Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Genetic insights and neurobiological implications from NRXN1 in neuropsychiatric disorders

Abstract

Many neuropsychiatric and neurodevelopmental disorders commonly share genetic risk factors. To date, the mechanisms driving the pathogenesis of these disorders, particularly how genetic variations affect the function of risk genes and contribute to disease symptoms, remain largely unknown. Neurexins are a family of synaptic adhesion molecules, which play important roles in the formation and establishment of synaptic structure, as well as maintenance of synaptic function. Accumulating genomic findings reveal that genetic variations within genes encoding neurexins are associated with a variety of psychiatric conditions such as schizophrenia, autism spectrum disorder, and some developmental abnormalities. In this review, we focus on NRXN1, one of the most compelling psychiatric risk genes of the neurexin family. We performed a comprehensive survey and analysis of current genetic and molecular data including both common and rare alleles within NRXN1 associated with psychiatric illnesses, thus providing insights into the genetic risk conferred by NRXN1. We also summarized the neurobiological evidences, supporting the function of NRXN1 and its protein products in synaptic formation, organization, transmission and plasticity, as well as disease-relevant behaviors, and assessed the mechanistic link between the mutations of NRXN1 and synaptic and behavioral pathology in neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ushkaryov YA, Petrenko AG, Geppert M, Sudhof TC. Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science. 1992;257:50–6.

    CAS  PubMed  Google Scholar 

  2. Dean C, Scholl FG, Choih J, DeMaria S, Berger J, Isacoff E, et al. Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci. 2003;6:708–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sudhof TC. Synaptic neurexin complexes: a molecular code for the logic of neural circuits. Cell. 2017;171:745–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Reissner C, Runkel F, Missler M. Neurexins. Genome Biol. 2013;14:213.

    PubMed  PubMed Central  Google Scholar 

  5. Etherton MR, Blaiss CA, Powell CM, Sudhof TC. Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci USA. 2009;106:17998–8003.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer RE, Gottmann K, et al. Alpha-neurexins couple Ca2 + channels to synaptic vesicle exocytosis. Nature. 2003;423:939–48.

    CAS  PubMed  Google Scholar 

  7. Rujescu D, Ingason A, Cichon S, Pietilainen OP, Barnes MR, Toulopoulou T, et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet. 2009;18:988–96.

    CAS  PubMed  Google Scholar 

  8. Vaags AK, Lionel AC, Sato D, Goodenberger M, Stein QP, Curran S, et al. Rare deletions at the neurexin 3 locus in autism spectrum disorder. Am J Hum Genet. 2012;90:133–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang AY, Yu D, Davis LK, Sul JH, Tsetsos F, Ramensky V, et al. Rare copy number variants in NRXN1 and CNTN6 increase risk for Tourette syndrome. Neuron. 2017;94:1101–11 e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nussbaum J, Xu Q, Payne TJ, Ma JZ, Huang W, Gelernter J, et al. Significant association of the neurexin-1 gene (NRXN1) with nicotine dependence in European- and African-American smokers. Hum Mol Genet. 2008;17:1569–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dabell MP, Rosenfeld JA, Bader P, Escobar LF, El-Khechen D, Vallee SE, et al. Investigation of NRXN1 deletions: clinical and molecular characterization. Am J Med Genet A. 2013;161A:717–31.

    PubMed  Google Scholar 

  12. Lowther C, Speevak M, Armour CM, Goh ES, Graham GE, Li C, et al. Molecular characterization of NRXN1 deletions from 19,263 clinical microarray cases identifies exons important for neurodevelopmental disease expression. Genet Med. 2017;19:53–61.

    CAS  PubMed  Google Scholar 

  13. Jenkins A, Apud JA, Zhang F, Decot H, Weinberger DR, Law AJ. Identification of candidate single-nucleotide polymorphisms in NRXN1 related to antipsychotic treatment response in patients with schizophrenia. Neuropsychopharmacology. 2014;39:2170–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Harkin LF, Lindsay SJ, Xu Y, Alzu’bi A, Ferrara A, Gullon EA, et al. Neurexins 1-3 each have a distinct pattern of expression in the early developing human cerebral cortex. Cereb Cortex. 2017;27:216–32.

    PubMed  Google Scholar 

  15. Reichelt AC, Rodgers RJ, Clapcote SJ. The role of neurexins in schizophrenia and autistic spectrum disorder. Neuropharmacology. 2012;62:1519–26.

    CAS  PubMed  Google Scholar 

  16. Rowen L, Young J, Birditt B, Kaur A, Madan A, Philipps DL, et al. Analysis of the human neurexin genes: alternative splicing and the generation of protein diversity. Genomics. 2002;79:587–97.

