Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior

Abstract

The advent and wide-spread adoption of electric lighting over the past century has profoundly affected the circadian organization of physiology and behavior for many individuals in industrialized nations; electric lighting in homes, work environments, and public areas have extended daytime activities into the evening, thus, increasing night-time exposure to light. Although initially assumed to be innocuous, chronic exposure to light at night (LAN) is now associated with increased incidence of cancer, metabolic disorders, and affective problems in humans. However, little is known about potential acute effects of LAN. To determine whether acute exposure to low-level LAN alters brain function, adult male, and female mice were housed in either light days and dark nights (LD; 14 h of 150 lux:10 h of 0 lux) or light days and low level light at night (LAN; 14 h of 150 lux:10 h of 5 lux). Mice exposed to LAN on three consecutive nights increased depressive-like responses compared to mice housed in dark nights. In addition, female mice exposed to LAN increased central tendency in the open field. LAN was associated with reduced hippocampal vascular endothelial growth factor-A (VEGF-A) in both male and female mice, as well as increased VEGFR1 and interleukin-1β mRNA expression in females, and reduced brain derived neurotrophic factor mRNA in males. Further, LAN significantly altered circadian rhythms (activity and temperature) and circadian gene expression in female and male mice, respectively. Altogether, this study demonstrates that acute exposure to LAN alters brain physiology and can be detrimental to well-being in otherwise healthy individuals.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Gaston KJ, Bennie J, Davies TW, Hopkins J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol Rev. 2013;88:912–27.

    PubMed  Google Scholar 

  2. 2.

    Falchi F, Cinzano P, Duriscoe D, Kyba CCM, Elvidge CD, Baugh K, et al. The new world atlas of artificial night sky brightness. Sci Adv. 2016;2:e1600377.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Bedrosian TA, Nelson RJ. Timing of light exposure affects mood and brain circuits. Transl Psychiatry. 2017;7:e1017.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Davis S, Mirick DK, Stevens RG. Night shift work, light at night, and risk of breast cancer. JNCI J Natl Cancer Inst. 2001;93:1557–62.

    CAS  PubMed  Google Scholar 

  5. 5.

    Kloog I, Haim A, Stevens RG, Portnov BA. Global co-distribution of light at night (LAN) and cancers of prostate, colon, and lung in men. Chronobiol Int. 2009;26:108–25.

    PubMed  Google Scholar 

  6. 6.

    Kloog I, Stevens RG, Haim A, Portnov BA. Nighttime light level co-distributes with breast cancer incidence worldwide. Cancer Causes Control. 2010;21:2059–68.

    PubMed  Google Scholar 

  7. 7.

    Obayashi K, Saeki K, Iwamoto J, Okamoto N, Tomioka K, Nezu S, et al. Exposure to light at night, nocturnal urinary melatonin excretion, and obesity/dyslipidemia in the elderly: a cross-sectional analysis of the HEIJO-KYO study. J Clin Endocrinol Metab. 2013;98:337–44.

    CAS  PubMed  Google Scholar 

  8. 8.

    Obayashi K, Saeki K, Iwamoto J, Ikada Y, Kurumatani N. Exposure to light at night and risk of depression in the elderly. J Affect Disord. 2013;151:331–6.

    PubMed  Google Scholar 

  9. 9.

    Obayashi K, Saeki K, Kurumatani N. Light exposure at night is associated with subclinical carotid atherosclerosis in the general elderly population: the HEIJO-KYO cohort. Chronobiol Int. 2015;32:310–7.

    CAS  PubMed  Google Scholar 

  10. 10.

    Obayashi K, Saeki K, Iwamoto J, Ikada Y, Kurumatani N. Independent associations of exposure to evening light and nocturnal urinary melatonin excretion with diabetes in the elderly. Chronobiol Int. 2014;2:394–400.

    Google Scholar 

  11. 11.

    Blask DE, Brainard GC, Dauchy RT, Hanifin JP, Davidson LK, Krause JA, et al. Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res. 2005;65:11174–84.

    CAS  PubMed  Google Scholar 

  12. 12.

    Fonken LK, Finy MS, Walton JC, Weil ZM, Workman JL, Ross J, et al. Influence of light at night on murine anxiety- and depressive-like responses. Behav Brain Res. 2009;205:349–54.

    PubMed  Google Scholar 

  13. 13.

    Fonken LK, Kitsmiller E, Smale L, Nelson RJ. Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent. J Biol Rhythms. 2012;27:319–27.

    PubMed  Google Scholar 

  14. 14.

    Fonken LK, Nelson RJ. Dim light at night increases depressive-like responses in male C3H/HeNHsd mice. Behav Brain Res. 2013;243:74–8.

    PubMed  Google Scholar 

  15. 15.

