Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pten loss results in inappropriate excitatory connectivity

Abstract

Pten mutations are associated with autism spectrum disorder. Pten loss of function in neurons increases excitatory synaptic connectivity, contributing to an imbalance between excitation and inhibition. We aimed to determine whether Pten loss results in aberrant connectivity in neural circuits. We compared postnatally generated wild-type and Pten knockout granule neurons integrating into the dentate gyrus using a variety of methods to examine their connectivity. We found that postsynaptic Pten loss provides an advantage to dendritic spines in competition over a limited pool of presynaptic boutons. Retrograde monosynaptic tracing with rabies virus reveals that this results in synaptic contact with more presynaptic partners. Using independently excitable opsins to interrogate multiple inputs onto a single neuron, we found that excess connectivity is established indiscriminately from among glutamatergic afferents. Therefore, Pten loss results in inappropriate connectivity whereby neurons are coupled to a greater number of synaptic partners.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Waite KA.Eng C, Protean PTEN: form and function. Am J Hum Genet. 2002;70:829–44.

  2. Hobert JA, Embacher R, Mester JL, Frazier Ii TW, Eng C. Biochemical screening and PTEN mutation analysis in individuals with autism spectrum disorders and macrocephaly. Eur J Hum Genet. 2014;22:273.

    Article  CAS  PubMed  Google Scholar 

  3. Klein S, Sharifi-Hannauer P, Martinez-Agosto JA. Macrocephaly as a clinical indicator of genetic subtypes in autism. Autism Research. 2013;6:51–6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Marchese M, Conti V, Valvo G, Moro F, Muratori F, Tancredi R, et al. Autism-epilepsy phenotype with macrocephaly suggests PTEN, but not GLIALCAM, genetic screening. BMC Med Genet. 2014;15:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Conti S, Condò M, Posar A, Mari F, Resta N, Renieri A, et al. Phosphatase and tensin homolog (PTEN) gene mutations and autism: literature review and a case report of a patient with cowden syndrome, autistic disorder, and epilepsy. J Child Neurol. 2011;27:392–7.

    Article  PubMed  Google Scholar 

  6. O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338:1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Ercument Cicek A, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stessman HAF, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet. 2017;49:515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485:246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Backman SA, Stambolic V, Suzuki A, Haight J, Elia A, Pretorius J, et al. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nat Genet. 2001;29:396–403.

    Article  CAS  PubMed  Google Scholar 

  11. Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, et al. Pten regulates neuronal arborization and social interaction in mice. Neuron. 2006;50:377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ogawa S, Kwon CH, Zhou J, Koovakkattu D, Parada LF, Sinton CM. A seizure-prone phenotype is associated with altered free-running rhythm in Pten mutant mice. Brain Res. 2007;1168:112–23.

    Article  CAS  PubMed  Google Scholar 

  13. Clipperton-Allen AE, Page DT. Pten haploinsufficient mice show broad brain overgrowth but selective impairments in autism-relevant behavioral tests. Hum Mol Genet. 2014;23:3490–505.

    Article  CAS  PubMed  Google Scholar 

  14. Tilot AK, Gaugler MK, Yu Q, Romigh T, Yu W, Miller RH, et al. Germline disruption of Pten localization causes enhanced sex-dependent social motivation and increased glial production. Hum Mol Genet. 2014;23:3212–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Amiri A, Cho W, Zhou J, Birnbaum SG, Sinton CM, McKay RM, et al. Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci. 2012;32:5880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen Y, Huang W-C, Séjourné J, Clipperton-Allen AE, Page DT. Pten mutations alter brain growth trajectory and allocation of cell types through elevated β-catenin signaling. J Neurosci. 2015;35:10252–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vogt D, Cho KKA, Lee AT, Sohal VS, Rubenstein JLR. The parvalbumin/somatostatin ratio is increased in pten mutant mice and by human PTEN ASD alleles. Cell Reports. 2015;11:944–56.

    Article  CAS  PubMed  Google Scholar 

  18. Wong FK, Bercsenyi K, Sreenivasan V, Portalés A, Fernández-Otero M, Marín O. Pyramidal cell regulation of interneuron survival sculpts cortical networks. Nature. 2018;557:668–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kwon CH, Zhu X, Zhang J, Knoop LL, Tharp R, Smeyne RJ, et al. Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat Genet. 2001;29:404–11.