    CAS  PubMed  Google Scholar 

  17. Ullrich B, Ushkaryov YA, Sudhof TC. Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron. 1995;14:497–507.

    CAS  PubMed  Google Scholar 

  18. Tabuchi K, Sudhof TC. Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics. 2002;79:849–59.

    CAS  PubMed  Google Scholar 

  19. Missler M, Sudhof TC. Neurexins: three genes and 1001 products. Trends Genet. 1998;14:20–6.

    CAS  PubMed  Google Scholar 

  20. Jenkins AK, Paterson C, Wang Y, Hyde TM, Kleinman JE, Law AJ. Neurexin 1 (NRXN1) splice isoform expression during human neocortical development and aging. Mol Psychiatry. 2016;21:701–6.

    CAS  PubMed  Google Scholar 

  21. Puschel AW, Betz H. Neurexins are differentially expressed in the embryonic nervous system of mice. J Neurosci. 1995;15:2849–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yan Q, Weyn-Vanhentenryck SM, Wu J, Sloan SA, Zhang Y, Chen K, et al. Systematic discovery of regulated and conserved alternative exons in the mammalian brain reveals NMD modulating chromatin regulators. Proc Natl Acad Sci USA. 2015;112:3445–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang P, Lu H, Peixoto RT, Pines MK, Ge Y, Oku S, et al. Heparan sulfate organizes neuronal synapses through Neurexin Partnerships. Cell. 2018;174:1450–64 e23.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang B, Seigneur E, Wei P, Gokce O, Morgan J, Sudhof TC. Developmental plasticity shapes synaptic phenotypes of autism-associated neuroligin-3 mutations in the calyx of Held. Mol Psychiatry. 2017;22:1483–91.

    CAS  PubMed  Google Scholar 

  25. Muhammad K, Reddy-Alla S, Driller JH, Schreiner D, Rey U, Bohme MA, et al. Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function. Nat Commun. 2015;6:8362.

    CAS  PubMed  Google Scholar 

  26. Owald D, Fouquet W, Schmidt M, Wichmann C, Mertel S, Depner H, et al. A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila. J Cell Biol. 2010;188:565–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Moller RS, Weber YG, Klitten LL, Trucks H, Muhle H, Kunz WS, et al. Exon-disrupting deletions of NRXN1 in idiopathic generalized epilepsy. Epilepsia. 2013;54:256–64.

    CAS  PubMed  Google Scholar 

  28. Swaminathan S, Shen L, Kim S, Inlow M, West JD, Faber KM, et al. Analysis of copy number variation in Alzheimer’s disease: the NIALOAD/ NCRAD Family Study. Curr Alzheimer Res. 2012;9:801–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Duong L, Klitten LL, Moller RS, Ingason A, Jakobsen KD, Skjodt C, et al. Mutations in NRXN1 in a family multiply affected with brain disorders: NRXN1 mutations and brain disorders. Am J Med Genet B Neuropsychiatr Genet. 2012;159B:354–8.

    PubMed  Google Scholar 

  30. Bena F, Bruno DL, Eriksson M, van Ravenswaaij-Arts C, Stark Z, Dijkhuizen T, et al. Molecular and clinical characterization of 25 individuals with exonic deletions of NRXN1 and comprehensive review of the literature. Am J Med Genet B Neuropsychiatr Genet. 2013;162B:388–403.

    PubMed  Google Scholar 

  31. Kirov G, Rujescu D, Ingason A, Collier DA, O’Donovan MC, Owen MJ. Neurexin 1 (NRXN1) deletions in schizophrenia. Schizophr Bull. 2009;35:851–4.

    PubMed  PubMed Central  Google Scholar 

  32. Ikeda M, Aleksic B, Kirov G, Kinoshita Y, Yamanouchi Y, Kitajima T, et al. Copy number variation in schizophrenia in the Japanese population. Biol Psychiatry. 2010;67:283–6.

    PubMed  Google Scholar 

  33. Lopez AD, Murray CC. The global burden of disease, 1990–2020. Nat Med. 1998;4:1241–3.

    CAS  PubMed  Google Scholar 

  34. McGuffin P, Owen MJ, Farmer AE. Genetic basis of schizophrenia. Lancet. 1995;346:678–82.

    CAS  PubMed  Google Scholar 

  35. McClellan JM, Susser E, King MC. Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry. 2007;190:194–9.

    PubMed  Google Scholar 

  36. Owen MJ, Craddock N, O’Donovan MC. Suggestion of roles for both common and rare risk variants in genome-wide studies of schizophrenia. Arch Gen Psychiatry. 2010;67:667–73.