    Bedrosian TA, Weil ZM, Nelson RJ. Chronic dim light at night provokes reversible depression-like phenotype: possible role for TNF. Mol Psychiatry. 2013;18:930–6.

    CAS  PubMed  Google Scholar 

  16. 16.

    Bedrosian TA, Vaughn CA, Galan A, Daye G, Weil ZM, Nelson RJ. Nocturnal light exposure impairs affective responses in a wavelength-dependent manner. https://doi.org/10.1523/JNEUROSCI.5734-12; 2013.

  17. 17.

    Opperhuizen A-L, Stenvers DJ, Jansen RD, Foppen E, Fliers E, Kalsbeek A. Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats. Diabetologia. 2017;60:1333–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Bedrosian TA, Fonken LK, Walton JC, Haim A, Nelson RJ. Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters. Psychoneuroendocrinology. 2011;36:1062–9.

    PubMed  Google Scholar 

  19. 19.

    Fonken LK, Kitsmiller E, Smale L, Nelson RJ. Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent. J Biol Rhythms. 2012;27:319–27.

    PubMed  Google Scholar 

  20. 20.

    Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis. 2009;24:27–53.

    CAS  PubMed  Google Scholar 

  21. 21.

    Maes M, Song C, Yirmiya R. Targeting IL-1 in depression. Expert Opin Ther Targets. 2012;16:1097–112.

    CAS  PubMed  Google Scholar 

  22. 22.

    Bufalino C, Hepgul N, Aguglia E, Pariante CM. The role of immune genes in the association between depression and inflammation: a review of recent clinical studies. Brain Behav Immun. 2013;31:31–47.

    CAS  PubMed  Google Scholar 

  23. 23.

    Castrén E, Kojima M. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis. 2017;97:119–26.

    PubMed  Google Scholar 

  24. 24.

    Tolwani RJ, Buckmaster PS, Varma S, Cosgaya JM, Wu Y, Suri C, et al. BDNF overexpression increases dendrite complexity in hippocampal dentate gyrus. Neuroscience. 2002;114:795–805.

    CAS  PubMed  Google Scholar 

  25. 25.

    Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol. 2005;192:348–56.

    CAS  PubMed  Google Scholar 

  26. 26.

    Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci. 2003;23:349–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T, et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci USA. 2004;101:10827–32. https://doi.org/10.1073/pnas.0402141101

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Khawaja X, Xu J, Liang JJ, Barrett JE. Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: implications for depressive disorders and future therapies. J Neurosci Res. 2004;75:451–60.

    CAS  PubMed  Google Scholar 

  29. 29.

    Newton SS, Collier EF, Hunsberger J, Adams D, Terwilliger R, Selvanayagam E, et al. Gene profile of electroconvulsive seizures induction of neurotrophic and angigogenic factors. J Neurosci. 2003;23:10841–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci. 2002;99:11946–50.

    CAS  PubMed  Google Scholar 

  31. 31.

    Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet. 2004;36:827–35.

    CAS  PubMed  Google Scholar 

  32. 32.

    Licht T, Goshen I, Avital A, Kreisel T, Zubedat S, Eavri R, et al. Reversible modulations of neuronal plasticity by VEGF. Proc Natl Acad Sci. 2011;108:5081–6.

    CAS  PubMed  Google Scholar 

  33. 33.

    Anderson MF, Åberg MAI, Nilsson M, Eriksson PS. Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Dev Brain Res. 2002;134:115–22.

    CAS  Google Scholar 

  34. 34.

    Kim YK, Na KS, Myint AM, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:277–84.

    CAS  PubMed  Google Scholar 

  35. 35.

    Kohman RA, Rhodes JS. Neurogenesis, inflammation and behavior. Brain Behav Immun. 2013;27:22–32.

    CAS  PubMed  Google Scholar 

  36. 36.

    Hurley LL, Tizabi Y. Neuroinflammation, neurodegeneration, and depression. Neurotox Res. 2013;23:131–44.

    CAS  PubMed  Google Scholar 

  37. 37.

    Walker II WH, Borniger JC, Surbhi, Zalenski AA, Muscarella SL, Fitzgerald JA, et al. Mammary tumors induce central pro-inflammatory cytokine expression, but not behavioral deficits in balb/c mice. Sci Rep. 2017;7:8152.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Borniger JC, Walker Ii WH, Surbhi, Emmer KM, Zhang N, Zalenski AA et al. A role for hypocretin/orexin in metabolic and sleep abnormalities in a mouse model of non-metastatic breast cancer. Cell Metab. https://doi.org/10.1016/j.cmet.2018.04.021; 2018.

  39. 39.

    Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:45e–45.

    Google Scholar 

  40. 40.

    Borniger JC, Maurya SK, Periasamy M, Nelson RJ. Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms. Chronobiol Int. 2014;31:917–25.

    CAS  PubMed  Google Scholar 

  41. 41.

