;40:2614–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gupta A, Rozenfeld R, Gomes I, Raehal KM, Decaillot FM, Bohn LM, et al. Post-activation-mediated changes in opioid receptors detected by N-terminal antibodies. J Biol Chem. 2008;283:10735–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank RUCDR Infinite Biologics for generating the iPS cells from human subjects and assisting with CRISPR/Cas9 gene targeting on 03SF iPS cell line. We also want to thank Dr. Davide Comoletti for the help of biochemical analysis.  Research is supported by grants from NIH-NIAAA R01 AA023797 as well as Collaborative Studies on the Genetics of Alcoholism/COGA 5U10AA008401-26. AH is supported by NIH-NIAAA NRSA F31AA024033. MSS is supported by NIH-NIAAA T32 AA028254. We are grateful to the members of the Collaborative Genetic Study of Nicotine Dependence (COGEND) for the selection of human subjects, and we are grateful to the deidentified individuals who contributed tissue to the study. Pang laboratory at CHINJ is partly supported by a grant from the RWJ Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zhiping P. Pang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halikere, A., Popova, D., Scarnati, M.S. et al. Addiction associated N40D mu-opioid receptor variant modulates synaptic function in human neurons. Mol Psychiatry 25, 1406–1419 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links