    CAS  PubMed  Google Scholar 

  37. Kirov G, Gumus D, Chen W, Norton N, Georgieva L, Sari M, et al. Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet. 2008;17:458–65.

    CAS  PubMed  Google Scholar 

  38. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science. 2008;320:539–43.

    CAS  PubMed  Google Scholar 

  39. Rees E, Walters JT, Chambert KD, O’Dushlaine C, Szatkiewicz J, Richards AL, et al. CNV analysis in a large schizophrenia sample implicates deletions at 16p12.1 and SLC1A1 and duplications at 1p36.33 and CGNL1. Hum Mol Genet. 2014;23:1669–76.

    CAS  PubMed  Google Scholar 

  40. Guha S, Rees E, Darvasi A, Ivanov D, Ikeda M, Bergen SE, et al. Implication of a rare deletion at distal 16p11.2 in schizophrenia. JAMA Psychiatry. 2013;70:253–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Szatkiewicz JP, O’Dushlaine C, Chen G, Chambert K, Moran JL, Neale BM, et al. Copy number variation in schizophrenia in Sweden. Mol Psychiatry. 2014;19:762–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li Z, Chen J, Xu Y, Yi Q, Ji W, Wang P, et al. Genome-wide analysis of the role of copy number variation in cchizophrenia risk in Chinese. Biol Psychiatry. 2016;80:331–7.

    PubMed  Google Scholar 

  43. Buizer-Voskamp JE, Muntjewerff JW, Genetic R, Outcome in Psychosis Consortium M, Strengman E, Sabatti C, et al. Genome-wide analysis shows increased frequency of copy number variation deletions in Dutch schizophrenia patients. Biol Psychiatry. 2011;70:655–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Morris DW, Pearson RD, Cormican P, Kenny EM, O’Dushlaine CT, Perreault LP, et al. An inherited duplication at the gene p21 protein-activated kinase 7 (PAK7) is a risk factor for psychosis. Hum Mol Genet. 2014;23:3316–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. 2008;455:237–41.

    Google Scholar 

  46. Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J, et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry. 2011;168:302–16.

    PubMed  PubMed Central  Google Scholar 

  47. Magri C, Sacchetti E, Traversa M, Valsecchi P, Gardella R, Bonvicini C, et al. New copy number variations in schizophrenia. PLoS ONE. 2010;5:e13422.

    PubMed  PubMed Central  Google Scholar 

  48. Costain G, Lionel AC, Merico D, Forsythe P, Russell K, Lowther C, et al. Pathogenic rare copy number variants in community-based schizophrenia suggest a potential role for clinical microarrays. Hum Mol Genet. 2013;22:4485–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rudd DS, Axelsen M, Epping EA, Andreasen NC, Wassink TH. A genome-wide CNV analysis of schizophrenia reveals a potential role for a multiple-hit model. Am J Med Genet B Neuropsychiatr Genet. 2014;165B:619–26.

    PubMed  Google Scholar 

  50. Priebe L, Degenhardt F, Strohmaier J, Breuer R, Herms S, Witt SH, et al. Copy number variants in German patients with schizophrenia. PLoS ONE. 2013;8:e64035.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Van Den Bossche MJ, Johnstone M, Strazisar M, Pickard BS, Goossens D, Lenaerts AS, et al. Rare copy number variants in neuropsychiatric disorders: specific phenotype or not? Am J Med Genet B Neuropsychiatr Genet. 2012;159B:812–22.

    Google Scholar 

  52. Ahn K, Gotay N, Andersen TM, Anvari AA, Gochman P, Lee Y, et al. High rate of disease-related copy number variations in childhood onset schizophrenia. Mol Psychiatry. 2014;19:568–72.

    CAS  PubMed  Google Scholar 

  53. Todarello G, Feng N, Kolachana BS, Li C, Vakkalanka R, Bertolino A, et al. Incomplete penetrance of NRXN1 deletions in families with schizophrenia. Schizophr Res. 2014;155:1–7.

    PubMed  Google Scholar 

  54. Need AC, Ge D, Weale ME, Maia J, Feng S, Heinzen EL, et al. A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet. 2009;5:e1000373.

    PubMed  PubMed Central  Google Scholar 

  55. Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S, et al. Large recurrent microdeletions associated with schizophrenia. Nature. 2008;455:232–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Marshall CR, Howrigan DP, Merico D, Thiruvahindrapuram B, Wu W, Greer DS, et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet. 2017;49:27–35.