    Fonken LK, Aubrecht TG, Meléndez-Fernández OH, Weil ZM, Nelson RJ. Dim light at night disrupts molecular circadian rhythms and increases body weight. J Biol Rhythms. 2013;28:262–71.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Zielinski T, Moore AM, Troup E, Halliday KJ, Millar AJ. Strengths and limitations of period estimation methods for circadian data. PLoS ONE. 2014;9:e96462. https://doi.org/10.1371/journal.pone.0096462

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Martynhak B, Hogben A, Zanos P, Georgiou P, Andreatini R, Kitchen I, et al. Transient anhedonia phenotype and altered circadian timing of behaviour during night-time dim light exposure in Per3−/− mice, but not wildtype mice. Sci Rep. 2017;7:40399.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Cleary-Gaffney M, Coogan AN. Limited evidence for affective and diurnal rhythm responses to dim light-at-night in male and female C57Bl/6 mice. Physiol Behav. 2018;189:78–85.

    CAS  PubMed  Google Scholar 

  45. 45.

    Endo T, Kripke DF, Ancoli-Israel S. Wake up time, light, and mood in a population sample age 40–64 years. Psychiatry Investig. 2015;12:177.

    PubMed  Google Scholar 

  46. 46.

    Lilly CM, Zuckerman IH, Badawi O, Riker RR. Benchmark data from more than 240,000 adults that reflect the current practice of critical care in the United States. Chest. 2011;140:1232–42.

    PubMed  Google Scholar 

  47. 47.

    Aydemir C, Yalcin ES, Aksaray S, Kisa C, Yildirim SG, Uzbay T, et al. Brain-derived neurotrophic factor (BDNF) changes in the serum of depressed women. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:1256–60.

    CAS  PubMed  Google Scholar 

  48. 48.

    Brunoni AR, Lopes M, Fregni F. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol. 2008;11:1169–80.

    CAS  PubMed  Google Scholar 

  49. 49.

    Viikki M, Anttila S, Kampman O, Illi A, Huuhka M, Setälä-Soikkeli E, et al. Vascular endothelial growth factor (VEGF) polymorphism is associated with treatment resistant depression. Neurosci Lett. 2010;477:105–8.

    CAS  PubMed  Google Scholar 

  50. 50.

    Schmidt HD, Shelton RC, Duman RS. Functional biomarkers of depression: diagnosis, treatment and pathophysiology. Neuropsychopharmacology. 2011;36:2375–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Xie T, Stathopoulou MG, de Andrés F, Siest G, Murray H, Martin M, et al. VEGF-related polymorphisms identified by GWAS and risk for major depression. Transl Psychiatry. 2017;7:e1055.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry J-M. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002;109:143–8.

    CAS  PubMed  Google Scholar 

  53. 53.

    Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase b in postmortem brain of suicide subjects. Arch Gen Psychiatry. 2003;60:804.

    CAS  PubMed  Google Scholar 

  54. 54.

    Sharma AN, da Costa e Silva BFB, Soares JC, Carvalho AF, Quevedo J. Role of trophic factors GDNF, IGF-1 and VEGF in major depressive disorder: a comprehensive review of human studies. J Affect Disord. 2016;197:9–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Carvalho AF, Köhler CA, McIntyre RS, Knöchel C, Brunoni AR, Thase ME, et al. Peripheral vascular endothelial growth factor as a novel depression biomarker: a meta-analysis. Psychoneuroendocrinology. 2015;62:18–26.

    CAS  PubMed  Google Scholar 

  56. 56.

    Elfving B, Buttenschøn HN, Foldager L, Poulsen PHP, Grynderup MB, Hansen ÅM, et al. Depression and BMI influences the serum vascular endothelial growth factor level. Int J Neuropsychopharmacol. 2014;17:1409–17.

    CAS  PubMed  Google Scholar 

  57. 57.

    Clark-Raymond A, Meresh E, Hoppensteadt D, Fareed J, Sinacore J, Halaris A. Vascular endothelial growth factor: a potential diagnostic biomarker for major depression. J Psychiatr Res. 2014;59:22–7.

    PubMed  Google Scholar 

  58. 58.

    Nowacka MM, Obuchowicz E. Vascular endothelial growth factor (VEGF) and its role in the central nervous system: a new element in the neurotrophic hypothesis of antidepressant drug action. Neuropeptides. 2012;46:1–10.

    CAS  PubMed  Google Scholar 

  59. 59.

    Hogan MK, Kovalycsik T, Sun Q, Rajagopalan S, Nelson RJ. Combined effects of exposure to dim light at night and fine particulate matter on C3H/HeNHsd mice. Behav Brain Res. 2015;294:81–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Murata M, Yudoh K, Nakamura H, Kato T, Inoue K, Chiba J, et al. Distinct signaling pathways are involved in hypoxia- and IL-1-induced VEGF expression in human articular chondrocytes. J Orthop Res. 2006;24:1544–54.

