Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Data-driven biological subtypes of depression: systematic review of biological approaches to depression subtyping

Abstract

Research into major depressive disorder (MDD) is complicated by population heterogeneity, which has motivated the search for more homogeneous subtypes through data-driven computational methods to identify patterns in data. In addition, data on biological differences could play an important role in identifying clinically useful subtypes. This systematic review aimed to summarize evidence for biological subtypes of MDD from data-driven studies. We undertook a systematic literature search of PubMed, PsycINFO, and Embase (December 2018). We included studies that identified (1) data-driven subtypes of MDD based on biological variables, or (2) data-driven subtypes based on clinical features (e.g., symptom patterns) and validated these with biological variables post-hoc. Twenty-nine publications including 24 separate analyses in 20 unique samples were identified, including a total of ~ 4000 subjects. Five out of six biochemical studies indicated that there might be depression subtypes with and without disturbed neurotransmitter levels, and one indicated there might be an inflammatory subtype. Seven symptom-based studies identified subtypes, which were mainly determined by severity and by weight gain vs. loss. Two studies compared subtypes based on medication response. These symptom-based subtypes were associated with differences in biomarker profiles and functional connectivity, but results have not sufficiently been replicated. Four out of five neuroimaging studies found evidence for groups with structural and connectivity differences, but results were inconsistent. The single genetic study found a subtype with a distinct pattern of SNPs, but this subtype has not been replicated in an independent test sample. One study combining all aforementioned types of data discovered a subtypes with different levels of functional connectivity, childhood abuse, and treatment response, but the sample size was small. Although the reviewed work provides many leads for future research, the methodological differences across studies and lack of replication preclude definitive conclusions about the existence of clinically useful and generalizable biological subtypes.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. Alonso J, Angermeyer MC, Bernert S, Bruffaerts R, Brugha TS, Bryson H, et al. Disability and quality of life impact of mental disorders in Europe: results from the European Study of the Epidemiology of Mental Disorders (ESEMeD) project. Acta Psychiatr Scand Suppl. 2004;109:38–46.

    Google Scholar 

  2. Sobocki P, Jönsson B, Angst J, Rehnberg C. Cost of depression in Europe. J Ment Health Policy Econ. 2006;9:87–98.

    PubMed  Google Scholar 

  3. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382:1575–86.

    PubMed  Google Scholar 

  4. Greenberg PE, Fournier A-A, Sisitsky T, Pike CT, Kessler RC. The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J Clin Psychiatry. 2015;76:1,162–478.

    Google Scholar 

  5. Chisholm D, Sweeny K, Sheehan P, Rasmussen B, Smit F, Cuijpers P, et al. Scaling-up treatment of depression and anxiety: a global return on investment analysis. Lancet Psychiatry. 2016;3:415–24.

    PubMed  Google Scholar 

  6. Kessler RC, Broment EJ, de Jonge P, Shahly V, Wilcox M. The burden of depressive illness. Public Health Perspectives on Depressive Disorders. Johns Hopkins University Press, Baltimore, 2017, p 40.

  7. Rush AJ. The varied clinical presentations of major depressive disorder. J Clin Psychiatry. 2007;68(Suppl 8):4–10.

    PubMed  Google Scholar 

  8. Nandi A, Beard JR, Galea S. Epidemiologic heterogeneity of common mood and anxiety disorders over the lifecourse in the general population: a systematic review. BMC Psychiatry. 2009;9:31.

    PubMed  PubMed Central  Google Scholar 

  9. Goldberg D. The heterogeneity of ‘major depression’. World Psychiatry. 2011;10:226–8.

    PubMed  PubMed Central  Google Scholar 

  10. Wardenaar KJ, de Jonge P. Diagnostic heterogeneity in psychiatry: towards an empirical solution. BMC Med. 2013;11:201.