    CAS  PubMed  Google Scholar 

  57. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    PubMed Central  Google Scholar 

  58. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506:179–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P, et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature. 2014;506:185–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yue W, Yang Y, Zhang Y, Lu T, Hu X, Wang L, et al. A case-control association study of NRXN1 polymorphisms with schizophrenia in Chinese Han population. Behav Brain Funct. 2011;7:7.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Birnbaum R, Jaffe AE, Chen Q, Hyde TM, Kleinman JE, Weinberger DR. Investigation of the prenatal expression patterns of 108 schizophrenia-associated genetic loci. Biol Psychiatry. 2015;77:e43–51.

    CAS  PubMed  Google Scholar 

  62. Birnbaum R, Weinberger DR. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat Rev Neurosci. 2017;18:727–40.

    CAS  PubMed  Google Scholar 

  63. Andersen SL. Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev. 2003;27:3–18.

    PubMed  Google Scholar 

  64. Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology. 2010;35:147–68.

    PubMed  Google Scholar 

  65. Huttenlocher PR. Synaptic density in human frontal cortex - developmental changes and effects of aging. Brain Res. 1979;163:195–205.

    CAS  PubMed  Google Scholar 

  66. Forrest MP, Parnell E, Penzes P. Dendritic structural plasticity and neuropsychiatric disease. Nat Rev Neurosci. 2018;19:215–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362:6420.

    Google Scholar 

  68. Iijima T, Wu K, Witte H, Hanno-Iijima Y, Glatter T, Richard S, et al. SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell. 2011;147:1601–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rozic G, Lupowitz Z, Piontkewitz Y, Zisapel N. Dynamic changes in neurexins’ alternative splicing: role of Rho-associated protein kinases and relevance to memory formation. PLoS ONE. 2011;6:e18579.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Treutlein B, Gokce O, Quake SR, Sudhof TC. Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing. Proc Natl Acad Sci USA. 2014;111:E1291–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Fuccillo MV, Foldy C, Gokce O, Rothwell PE, Sun GL, Malenka RC, et al. Single-cell mRNA profiling reveals cell-type-specific expression of neurexin isoforms. Neuron. 2015;87:326–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell. 2004;119:1013–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Boucard AA, Chubykin AA, Comoletti D, Taylor P, Sudhof TC. A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron. 2005;48:229–36.

    CAS  PubMed  Google Scholar 

  74. Chih B, Gollan L, Scheiffele P. Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron. 2006;51:171–8.

    CAS  PubMed  Google Scholar 

  75. Kang Y, Zhang X, Dobie F, Wu H, Craig AM. Induction of GABAergic postsynaptic differentiation by alpha-neurexins. J Biol Chem. 2008;283:2323–34.

    CAS  PubMed  Google Scholar 

  76. Graf ER, Kang Y, Hauner AM, Craig AM. Structure function and splice site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain. J Neurosci. 2006;26:4256–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Siddiqui TJ, Pancaroglu R, Kang Y, Rooyakkers A, Craig AM. LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. J Neurosci. 2010;30:7495–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jaffe AE, Straub RE, Shin JH, Tao R, Gao Y, Collado-Torres L, et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat Neurosci. 2018;21:1117–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Santangelo SL, Tsatsanis K. What is known about autism: genes, brain, and behavior. Am J Pharmacogenomics. 2005;5:71–92.

    CAS  PubMed  Google Scholar 

  80. Feng J, Schroer R, Yan J, Song W, Yang C, Bockholt A, et al. High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neurosci Lett. 2006;409:10–3.

    CAS  PubMed  Google Scholar 

  81. Williams SM, An JY, Edson J, Watts M, Murigneux V, Whitehouse AJO et al. An integrative analysis of non-coding regulatory DNA variations associated with autism spectrum disorder. Mol Psychiatry. 2018; https://doi.org/10.1038/s41380-018-0049-x.

  82. Li J, Cai T, Jiang Y, Chen H, He X, Chen C, et al. Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database. Mol Psychiatry. 2016;21:290–7.

    PubMed  Google Scholar 

  83. Gai X, Xie HM, Perin JC, Takahashi N, Murphy K, Wenocur AS, et al. Rare structural variation of synapse and neurotransmission genes in autism. Mol Psychiatry. 2012;17:402–11.

    CAS  PubMed  Google Scholar 

  84. Autism Genome Project C, Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet. 2007;39:319–28.

    Google Scholar 

  85. Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y, et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet. 2008;82:199–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yan J, Noltner K, Feng J, Li W, Schroer R, Skinner C, et al. Neurexin 1alpha structural variants associated with autism. Neurosci Lett. 2008;438:368–70.