    Article  CAS  PubMed  Google Scholar 

  20. Williams MR, DeSpenza T Jr., Li M, Gulledge AT, Luikart BW. Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive. J Neurosci. 2015;35:943–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Diaz-Ruiz O, Zapata A, Shan L, Zhang Y, Tomac AC, Malik N, et al. Selective deletion of PTEN in dopamine neurons leads to trophic effects and adaptation of striatal medium spiny projecting neurons. PLoS One. 2009;4:e7027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiong Q, Oviedo HV, Trotman LC, Zador AM. PTEN regulation of local and long-range connections in mouse auditory cortex. J Neurosci. 2012;32:1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weston MC, Chen H, Swann JW. Multiple roles for mammalian target of rapamycin signaling in both glutamatergic and GABAergic synaptic transmission. J Neurosci. 2012;32:11441–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arafa SR, LaSarge CL, Pun RYK, Khademi S, Danzer SC. Self-reinforcing effects of mTOR hyperactive neurons on dendritic growth. Exp Neurol. 2018;311:125–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luikart BW, Schnell E, Washburn EK, Bensen AL, Tovar KR, Westbrook GL. Pten knockdown in vivo increases excitatory drive onto dentate granule cells. J Neurosci. 2011;31:4345–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pun Raymund YK, Rolle Isaiah J, LaSarge Candi L, Hosford Bethany E, Rosen Jules M, Uhl Juli D, et al. Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron. 2012;75:1022–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vivar C, Potter MC, Choi J, Lee J-y, Stringer TP, Callaway EM, et al. Monosynaptic inputs to new neurons in the dentate gyrus. Nat Commun. 2012;3:1107.

    Article  CAS  PubMed  Google Scholar 

  28. Martinez-Arca S, Rudge R, Vacca M, Raposo G, Camonis J, Proux-Gillardeaux V, et al. A dual mechanism controlling the localization and function of exocytic v-SNAREs. Proc Natl Acad Sci USA. 2003;100:9011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marcott Pamela F, Mamaligas Aphroditi A, Ford Christopher P. Phasic dopamine release drives rapid activation of striatal D2-receptors. Neuron. 2014;84:164–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fricano-Kugler CJ, Getz SA, Williams MR, Zurawel AA, DeSpenza T, Frazel PW, et al. Nuclear excluded autism-associated phosphatase and tensin homolog mutations dysregulate neuronal growth. Biol Psychiatry. 2017;84:265–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fricano CJ, Despenza T Jr., Frazel PW, Li M, O’Malley AJ, Westbrook GL, et al. Fatty acids increase neuronal hypertrophy of Pten knockdown neurons. Front Mol Neurosci. 2014;7:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Williams MR, Fricano-Kugler CJ, Getz SA, Skelton PD, Lee J, Rizzuto CP, et al. A retroviral CRISPR-Cas9 system for cellular autism-associated phenotype discovery in developing neurons. Sci Rep. 2016;6:25611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moen EL, Fricano-Kugler CJ, Luikart BW, O’Malley AJ. Analyzing clustered data: Why and how to account for multiple observations nested within a study participant? PLoS One. 2016;11:e0146721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Getz SA, DeSpenza T Jr., Li M, Luikart BW. Rapamycin prevents, but does not reverse, aberrant migration in Pten knockout neurons. Neurobiol Dis. 2016;93:12–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Witter MP, Amaral DG. CHAPTER 21—hippocampal formation. In: Paxinos G, editor. The rat nervous system (2nd edn). Burlington: Academic Press; 1994. p. 443–83.

  36. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, et al. Independent optical excitation of distinct neural populations. Nat Methods. 2014;11:338–46. Epub 2014/02/11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang W-C, Chen Y, Page DT. Hyperconnectivity of prefrontal cortex to amygdala projections in a mouse model of macrocephaly/autism syndrome. Nat Commun. 2016;7:13421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Piatti VC, Davies-Sala MG, Espósito MS, Mongiat LA, Trinchero MF, Schinder AF. The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J Neurosci. 2011;31:7715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dieni CV, Chancey JH, Overstreet-Wadiche LS. Dynamic functions of GABA signaling during granule cell maturation. Front Neural Circuits. 2012;6:113. Epub 2013/01/15

    PubMed  Google Scholar 

  40. Toni N, Teng EM, Bushong EA, Aimone JB, Zhao C, Consiglio A, et al. Synapse formation on neurons born in the adult hippocampus. Nat Neurosci. 2007;10:727.

    Article  CAS  PubMed  Google Scholar 

  41. McAvoy Kathleen M, Scobie Kimberly N, Berger S, Russo C, Guo N, Decharatanachart P, et al. Modulating neuronal competition dynamics in the dentate gyrus to rejuvenate aging memory circuits. Neuron. 2016;91:1356–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Adlaf EW, Vaden RJ, Niver AJ, Manuel AF, Onyilo VC, Araujo MT, et al. Adult-born neurons modify excitatory synaptic transmission to existing neurons. eLife. 2017;6:e19886.

    Article  PubMed  PubMed Central  Google Scholar 

  43. English CN, Vigers AJ, Jones KR. Genetic evidence that brain-derived neurotrophic factor mediates competitive interactions between individual cortical neurons. Proc Natl Acad Sci USA. 2012;109:19456–61.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Saiepour MH, Chakravarthy S, Min R, Levelt CN. Competition and homeostasis of excitatory and inhibitory connectivity in the adult mouse visual cortex. Cereb Cortex. 2015;25:3713–22.

    Article  PubMed  Google Scholar 

  45. Luikart BW, Parada LF. Receptor tyrosine kinase B-mediated excitatory synaptogenesis. In: Møller AR, editor. Progress in brain research: Elsevier; 2006. p. 15–383.