    PubMed  PubMed Central  Google Scholar 

  11. Fried EI, Nesse RM. Depression is not a consistent syndrome: an investigation of unique symptom patterns in the STAR???D study. J Affect Disord. 2015;172:96–102.

    PubMed  Google Scholar 

  12. Monroe SM, Anderson SF. Depression: the shroud of heterogeneity. Curr Dir Psychol Sci. 2015;24:227–31.

    Google Scholar 

  13. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455:894–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hasler G. Pathophysiology of depression: do we have any solid evidence of interest to clinicians? World Psychiatry. 2010;9:155–61.

    PubMed  PubMed Central  Google Scholar 

  15. Simon GE, Perlis RH. Personalized medicine for depression: can we match patients with treatments? Am J Psychiatry. 2010;167:1445–55.

    PubMed  PubMed Central  Google Scholar 

  16. Ozomaro U, Wahlestedt C, Nemeroff CB. Personalized medicine in psychiatry: problems and promises. BMC Med. 2013;11:132.

    PubMed  PubMed Central  Google Scholar 

  17. Milaneschi Y, Lamers F, Peyrot WJ, Abdellaoui A, Willemsen G, Hottenga J-J, et al. Polygenic dissection of major depression clinical heterogeneity. Mol Psychiatry. 2016;21:516–22.

    CAS  PubMed  Google Scholar 

  18. Korte SM, Prins J, Krajnc AM, Hendriksen H, Oosting RS, Westphal KG, et al. The many different faces of major depression: it is time for personalized medicine. Eur J Pharmacol. 2015;753:88–104.

    CAS  PubMed  Google Scholar 

  19. Bartova L, Berger A, Pezawas L. Is there a personalized medicine for mood disorders? Eur Arch Psychiatry Clin Neurosci. 2010;260:121–6.

    Google Scholar 

  20. Nierenberg AA. Advancing the treatment of depression with personalized medicine. J Clin Psychiatry. 2012;73:e17.

    PubMed  Google Scholar 

  21. Miller DB, O’Callaghan JP. Personalized medicine in major depressive disorder - opportunities and pitfalls. Metabolism 2013. https://doi.org/10.1016/j.metabol.2012.08.021.

    CAS  PubMed  Google Scholar 

  22. Trivedi MH. Right patient, right treatment, right time: biosignatures and precision medicine in depression. World Psychiatry. 2016;15:237–8.

    PubMed  PubMed Central  Google Scholar 

  23. Kay DW, Garside RF, Beamish P, Roy JR. Endogenous and neurotic syndromes of depression: a factor analytic study of 104 cases. Clin Features Br J Psychiatry. 1969;115:377–88.

    CAS  Google Scholar 

  24. Pilowsky I, Levine S, Boulton DM. The classification of depression by numerical taxonomy. Br J Psychiatry. 1969;115:937–45.

    CAS  PubMed  Google Scholar 

  25. Paykel ES. Classification of depressed patients: a cluster analysis derived grouping. Br J Psychiatry. 1971;118:275–88.

    CAS  PubMed  Google Scholar 

  26. Andreasen NC, Grove WM. The classification of depression: traditional versus mathematical approaches. Am J Psychiatry. 1982;139:45–52.

    CAS  PubMed  Google Scholar 

  27. Merikangas KR, Wicki W, Angst J. Heterogeneity of depression. Classification of depressive subtypes by longitudinal course. Br J Psychiatry. 1994;164:342–8.

    CAS  PubMed  Google Scholar 

  28. Sullivan PF, Kessler RC, Kendler KS. Latent class analysis of lifetime depressive symptoms in the National Comorbidity Survey. Am J Psychiatry. 1998;155:1398–406.

    CAS  PubMed  Google Scholar 

  29. Orrù G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A. Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev. 2012;36:1140–52.

    PubMed  Google Scholar 

  30. Van Loo HM, De Jonge P, Romeijn J-W, Kessler RC, Schoevers RA. Data-driven subtypes of major depressive disorder: a systematic review. BMC Med. 2012;10:156.