    CAS  PubMed  Google Scholar 

  87. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature. 2009;459:569–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82:477–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ching MS, Shen Y, Tan WH, Jeste SS, Morrow EM, Chen X, et al. Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum of developmental disorders. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:937–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466:368–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wisniowiecka-Kowalnik B, Nesteruk M, Peters SU, Xia Z, Cooper ML, Savage S, et al. Intragenic rearrangements in NRXN1 in three families with autism spectrum disorder, developmental delay, and speech delay. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:983–93.

    CAS  PubMed  Google Scholar 

  92. Camacho-Garcia RJ, Planelles MI, Margalef M, Pecero ML, Martinez-Leal R, Aguilera F, et al. Mutations affecting synaptic levels of neurexin-1beta in autism and mental retardation. Neurobiol Dis. 2012;47:135–43.

    CAS  PubMed  Google Scholar 

  93. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, et al. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012;74:285–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Prasad A, Merico D, Thiruvahindrapuram B, Wei J, Lionel AC, Sato D, et al. A discovery resource of rare copy number variations in individuals with autism spectrum disorder. G3 (Bethesda). 2012;2:1665–85.

    CAS  Google Scholar 

  95. Girirajan S, Dennis MY, Baker C, Malig M, Coe BP, Campbell CD, et al. Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder. Am J Hum Genet. 2013;92:221–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Walker S, Scherer SW. Identification of candidate intergenic risk loci in autism spectrum disorder. BMC Genomics. 2013;14:499.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

    PubMed  PubMed Central  Google Scholar 

  98. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature. 2012;488:471–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Jiang YH, Yuen RK, Jin X, Wang M, Chen N, Wu X, et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet. 2013;93:249–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Imitola J, Walleigh D, Anderson CE, Jethva R, Carvalho KS, Legido A, et al. Fraternal twins with autism, severe cognitive deficit, and epilepsy: diagnostic role of chromosomal microarray analysis. Semin Pediatr Neurol. 2014;21:167–71.

    PubMed  Google Scholar 

  101. Schaaf CP, Boone PM, Sampath S, Williams C, Bader PI, Mueller JM, et al. Phenotypic spectrum and genotype-phenotype correlations of NRXN1 exon deletions. Eur J Hum Genet. 2012;20:1240–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Koshimizu E, Miyatake S, Okamoto N, Nakashima M, Tsurusaki Y, Miyake N, et al. Performance comparison of bench-top next generation sequencers using microdroplet PCR-based enrichment for targeted sequencing in patients with autism spectrum disorder. PLoS ONE. 2013;8:e74167.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Vinas-Jornet M, Esteba-Castillo S, Gabau E, Ribas-Vidal N, Baena N, San J, et al. A common cognitive, psychiatric, and dysmorphic phenotype in carriers of NRXN1 deletion. Mol Genet Genomic Med. 2014;2:512–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature. 2009;459:528–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu Y, Hu Z, Xun G, Peng Y, Lu L, Xu X, et al. Mutation analysis of the NRXN1 gene in a Chinese autism cohort. J Psychiatr Res. 2012;46:630–4.

    PubMed  Google Scholar 

  106. Voineskos AN, Lett TA, Lerch JP, Tiwari AK, Ameis SH, Rajji TK, et al. Neurexin-1 and frontal lobe white matter: an overlapping intermediate phenotype for schizophrenia and autism spectrum disorders. PLoS ONE. 2011;6:e20982.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Souza RP, Meltzer HY, Lieberman JA, Le Foll B, Kennedy JL. Influence of neurexin 1 (NRXN1) polymorphisms in clozapine response. Hum Psychopharmacol. 2010;25:582–5.

    CAS  PubMed  Google Scholar 

  108. Lett TA, Tiwari AK, Meltzer HY, Lieberman JA, Potkin SG, Voineskos AN, et al. The putative functional rs1045881 marker of neurexin-1 in schizophrenia and clozapine response. Schizophr Res. 2011;132:121–4.

    PubMed  Google Scholar 

  109. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14:285–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Nam CI, Chen L. Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proc Natl Acad Sci USA. 2005;102:6137–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Giannone G, Mondin M, Grillo-Bosch D, Tessier B, Saint-Michel E, Czondor K, et al. Neurexin-1beta binding to neuroligin-1 triggers the preferential recruitment of PSD-95 versus gephyrin through tyrosine phosphorylation of neuroligin-1. Cell Rep. 2013;3:1996–2007.