  46. Kwon H-B, Kozorovitskiy Y, Oh W-J, Peixoto RT, Akhtar N, Saulnier JL, et al. Neuroligin-1–dependent competition regulates cortical synaptogenesis and synapse number. Nat Neurosci. 2012;15:1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bian WJ, Miao WY, He SJ, Qiu Z, Yu X. Coordinated spine pruning and maturation mediated by inter-spine competition for cadherin/catenin complexes. Cell. 2015;162:808–22.

    Article  CAS  PubMed  Google Scholar 

  48. de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016;22:345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fraser MM, Bayazitov IT, Zakharenko SS, Baker SJ. Phosphatase and tensin homolog, deleted on chromosome 10 deficiency in brain causes defects in synaptic structure, transmission and plasticity, and myelination abnormalities. Neuroscience. 2008;151:476–88.

    Article  CAS  PubMed  Google Scholar 

  50. Haws ME, Jaramillo TC, Espinosa F, Widman A J, Stuber GD, Sparta DR, et al. PTEN knockdown alters dendritic spine/protrusion morphology, not density. J Comp Neurol. 2014;522:1171–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sperow M, Berry RB, Bayazitov IT, Zhu G, Baker SJ, Zakharenko SS. Phosphatase and tensin homologue (PTEN) regulates synaptic plasticity independently of its effect on neuronal morphology and migration. J Physiol. 2012;590:777–92.

    Article  CAS  PubMed  Google Scholar 

  52. Weston M, Chen H, Swann J. Loss of mTOR repressors Tsc1 or Pten has divergent effects on excitatory and inhibitory synaptic transmission in single hippocampal neuron cultures. Front Mol Neurosci. 2014;7:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Henry FE, McCartney AJ, Neely R, Perez AS, Carruthers CJL, Stuenkel EL, et al. Retrograde changes in presynaptic function driven by dendritic mTORC1. J Neurosci. 2012;32:17128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. LaSarge CL, Santos VR, Danzer SC. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure. Neurobiol Dis. 2015;75:142–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scharfman HE. The CA3 “backprojection” to the dentate gyrus. In: Scharfman HE, editor. Progress in brain research: Elsevier; 2007. p. 627–37.

  56. Leranth C, Hajszan T. Extrinsic afferent systems to the dentate gyrus. In: Scharfman HE, editor. Progress in brain research: Elsevier; 2007. p. 63–799.

  57. Deshpande A, Bergami M, Ghanem A, Conzelmann K-K, Lepier A, Götz M, et al. Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proc Natl Acad Sci USA. 2013;110:E1152.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Martinello K, Huang Z, Lujan R, Tran B, Watanabe M, Cooper Edward C, et al. Cholinergic afferent stimulation induces axonal function plasticity in adult hippocampal granule cells. Neuron. 2015;85:346–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Woods NI, Vaaga CE, Chatzi C, Adelson JD, Collie MF, Perederiy JV, et al. Preferential targeting of lateral entorhinal inputs onto newly integrated granule cells. J Neurosci. 2018;38:5843–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chancey JH, Poulsen DJ, Wadiche JI, Overstreet-Wadiche L. Hilar mossy cells provide the first glutamatergic synapses to adult-born dentate granule cells. J Neurosci. 2014;34:2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dieni CV, Nietz AK, Panichi R, Wadiche JI, Overstreet-Wadiche L. Distinct determinants of sparse activation during granule cell maturation. J Neurosci. 2013;33:19131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dieni CV, Panichi R, Aimone JB, Kuo CT, Wadiche JI, Overstreet-Wadiche L. Low excitatory innervation balances high intrinsic excitability of immature dentate neurons. Nat Commun. 2016;7:11313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Dartmouth Autism Research Initiative (DARI; https://sites.dartmouth.edu/autismresearchcenter/) for support.  The work was funded by the National Institute of Mental Health (R01MH097949; to B.W.L.); and by the National Institute of Alcohol Abuse and Alcoholism (R01AA022377), the Whitehall Foundation, and the Hartwell Foundation (to H.S.). Imaging was supported by the optical cellular imaging core at Dartmouth (P30CA023108) and an NIH S10 for the LSM800 (S10OD21616).  We thank Dr. Ed Boyden for the plasmids and viruses containing Chrimson and Chronos, and for his advice on their application (we found that they worked precisely as advertised).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: P.D.S, H.S., and B.W.L.; Methodology: P.D.S., H.S., and B.W.L.; Investigation: P.D.S., P.W.F., D.L.; Writing—Original Draft: P.D.S.; Writing—Review and Editing: P.D.S., H.S., and B.W.L.; Supervision: H.S. and B.W.L.; Funding Acquisition: H.S. and B.W.L.

Corresponding author

Correspondence to Bryan W. Luikart.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skelton, P.D., Frazel, P.W., Lee, D. et al. Pten loss results in inappropriate excitatory connectivity. Mol Psychiatry 24, 1627–1640 (2019). https://doi.org/10.1038/s41380-019-0412-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0412-6

This article is cited by

Search

Quick links