Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of parental genotype in predicting offspring years of education: evidence for genetic nurture


Similarities between parent and offspring are widespread in psychology; however, shared genetic variants often confound causal inference for offspring outcomes. A polygenic score (PGS) derived from genome-wide association studies (GWAS) can be used to test for the presence of parental influence that controls for genetic variants shared across generations. We use a PGS for educational attainment (EA3; N 750 thousand) to predict offspring years of education in a sample of 2517 twins and both parents. We find that within families, the dizygotic twin with the higher PGS is more likely to attain higher education (unstandardized β= 0.32; p< 0.001). Additionally, however, we find an effect of parental genotype on offspring outcome that is independent of the offspring’s own genotype; this raises the variance explained in offspring years of education from 9.3 to 11.1% (∆R2 = 0.018, p< 0.001). Controlling for parental IQ or socioeconomic status substantially attenuated or eliminated this effect of parental genotype. These findings suggest a role of environmental factors affected by heritable characteristics of the parents in fostering offspring years of education.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Turkheimer E. Three laws of behavior genetics and what they mean. Curr Directions Psychol Sci. 2000;9:160–4.

    Article  Google Scholar 

  2. Polderman TJ, Benyamin B, De Leeuw CA, Sullivan PF, Van Bochoven A, Visscher PM, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015;47:702–9.

    Article  CAS  PubMed  Google Scholar 

  3. Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 2013;9:e1003348.

  4. Plomin R, DeFries JC, Loehlin JC. Genotype–environment interaction and correlation in the analysis of human behavior. Psychol Bull. 1977;84:309–22.

    Article  CAS  PubMed  Google Scholar 

  5. Plomin R, Loehlin JC, DeFries JC. Genetic and environmental components of “environmental” influences. Dev Psychol. 1985;21:391–402.

    Article  Google Scholar 

  6. Sacerdote B. How large are the effects from changes in family environment? A study of Korean American adoptees. Q J Econ. 2007;122:119–57.

    Article  Google Scholar 

  7. D’Onofrio BM, Turkheimer EN, Eaves LJ, Corey LA, Berg K, Solaas MH, et al. The role of the children of twins design in elucidating causal relations between parent characteristics and child outcomes. J Child Psychol Psychiatry Allied Discip. 2003;44:1130–44.

    Article  Google Scholar 

  8. D’Onofrio BM, Turkheimer E, Emery RE, Slutske WS, Heath AC, Madden PA, et al. A genetically informed study of the processes underlying the association be- tween parental marital instability and offspring adjustment. Dev Psychology. 2006;42:486–99.

    Article  Google Scholar 

  9. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50:1112–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Selzam S, Krapohl E, Von Stumm S, O’Reilly PF, Rimfeld K, Kovas Y, et al. Predicting educational achievement from DNA. Mol Psychiatry. 2017;22:267–72.

    Article  CAS  PubMed  Google Scholar 

  11. Sniekers S, Stringer S, Watanabe K, Jansen PR, Coleman JR, Krapohl E, et al. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nat. Genet. 2017; 49.

  12. Kong A, Thorleifsson G, Frigge ML, Vilhjálmsson BJ, Young AI, Thorgeirsson TE, et al. The nature of nurture: effects of parental genotypes. Science. 2018;359:424–8.

    Article  CAS  PubMed  Google Scholar 

  13. Bates TC, Maher BS, Medland SE, McAloney K, Wright MJ, Hansell NK, et al. The nature of nurture: Using a virtual-parent design to test parenting effects on children’s educational attainment in genotyped families. Twin Res Hum Genet. 2018;21:73–83.

    Article  PubMed  Google Scholar 

  14. Belsky DW, Domingue BW, Wedow R, Arseneault L, Boardman JD, Caspi A, et al. Genetic analysis of social-class mobility in five longitudinal studies. Proc Natl Acad Sci. 2018;115:E7275–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu H. Social and genetic pathways in multigenerational transmission of educational attainment. Am Sociol Rev. 2018;83:278–304.