    CAS  PubMed  Google Scholar 

  112. Kurshan PT, Merrill SA, Dong Y, Ding C, Hammarlund M, Bai J, et al. gamma-neurexin and frizzled mediate parallel synapse assembly pathways antagonized by receptor endocytosis. Neuron. 2018;100:150–66 e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C, et al. Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell. 1995;81:435–43.

    CAS  PubMed  Google Scholar 

  114. Sudhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;455:903–11.

    PubMed  PubMed Central  Google Scholar 

  115. Arac D, Boucard AA, Ozkan E, Strop P, Newell E, Sudhof TC, et al. Structures of neuroligin-1 and the neuroligin-1/neurexin-1 beta complex reveal specific protein-protein and protein-Ca2 + interactions. Neuron. 2007;56:992–1003.

    CAS  PubMed  Google Scholar 

  116. Chen X, Liu H, Shim AH, Focia PJ, He X. Structural basis for synaptic adhesion mediated by neuroligin-neurexin interactions. Nat Struct Mol Biol. 2008;15:50–6.

    CAS  PubMed  Google Scholar 

  117. Comoletti D, Grishaev A, Whitten AE, Tsigelny I, Taylor P, Trewhella J. Synaptic arrangement of the neuroligin/beta-neurexin complex revealed by X-ray and neutron scattering. Structure. 2007;15:693–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Fabrichny IP, Leone P, Sulzenbacher G, Comoletti D, Miller MT, Taylor P, et al. Structural analysis of the synaptic protein neuroligin and its beta-neurexin complex: determinants for folding and cell adhesion. Neuron. 2007;56:979–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Miller MT, Mileni M, Comoletti D, Stevens RC, Harel M, Taylor P. The crystal structure of the alpha-neurexin-1 extracellular region reveals a hinge point for mediating synaptic adhesion and function. Structure. 2011;19:767–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Xing G, Li M, Sun Y, Rui M, Zhuang Y, Lv H et al. Neurexin-Neuroligin 1 regulates synaptic morphology and functions via the WAVE regulatory complex in Drosophila neuromuscular junction. Elife. 2018;7:pii: e30457.

  121. Reissner C, Klose M, Fairless R, Missler M. Mutational analysis of the neurexin/neuroligin complex reveals essential and regulatory components. Proc Natl Acad Sci USA. 2008;105:15124–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Singh SK, Stogsdill JA, Pulimood NS, Dingsdale H, Kim YH, Pilaz LJ, et al. Astrocytes assemble thalamocortical synapses bybridging NRX1alpha and NL1 via Hevin. Cell. 2016;164:183–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Missler M, Hammer RE, Sudhof TC. Neurexophilin binding to alpha-neurexins. A single LNS domain functions as an independently folding ligand-binding unit. J Biol Chem. 1998;273:34716–23.

    CAS  PubMed  Google Scholar 

  124. Reissner C, Stahn J, Breuer D, Klose M, Pohlentz G, Mormann M, et al. Dystroglycan binding to alpha-neurexin competes with neurexophilin-1 and neuroligin in the brain. J Biol Chem. 2014;289:27585–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Sugita S, Saito F, Tang J, Satz J, Campbell K, Sudhof TC. A stoichiometric complex of neurexins and dystroglycan in brain. J Cell Biol. 2001;154:435–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Petrenko AG, Ullrich B, Missler M, Krasnoperov V, Rosahl TW, Sudhof TC. Structure and evolution of neurexophilin. J Neurosci. 1996;16:4360–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Soler-Llavina GJ, Fuccillo MV, Ko J, Sudhof TC, Malenka RC. The neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo. Proc Natl Acad Sci USA. 2011;108:16502–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. de Wit J, Sylwestrak E, O’Sullivan ML, Otto S, Tiglio K, Savas JN, et al. LRRTM2 interacts with Neurexin1 and regulates excitatory synapse formation. Neuron. 2009;64:799–806.

    PubMed  PubMed Central  Google Scholar 

  129. Ko J, Fuccillo MV, Malenka RC, Sudhof TC. LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron. 2009;64:791–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lee SJ, Uemura T, Yoshida T, Mishina M. GluRdelta2 assembles four neurexins into trans-synaptic triad to trigger synapse formation. J Neurosci. 2012;32:4688–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Lu Z, Wang Y, Chen F, Tong H, Reddy MV, Luo L, et al. Calsyntenin-3 molecular architecture and interaction with neurexin 1alpha. J Biol Chem. 2014;289:34530–42.