    PubMed  PubMed Central  Google Scholar 

  31. Marquand AF, Wolfers T, Mennes M, Buitelaar J, Beckmann CF. Beyond lumping and splitting: a review of computational approaches for stratifying psychiatric disorders. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1:433–47.

    PubMed  PubMed Central  Google Scholar 

  32. Ahmad A, Fröhlich H. Integrating heterogeneous omics data via statistical inference and learning techniques. Genom Comput Biol. 2016;2:e32.

    Google Scholar 

  33. Lin E, Hsien-Yuan L. Machine learning and systems genomicsapproaches for multi-omics data. Biomark Res. 2017. https://doi.org/10.1186/s40364-017-0082-y.

  34. Baumeister H, Parker G. Meta-review of depressive subtyping models. J Affect Disord. 2012;139:126–40.

    Google Scholar 

  35. Kendell R, Jablensky A. Distinguishing between the validity and utility of psychiatric diagnoses. Am J Psychiatry. 2003;160:4–12.

    PubMed  Google Scholar 

  36. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine D, Quinn K, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167:748–51.

    PubMed  Google Scholar 

  37. Haro JM, Ayuso-Mateos JL, Bitter I, Demotes-Mainard J, Leboyer M, Lewis SW, et al. ROAMER: roadmap for mental health research in Europe. Int J Methods Psychiatr Res. 2014;23:1–14.

    PubMed  Google Scholar 

  38. Insel TR, Cuthbert BN. Brain disorders? Precisely. Science (80-). 2015;348:499–500.

    CAS  Google Scholar 

  39. The Prisma Group from, Moher D, Liberati A, Tetzlaff JAD. Preferred reporting items for systematic reviews and meta analyses: the Prisma statement. PLoS Med. 2009;6:1–15.

    Google Scholar 

  40. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.

    PubMed  PubMed Central  Google Scholar 

  41. Asberg M, Bertilsson L, Tuck D, Cronholm B, Sjöqvist F. Indoleamine metabolites in the cerebrospinal fluid of depressed patients before and during treatment with nortriptyline. Clin Pharmacol Ther. 1973;14:277–86.

    CAS  PubMed  Google Scholar 

  42. Asberg M, Thoren P, Traskman L, Bertilsson L, Ringberger V. ‘Serotonin depression’–a biochemical subgroup within the affective disorders? Science (80-). 1976;191:478–80.

    CAS  Google Scholar 

  43. Gibbons RD, Davis JM. Consistent evidence for a biological subtype of depression characterized by low CSF monoamine levels. Acta Psychiatr Scand. 1986;74:8–12.

    CAS  PubMed  Google Scholar 

  44. Westenberg HGM, Verhoeven WMA. CSF monoamine metabolites in patients and controls: support for a bimodal distribution in major affective disorders. Acta Psychiatr Scand. 1988;78:541–9.

    CAS  PubMed  Google Scholar 

  45. Maas JW, Kocsis JH, Bowden CL, Davis JM, Redmond DE, Hanin I, et al. Pre-treatment neurotransmitter metabolites and response to imipramine or amitriptyline treatment. Psychol Med. 1982;12:37–43.

    CAS  PubMed  Google Scholar 

  46. Åsberg M, Bertilsson L, Mårtensson B, Scalia‐Tomba G, Thorén P, Träskman‐Bendz P, et al. CSF monoamine metabolites in melancholia. Acta Psychiatr Scand. 1984;69:201–19.

    PubMed  Google Scholar 

  47. Azorin JM, Raucoules D, Valli M, Levy C, Lancon C, Luccioni JM, et al. Plasma levels of 3-methoxy-4-hydroxyphenylglycol in depressed patients compared with normal controls. Neuropsychobiology. 1990;23:18–24.