    Article  Google Scholar 

  16. Fisher RA. Average excess and average effect of a gene substitution. Ann Eugenics. 1941;11:53–63.

    Article  Google Scholar 

  17. Lee JJ, Chow CC. The causal meaning of Fisher’s average effect. Genet Res. 2013;95:89–109.

    Article  Google Scholar 

  18. Miller MB, Basu S, Cunningham J, Eskin E, Malone SM, Oetting WS, et al. The Minnesota Center for Twin and Family Research genome-wide association study. Twin Res Hum Genet. 2012;15:767–74.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J Hum Genet. 2015;97:576–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Loh PR, Kichaev G, Gazal S, Schoech AP, Price AL. Mixed-model association for biobank-scale datasets. Nat Genet. 2018;50:906–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wechsler D. Wechsler adult intelligence scale-revised. San Antonio, TX: Psychological Corporation; 1981.

    Google Scholar 

  22. Wechsler D. Manual for the Wechsler Intelligence Scale for Children–Revised. New York, NY: Psychological Corporation; 1974.

    Google Scholar 

  23. Schmidt FL, Hunter J. General mental ability in the world of work: Occupational attainment and job performance. J Pers Soc Psychol. 2004;86:162–73.

  24. Gottfredson LS. Why g matters: the complexity of everyday life. Intelligence. 1997;24:79–132. 10.1016/S0160-2896(97)90014-3

    Article  Google Scholar 

  25. McGue M, Rustichini A, Iacono WG. Cognitive, noncognitive, and family background contributions to college attainment: a behavioral genetic perspective. J Personal. 2017;85:65–78.

    Article  Google Scholar 

  26. Stumm S, von, Plomin R. Socioeconomic status and the growth of intelligence from infancy through adolescence. Intelligence. 2015;48:30–36.

    Article  Google Scholar 

  27. Strenze T. Intelligence and socioeconomic success: A meta-analytic review of longitudinal research. Intelligence. 2007;35:401–26.

    Article  Google Scholar 

  28. Belsky DW, Moffitt TE, Corcoran DL, Domingue B, Harrington H, Hogan S, et al. The genetics of success: How single-nucleotide polymorphisms associated with educational attainment relate to life-course development. Psychol Sci. 2016;27:957–72.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee JJ. Correlation and causation in the study of personality. Eur J Personal. 2012;26:372–90.

    Article  Google Scholar 

  30. Pearl J. Causality: models, reasoning, and inference. 2nd ed. New York, NY: Cambridge University Press, 2009.

  31. Plomin R, Bergeman CS. The nature of nurture: Genetic influence on “environmental” measures. Behav Brain Sci. 1991;14:373–86.

    Article  Google Scholar 

  32. Plomin R. Genetics and experience: the interplay between nature and nurture. Thousand Oaks, CA, US: Sage Publications, Inc; 1994.

  33. Vinkhuyzen AA, Van Der Sluis S, De Geus EJ, Boomsma DI, Posthuma D. Genetic influences on “environmental” factors. Genes Brain Behav. 2010;9:276–87.

    Article  CAS  PubMed  Google Scholar 

  34. Munafò MR, Smith DG. Repeating experiments is not enough. Nature. 2018;553:399–401.

    Article  CAS  PubMed  Google Scholar 

  35. Engelhardt LE, Church JA, Harden KP, Tucker-Drob EM. Accounting for the shared environment in cognitive abilities and academic achievement with measured socioecological contexts. Dev Sci. 2019;22:e12699.

  36. Tucker-Drob EM, Briley DA, Harden KP. Genetic and environmental influences on cognition across development and context. Curr Dir Psychol Sci. 2013;22:349–55.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Scarr S, McCartney K. How people make their own environments: a theory of genotype–environment effects. Child Dev. 1983;54:424.

    Article  CAS  PubMed  Google Scholar 

Download references


Thanks to the Minnesota Center for Twin and Family Research staff for their expert management and synthesis of the data used in this study.


The research reported here and the preparation of this manuscript were supported by grants from the U.S. National Institute on Alcohol Abuse and Alcoholism (AA09367, AA11886), the National Institute of Mental Health (MH066140), and the National Institute on Drug Abuse (DA05147, DA013240).

Author information

Authors and Affiliations



MM, JJL, and AR developed the study concept. WGI performed original data collection and aided in concept development. EAW performed the data analysis and interpretation under the instruction and supervision of JJ. EAW drafted the manuscript, and JJL, MM, and WGI provided critical revisions. JJL performed the simulations and provided the theoretical arguments reported in the supplementary material. All authors approved the final version of the manuscript for submission.

Corresponding author

Correspondence to Emily A. Willoughby.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Willoughby, E.A., McGue, M., Iacono, W.G. et al. The role of parental genotype in predicting offspring years of education: evidence for genetic nurture. Mol Psychiatry 26, 3896–3904 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links