    PubMed  PubMed Central  Google Scholar 

  132. Pettem KL, Yokomaku D, Luo L, Linhoff MW, Prasad T, Connor SA, et al. The specific alpha-neurexin interactor calsyntenin-3 promotes excitatory and inhibitory synapse development. Neuron. 2013;80:113–28.

    CAS  PubMed  Google Scholar 

  133. Ito-Ishida A, Miyazaki T, Miura E, Matsuda K, Watanabe M, Yuzaki M, et al. Presynaptically released Cbln1 induces dynamic axonal structural changes by interacting with GluD2 during cerebellar synapse formation. Neuron. 2012;76:549–64.

    CAS  PubMed  Google Scholar 

  134. Futai K, Doty CD, Baek B, Ryu J, Sheng M. Specific trans-synaptic interaction with inhibitory interneuronal neurexin underlies differential ability of neuroligins to induce functional inhibitory synapses. J Neurosci. 2013;33:3612–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Pregno G, Frola E, Graziano S, Patrizi A, Bussolino F, Arese M, et al. Differential regulation of neurexin at glutamatergic and GABAergic synapses. Front Cell Neurosci. 2013;7:35.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Tong XJ, Lopez-Soto EJ, Li L, Liu H, Nedelcu D, Lipscombe D, et al. Retrograde synaptic inhibition is mediated by alpha-neurexinbinding to the alpha2delta subunits of N-Type calcium channels. Neuron. 2017;95:326–40 e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang C, Atasoy D, Arac D, Yang X, Fucillo MV, Robison AJ, et al. Neurexins physically and functionally interact with GABA(A) receptors. Neuron. 2010;66:403–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Cheng SB, Amici SA, Ren XQ, McKay SB, Treuil MW, Lindstrom JM, et al. Presynaptic targeting of alpha4beta 2 nicotinic acetylcholine receptors is regulated by neurexin-1beta. J Biol Chem. 2009;284:23251–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Tong XJ, Hu Z, Liu Y, Anderson D, Kaplan JM. A network of autism linked genes stabilizes two pools of synaptic GABA(A) receptors. Elife. 2015;4:e09648.

    PubMed  PubMed Central  Google Scholar 

  140. Mondin M, Labrousse V, Hosy E, Heine M, Tessier B, Levet F, et al. Neurexin-neuroligin adhesions capture surface-diffusing AMPA receptors through PSD-95 scaffolds. J Neurosci. 2011;31:13500–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Barrow SL, Constable JR, Clark E, El-Sabeawy F, McAllister AK, Washbourne P. Neuroligin1: a cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis. Neural Dev. 2009;4:17.

    PubMed  PubMed Central  Google Scholar 

  142. Anderson GR, Aoto J, Tabuchi K, Foldy C, Covy J, Yee AX, et al. beta-neurexins control neural circuits by regulating Synapticendocannabinoid signaling. Cell. 2015;162:593–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Rabaneda LG, Robles-Lanuza E, Nieto-Gonzalez JL, Scholl FG. Neurexin dysfunction in adult neurons results in autistic-like behavior in mice. Cell Rep. 2014;8:338–46.

    CAS  PubMed  Google Scholar 

  144. Pak C, Danko T, Zhang Y, Aoto J, Anderson G, Maxeiner S, et al. Human neuropsychiatric disease modeling using conditional deletion reveals synaptic transmission defects caused by heterozygous mutations in NRXN1. Cell Stem Cell. 2015;17:316–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang W, Rohlmann A, Sargsyan V, Aramuni G, Hammer RE, Sudhof TC, et al. Extracellular domains of alpha-neurexins participate in regulating synaptic transmission by selectively affecting N- and P/Q-type Ca2 + channels. J Neurosci. 2005;25:4330–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Brockhaus J, Schreitmuller M, Repetto D, Klatt O, Reissner C, Elmslie K, et al. alpha-neurexins together with alpha2delta-1 auxiliary subunits regulate Ca(2 + ) influx through Cav2.1 channels. J Neurosci. 2018;38:8277–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang P, Craig AM. Inhibitory synapses get Madd for neuroligin. Neuron. 2015;86:1321–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Rui M, Qian J, Liu L, Cai Y, Lv H, Han J, et al. The neuronal protein Neurexin directly interacts with the Scribble-Pix complex to stimulate F-actin assembly for synaptic vesicle clustering. J Biol Chem. 2017;292:14334–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Ding X, Liu S, Tian M, Zhang W, Zhu T, Li D, et al. Activity-induced histone modifications govern Neurexin-1 mRNA splicing and memory preservation. Nat Neurosci. 2017;20:690–9.