    CAS  PubMed  Google Scholar 

  48. Davis JM, Koslow SH, Gibbons RD, Maas JW, Bowden CL, Casper R, et al. Cerebrospinal fluid and urinary biogenic amines in depressed patients and healthy controls. Arch Gen Psychiatry. 1988;45:705–17.

    CAS  PubMed  Google Scholar 

  49. Haroon E, Chen X, Li Z, Patel T, Woolwine BJ, Hu XP, et al. Increased inflammation and brain glutamate define a subtype of depression with decreased regional homogeneity, impaired network integrity, and anhedonia. Transl Psychiatry. 2018. https://doi.org/10.1038/s41398-018-0241-4

    Article  PubMed  PubMed Central  Google Scholar 

  50. Protzner AB, Kovacevic N, Cohn M, McAndrews MP. Characterizing functional integrity: intraindividual brain signal variability predicts memory performance in patients with medial temporal lobe epilepsy. J Neurosci. 2013. https://doi.org/10.1523/JNEUROSCI.3009-12.2013.

    CAS  PubMed  Google Scholar 

  51. Maes M, Cosyns P, Maes L, D’Hondt P, Schotte C. Clinical subtypes of unipolar depression: part I. A validation of the vital and nonvital clusters. Psychiatry Res. 1990;34:29–41.

    CAS  PubMed  Google Scholar 

  52. Maes M, Maes L, Schotte C, Cosyns P. A clinical and biological validation of the DSM-III melancholia diagnosis in men: results of pattern recognition methods. J Psychiatr Res. 1992;26:183–96.

    CAS  PubMed  Google Scholar 

  53. Schotte CKW, Maes M, Cluydts R, Cosyns P. Cluster analytic validation of the DSM melancholic depression. The threshold model: integration of quantitative and qualitative distinctions between unipolar depressive subtypes. Psychiatry Res. 1997;71:181–95.

    CAS  PubMed  Google Scholar 

  54. Orsel S, Karadag H, Turkcapar H, Karaoglan Kahilogullari A. Diagnosis and classification subtyping of depressive disorders: comparison of three methods. Klin Psikofarmakol Bul. 2010;20:57–65.

    Google Scholar 

  55. Lamers F, de Jonge P, Nolen WA, Smit JH, Zitman FG, Beekman AT, et al. Identifying depressive subtypes in a large cohort study: results from the Netherlands Study of Depression and Anxiety (NESDA). J Clin Psychiatry. 2010;71:1582–9.

    PubMed  Google Scholar 

  56. Milaneschi Y, Lamers F, Mbarek H, Hottenga JJ, Boomsma DI, Penninx BWJH. The effect of FTO rs9939609 on major depression differs across MDD subtypes. Mol Psychiatry. 2014;19:960–2.

    CAS  PubMed  Google Scholar 

  57. Lamers F, Rhebergen D, Merikangas KR, de Jonge P, Beekman ATF, Penninx BWJH. Stability and transitions of depressive subtypes over a 2-year follow-up. Psychol Med. 2012;42:2083–93.

    CAS  PubMed  Google Scholar 

  58. Lamers F, Vogelzangs N, Merikangas KR, De Jonge P, Beekman ATF, Penninx BWJH. Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Mol Psychiatry. 2013;18:692–9.

    CAS  PubMed  Google Scholar 

  59. Milaneschi Y, Lamers F, Bot M, Drent ML, Penninx BWJH. Leptin dysregulation is specifically associated with major depression with atypical features: evidence for a mechanism connecting obesity and depression. Biol Psychiatry 2015. https://doi.org/10.1016/j.biopsych.2015.10.023.

    CAS  PubMed  Google Scholar 

  60. Frayling TM, Timpson NJ, Weedon MN, Freathy RM, Lindgren CM, Perry JRB, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science (80-). 2007;316:889–94.