    CAS  PubMed  Google Scholar 

  61. 61.

    Jung YD, Liu W, Reinmuth N, Ahmad SA, Fan F, Gallick GE, et al. Vascular endothelial growth factor is upregulated by interleukin-1β in human vascular smooth muscle cells via the P38 mitogen-activated protein kinase pathway. Angiogenesis. 2001;4:155–62.

    CAS  PubMed  Google Scholar 

  62. 62.

    Barleon B, Sozzani S, Zhou D, Weich H, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood. 1996;87:3336–43.

    CAS  PubMed  Google Scholar 

  63. 63.

    Clauss M, Weich H, Breier G, Knies U, Röckl W, Waltenberger J, et al. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem. 1996;271:17629–34.

    CAS  PubMed  Google Scholar 

  64. 64.

    McKim DB, Weber MD, Niraula A, Sawicki CM, Liu X, Jarrett BL, et al. Microglial recruitment of IL-1β-producing monocytes to brain endothelium causes stress-induced anxiety. Mol Psychiatry. 2017;00:1–11.

    Google Scholar 

  65. 65.

    Pittendrigh CS, Daan S. A functional analysis of circadian pacemakers in nocturnal rodents - IV. Entrainment: pacemaker as clock. J Comp Physiol. 1976;106:291–331.

    Google Scholar 

  66. 66.

    Shuboni D, Yan L. Nighttime dim light exposure alters the responses of the circadian system. Neuroscience. 2010;170:1172–8.

    CAS  PubMed  Google Scholar 

  67. 67.

    Evans JA, Elliott JA, Gorman MR. Circadian effects of light no brighter than moonlight. J Biol Rhythms. 2007;22:356–67.

    PubMed  Google Scholar 

  68. 68.

    Uz T, Ahmed R, Akhisaroglu M, Kurtuncu M, Imbesi M, Dirim Arslan A, et al. Effect of fluoxetine and cocaine on the expression of clock genes in the mouse hippocampus and striatum. Neuroscience. 2005;134:1309–16.

    CAS  PubMed  Google Scholar 

  69. 69.

    Hansson AC, Cintra A, Belluardo N, Sommer W, Bhatnagar M, Bader M, et al. Gluco- and mineralocorticoid receptor-mediated regulation of neurotrophic factor gene expression in the dorsal hippocampus and the neocortex of the rat. Eur J Neurosci. 2000;12:2918–34.

    CAS  PubMed  Google Scholar 

  70. 70.

    Castro JPMV, Frussa-Filho R, Fukushiro DF, Chinen CC, Abílio VC, Silva RH. Effects of long-term continuous exposure to light on memory and anxiety in mice. Physiol Behav. 2005;86:218–23.

    CAS  PubMed  Google Scholar 

  71. 71.

    Fernandez DC, Fogerson PM, Lazzerini Ospri L, Thomsen MB, Layne RM, Severin D, et al. Light affects mood and learning through distinct retina-brain pathways. Cell. 2018;175:71–84. e18.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Fonken LK, Weil ZM, Nelson RJ. Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide. Brain Behav Immun. 2013;34:159–63.

    CAS  PubMed  Google Scholar 

  73. 73.

    Liberman AC, Trias E, da Silva Chagas L, Trindade P, dos Santos Pereira M, Refojo D, et al. Neuroimmune and inflammatory signals in complex disorders of the central nervous system. Neuroimmunomodulation. 2018;25:1–25.

    Google Scholar 

  74. 74.

    Gallo G, Letourneau P. Localized sources of neurotrophins initiate axon collateral sprouting. J Neurosci. 1998;18:5403–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Lemann V, Gottmann K, Heumann R. BDNF, and NT-4/5 enhance glutamatergic synaptic transmission in cultured hippocampal neurones. Neuroreport. 1994;6:21–5.

    Google Scholar 

  76. 76.

    Mishra A, Kim HJ, Shin AH, Thayer SA. Synapse loss induced by interleukin-1β requires pre-and post-synaptic mechanisms. J Neuroimmune Pharmacol. 2012;7:571–8.

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Hoshino K, Hasegawa K, Kamiya H, Morimoto Y. Synapse-specific effects of IL-1β on long-term potentiation in the mouse hippocampus. Biomed Res. 2017;38:183–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the animal care staff for expert care of the animals. This research was supported by NINDS (R01NS092388).

Author information

Affiliations

Authors

Corresponding author

Correspondence to William H. Walker II.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Walker, W.H., Borniger, J.C., Gaudier-Diaz, M.M. et al. Acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior. Mol Psychiatry 25, 1080–1093 (2020). https://doi.org/10.1038/s41380-019-0430-4

Download citation

Further reading

Search

Quick links