    CAS  PubMed  Google Scholar 

  150. Choi YB, Li HL, Kassabov SR, Jin I, Puthanveettil SV, Karl KA, et al. Neurexin-neuroligin transsynaptic interaction mediates learning-related synaptic remodeling and long-term facilitation in aplysia. Neuron. 2011;70:468–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Li T, Tian Y, Li Q, Chen H, Lv H, Xie W, et al. The neurexin/N-ethylmaleimide-sensitive factor (NSF) interaction regulates short term synaptic depression. J Biol Chem. 2015;290:17656–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Wu X, Morishita WK, Riley AM, Hale WD, Sudhof TC, Malenka RC. Neuroligin-1 signaling controls LTP and NMDA receptors by distinct molecular pathways. Neuron. 2019;102:621–635.e3.

    PubMed  PubMed Central  Google Scholar 

  153. Forsingdal A, Jorgensen TN, Olsen L, Werge T, Didriksen M, Nielsen J. Can animal models of copy number variants that predispose to schizophrenia elucidate underlying biology? Biol Psychiatry. 2019;85:13–24.

    CAS  PubMed  Google Scholar 

  154. Dachtler J, Glasper J, Cohen RN, Ivorra JL, Swiffen DJ, Jackson AJ, et al. Deletion of alpha-neurexin II results in autism-related behaviors in mice. Transl Psychiatry. 2014;4:e484.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Zeng X, Sun M, Liu L, Chen F, Wei L, Xie W. Neurexin-1 is required for synapse formation and larvae associative learning in Drosophila. FEBS Lett. 2007;581:2509–16.

    CAS  PubMed  Google Scholar 

  156. Grayton HM, Missler M, Collier DA, Fernandes C. Altered social behaviours in neurexin 1alpha knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS ONE. 2013;8:e67114.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Esclassan F, Francois J, Phillips KG, Loomis S, Gilmour G. Phenotypic characterization of nonsocial behavioral impairment in neurexin 1alpha knockout rats. Behav Neurosci. 2015;129:74–85.

    CAS  PubMed  Google Scholar 

  158. Dachtler J, Ivorra JL, Rowland TE, Lever C, Rodgers RJ, Clapcote SJ. Heterozygous deletion of alpha-neurexin I or alpha-neurexin II results in behaviors relevant to autism and schizophrenia. Behav Neurosci. 2015;129:765–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Twining RC, Vantrease JE, Love S, Padival M, Rosenkranz JA. An intra-amygdala circuit specifically regulates social fear learning. Nat Neurosci. 2017;20:459–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Larkin A, Chen MY, Kirszenblat L, Reinhard J, van Swinderen B, Claudianos C. Neurexin-1 regulates sleep and synaptic plasticity in Drosophila melanogaster. Eur J Neurosci. 2015;42:2455–66.

    PubMed  Google Scholar 

  161. Tong H, Li Q, Zhang ZC, Li Y, Han J. Neurexin regulates nighttime sleep by modulating synaptic transmission. Sci Rep. 2016;6:38246.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Martin AR, Daly MJ, Robinson EB, Hyman SE, Neale BM. Predicting polygenic risk of psychiatric disorders. Biol Psychiatry. 2018. https://doi.org/10.1016/j.biopsych.2018.12.015

    Article  PubMed  PubMed Central  Google Scholar 

  163. Al Shehhi M, Forman EB, Fitzgerald JE, McInerney V, Krawczyk J, Shen S, et al. NRXN1 deletion syndrome; phenotypic and penetrance data from 34 families. Eur J Med Genet. 2019;62:204–9.

    PubMed  Google Scholar 

  164. Castronovo P, Baccarin M, Ricciardello A, Picinelli C, Tomaiuolo P, Cucinotta F et al. Phenotypic spectrum of NRXN1 mono- and bi-allelic deficiency: a systematic review. Clin Genet. 2019. https://doi.org/10.1111/cge.13537.

  165. Osimo EF, Beck K, Reis Marques T, Howes OD. Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry. 2019;24:549–61.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB13000000 to M.L.); National Natural Science Foundation of China (81722019 to M.L., 31872778 to Z.H., and 31701133 to X.X.). Ming Li was supported by CAS Pioneer Hundred Talents Program and the 1000 Young Talents Program. Zhonghua Hu was supported by Xiangya Hospital Start-up Research Grants and Hunan 100 Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhonghua Hu or Ming Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Xiao, X., Zhang, Z. et al. Genetic insights and neurobiological implications from NRXN1 in neuropsychiatric disorders. Mol Psychiatry 24, 1400–1414 (2019). https://doi.org/10.1038/s41380-019-0438-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0438-9

This article is cited by

Search

Quick links