    CAS  Google Scholar 

  61. Lamers F, Bot M, Jansen R, Chan MK, Cooper JD, Bahn S, et al. Serum proteomic profiles of depressive subtypes. Transl Psychiatry. 2016;6:e851.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bus BAA, Molendijk ML, Penninx B, Buitelaar JK, Prickaerts J, Elzinga BM, et al. Low serum BDNF levels in depressed patients cannot be attributed to individual depressive symptoms or symptom cluster. World J Biol Psychiatry. 2014;15:561–9.

    CAS  PubMed  Google Scholar 

  63. Bouveyron C, Girard S, Schmid C. High-dimensional data clustering. Comput Stat Data Anal. 2007;52:502–19.

    Google Scholar 

  64. Maglanoc LA, Landrø NI, Jonassen R, Kaufmann T, Cordova-Palomera A, Hilland E, et al. Data-driven clustering reveals a link between symptoms and functional brain connectivity in depression. Biol Psychiatry Cogn Neurosci Neuroimaging 2019;4:16–26.

    Google Scholar 

  65. Feighner JP, Sverdlov L, Nicolau G, Noble JF. Cluster analysis of clinical data to identify subtypes within a study population following treatment with a new pentapeptide antidepressant. Int J Neuropsychopharmacol. 2000;3:237–42.

    CAS  PubMed  Google Scholar 

  66. Ballard ED, Yarrington JS, Farmer CA, Richards E, Machado-Vieira R, Kadriu B, et al. Characterizing the course of suicidal ideation response to ketamine. J Affect Disord. 2018. https://doi.org/10.1016/j.jad.2018.07.077.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol. 2008;24:424–30.

    Google Scholar 

  68. Sundermann B, Olde lütke Beverborg M, Pfleiderer B. Toward literature-based feature selection for diagnostic classification: a meta-analysis of resting-state fMRI in depression. Front Hum Neurosci. 2014. https://doi.org/10.3389/fnhum.2014.00692.

  69. Feder S, Sundermann B, Wersching H, Teuber A, Kugel H, Teismann H, et al. Sample heterogeneity in unipolar depression as assessed by functional connectivity analyses is dominated by general disease effects. J Affect Disord. 2017;222:79–87.

    PubMed  Google Scholar 

  70. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder a meta-analysis of resting-state functional connectivity. JAMA Psychiatry. 2015;72:603–11.

    PubMed  PubMed Central  Google Scholar 

  71. Price RB, Lane S, Gates K, Kraynak TE, Horner MS, Thase ME, et al. Parsing heterogeneity in the brain connectivity of depressed and healthy adults during positive mood. Biol Psychiatry. 2017;81:347–57.

    PubMed  Google Scholar 

  72. Price RB, Gates K, Kraynak TE, Thase ME, Siegle GJ. Data-driven subgroups in depression derived from directed functional connectivity paths at rest. Neuropsychopharmacology. 2017;42:2623–32.

    PubMed  PubMed Central  Google Scholar 

  73. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23:28–38.

    CAS  PubMed  Google Scholar 

  74. Cheng Y, Xu J, Yu H, Nie B, Li N, Luo C, et al. Delineation of early and later adult onset depression by diffusion tensor imaging. PLoS One 2014. https://doi.org/10.1371/journal.pone.0112307.

    PubMed  PubMed Central  Google Scholar 

  75. Yu C, Arcos-Burgos M, Licinio J, Wong ML. A latent genetic subtype of major depression identified by whole-exome genotyping data in a Mexican-American cohort. Transl Psychiatry 2017. https://doi.org/10.1038/tp.2017.102.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tokuda T, Yoshimoto J, Shimizu Y, Okada G, Takamura M, Okamoto Y, et al. Identification of depression subtypes and relevant brain regions using a data-driven approach. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-32521-z.

  77. Tokuda T, Yoshimoto J, Shimizu Y, Okada G, Takamura M, Okamoto Y, et al. Multiple co-clustering based on nonparametric mixture models with heterogeneous marginal distributions. PLoS One 2017. https://doi.org/10.1371/journal.pone.0186566.

    PubMed  PubMed Central  Google Scholar 

  78. Albert PR, Benkelfat C, Descarries L. The neurobiology of depression-revisiting the serotonin hypothesis. I. cellular and molecular mechanisms. Philos Trans R Soc B Biol Sci. 2012;367:2378–81.

    CAS  Google Scholar 

  79. Lacasse JR, Leo J. Serotonin and depression: a disconnect between the advertisements and the scientific literature. PLoS Med. 2005;2:1211–6.

    CAS  Google Scholar 

  80. Maes M, Maes L, Schotte C, Vandewoude M, Martin M, D’Hondt P, et al. Clinical subtypes of unipolar depression: part III. Quantitative differences in various biological markers between the cluster-analytically generated nonvital and vital depression classes. Psychiatry Res. 1990;34:59–75.

    CAS  PubMed  Google Scholar 

  81. Rodgers S, Grosse Holtforth M, Hengartner MP, Müller M, Aleksandrowicz AA, Rössler W, et al. Serum testosterone levels and symptom-based depression subtypes in men. Front Psychiatry 2015. https://doi.org/10.3389/fpsyt.2015.00061.

  82. Bot M, Chan MK, Jansen R, Lamers F, Vogelzangs N, Steiner J, et al. Serum proteomic profiling of major depressive disorder. Transl Psychiatry. 2015;5:e599.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhu X, Wang X, Xiao J, Zhong M, Liao J, Yao S. Altered white matter integrity in first-episode, treatment-naive young adults with major depressive disorder: a tract-based spatial statistics study. Brain Res. 2011;1369:223–9.

    CAS  PubMed  Google Scholar 

  84. Koenigs M, Baskin-Sommers A, Zeier J, Newman JP. Investigating the neural correlates of psychopathy: a critical review. Mol Psychiatry. 2011;16:792–9.

    CAS  PubMed  Google Scholar 

  85. van Loo HM, Wanders RBK, Wardenaar KJ, Fried EI. Problems with latent class analysis to detect data-driven subtypes of depression. Mol Psychiatry 2016. https://doi.org/10.1038/mp.2016.202.

    PubMed  Google Scholar 

  86. APA. Submit proposals for making changes to DSM–5. https://www.psychiatry.org/psychiatrists/practice/dsm/submit-proposals. Accessed 12 Dec 2017.

  87. Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI. Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci. 2009. https://doi.org/10.1038/nn.2303

    Article  PubMed  PubMed Central  Google Scholar 

  88. Liu Y, Hayes DN, Nobel A, Marron JS. Statistical significance of clustering for high-dimension, low-sample size data. J Am Stat Assoc. 2008;103:1281–93.

    CAS  Google Scholar 

  89. Tibshirani R, Walther G, Hastie T. Estimating the number of data clusters via the gap statistic. Biostat. 2004. https://doi.org/10.1111/1467-9868.00293.

    Google Scholar 

  90. Kou J. Estimating the number of clusters via the GUD statistic. J Comput Graph Stat. 2014;23:403–17.

    Google Scholar 

  91. Lubke GH, Muthén B. Investigating population heterogeneity with factor mixture models. Psychol Methods. 2005;10:21–39.

    PubMed  Google Scholar 

  92. Wardenaar KJ, Wanders RBK, ten Have M, de Graaf R, de Jonge P. Using a hybrid subtyping model to capture patterns and dimensionality of depressive and anxiety symptomatology in the general population. J Affect Disord. 2017;215:125–34.

    PubMed  Google Scholar 

  93. Kapur S, Phillips AG, Insel TR. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry. 2012;17:1174–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian Beijers.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beijers, L., Wardenaar, K.J., van Loo, H.M. et al. Data-driven biological subtypes of depression: systematic review of biological approaches to depression subtyping. Mol Psychiatry 24, 888–900 (2019). https://doi.org/10.1038/s41380-019-0385-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0385-5

Further reading

Search

Quick links