Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mapping associations between polygenic risks for childhood neuropsychiatric disorders, symptoms of attention deficit hyperactivity disorder, cognition, and the brain

Subjects

Abstract

There are now large-scale data on which common genetic variants confer risk for attention deficit hyperactivity disorder (ADHD). Here, we use mediation analyses to explore how cognitive and neural features might explain the association between common variant (polygenic) risk for ADHD and its core symptoms. In total, 544 participants participated (mean 21 years, 212 (39%) with ADHD), most with cognitive assessments, neuroanatomic imaging, and imaging of white matter tract microstructure. We found that polygenic risk for ADHD was associated with symptoms of hyperactivity–impulsivity but not inattention. This association was mediated across multiple PRS thresholds by white matter microstructure, specifically by axial diffusivity of the right corona radiata, (maximum indirect effect β = −0.034 (CI: −0.065 to −0.01), by thickness of the left dorsomedial prefrontal (β = −0.029; CI: −0.061 to −0.0047) and area of the right lateral temporal cortex (β = 0.024; CI: 0.0034–0.054). In addition, modest serial mediation was found, mapping a pathway from polygenic risk, to white matter microstructure of the anterior corona radiata, then cognition (working memory, focused attention), and finally to hyperactivity–impulsivity (working memory β = −0.014 (CI: −0.038 to −0.0026); focused attention β = −0.011 (CI: −0.033 to −0.0017). These mediation pathways were diagnostically specific and were not found for polygenic risk for ASD or schizophrenia. In conclusion, using a deeply phenotyped cohort, we delineate a pathway from polygenic risk for ADHD to hyperactive–impulsive symptoms through white matter microstructure, cortical anatomy, and cognition.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. 1.

    Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E et al. Discovery of the first genome-wide significant risk loci for ADHD. bioRxiv 2017:145581.

  2. 2.

    Consortium IS. Common polygenic variation contributes to risk of schizophrenia that overlaps with bipolar disorder. Nature. 2009;460:748.

    Google Scholar 

  3. 3.

    Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to disease from genome-wide. Genome Res. 2007;17:1520–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Di Martino A, Fair DA, Kelly C, Satterthwaite TD, Castellanos FX, Thomason ME, et al. Unraveling the miswired connectome: a developmental perspective. Neuron. 2014;83:1335–53.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Konrad K, Eickhoff SB. Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Hum Brain Mapp. 2010;31:904–16.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    van Ewijk H, Heslenfeld DJ, Zwiers MP, Buitelaar JK, Oosterlaan J. Diffusion tensor imaging in attention deficit/hyperactivity disorder: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2012;36:1093–106.

    PubMed  Google Scholar 

  7. 7.

    Chuang T-C, Wu M-T, Huang S-P, Weng M-J, Yang P. Diffusion tensor imaging study of white matter fiber tracts in adolescent attention-deficit/hyperactivity disorder. Psychiatry Res. 2013;211:186–7.

    PubMed  Google Scholar 

  8. 8.

    Sudre G, Choudhuri S, Szekely E, Bonner T, Goduni E, Sharp W, et al. Estimating the heritability of structural and functional brain connectivity in families affected by attention-deficit/hyperactivity disorder. JAMA Psychiatry. 2017;74:76–84.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Chen L, Hu X, Ouyang L, He N, Liao Y, Liu Q, et al. A systematic review and meta-analysis of tract-based spatial statistics studies regarding attention-deficit/hyperactivity disorder. Neurosci Biobehav Rev. 2016;68:838–47.

    PubMed  Google Scholar 

  10. 10.

    Valera EM, Faraone SV, Murray KE, Seidman LJ. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2007;61:1361–9.

    PubMed  Google Scholar 

  11. 11.

    Friedman LA, Rapoport JL. Brain development in ADHD. Curr Opin Neurobiol. 2015;30:106–11.

    CAS  PubMed  Google Scholar 

  12. 12.

    Shaw P, Malek M, Watson B, Sharp W, Evans A, Greenstein D. Development of cortical surface area and gyrification in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2012;72:191–7.

    PubMed  Google Scholar 

  13. 13.

    Peper JS, Brouwer RM, Boomsma DI, Kahn RS, Pol H, Hilleke E. Genetic influences on human brain structure: a review of brain imaging studies in twins. Hum Brain Mapp. 2007;28:464–73.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Jansen AG, Mous SE, White T, Posthuma D, Polderman TJ. What twin studies tell us about the heritability of brain development, morphology, and function: a review. Neuropsychol Rev. 2015;25:27–46.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Frazier TW, Demaree HA, Youngstrom EA. Meta-analysis of intellectual and neuropsychological test performance in attention-deficit/hyperactivity disorder. Neuropsychology. 2004;18:543.

    PubMed  Google Scholar 

  16. 16.

    Huang-Pollock CL, Karalunas SL, Tam H, Moore AN. Evaluating vigilance deficits in ADHD: a meta-analysis of CPT performance. J Abnorm Psychol. 2012;121:360–71.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Martinussen R, Hayden J, Hogg-Johnson S, Tannock R. A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2005;44:377–84.

    PubMed  Google Scholar 

  18. 18.

    Boonstra AM, Oosterlaan J, Sergeant JA, Buitelaar JK. Executive functioning in adult ADHD: a meta-analytic review. Psychol Med. 2005;35:1097–108.

    PubMed  Google Scholar 

  19. 19.

    Martin J, Hamshere ML, Stergiakouli E, O’donovan MC, Thapar A. Neurocognitive abilities in the general population and composite genetic risk scores for attention‐deficit hyperactivity disorder. J Child Psychol Psychiatry. 2015;56:648–56.

    PubMed  Google Scholar 

  20. 20.

    Bidwell L, Willcutt EG, DeFries JC, Pennington BF. Testing for neuropsychological endophenotypes in siblings discordant for attention-deficit/hyperactivity disorder. Biol Psychiatry. 2007;62:991–8.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Kuntsi J, Eley TC, Taylor A, Hughes C, Asherson P, Caspi A, et al. Co-occurrence of ADHD and low IQ has genetic origins. Am J Med Genet Part B: Neuropsychiatr Genett. 2004;124:41–47.

    Google Scholar 

  22. 22.

    Nigg JT, Gustafsson HC, Karalunas SL, Ryabinin P, McWeeney S, Faraone SV et al. Working Memory and Vigilance as Multivariate Endophenotypes Related to Common Genetic Risk for Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry. 218; 57:175–82.

  23. 23.

    Posthuma D, Polderman TJ. What have we learned from recent twin studies about the etiology of neurodevelopmental disorders? Curr Opin Neurol. 2013;26:111–21.

    PubMed  Google Scholar 

  24. 24.

    Ronald A, Simonoff E, Kuntsi J, Asherson P, Plomin R. Evidence for overlapping genetic influences on autistic and ADHD behaviours in a community twin sample. J Child Psychol Psychiatry. 2008;49:535–42.

    PubMed  Google Scholar 

  25. 25.

    Taylor M, Charman T, Robinson E, Plomin R, Happé F, Asherson P, et al. Developmental associations between traits of autism spectrum disorder and attention deficit hyperactivity disorder: a genetically informative, longitudinal twin study. Psychol Med. 2013;43:1735–46.

    CAS  PubMed  Google Scholar 

  26. 26.

    Pennington BF, Ozonoff S. Executive functions and developmental psychopathology. J Child Psychol Psychiatry. 1996;37:51–87.

    CAS  PubMed  Google Scholar 

  27. 27.

    Kercood S, Grskovic JA, Banda D, Begeske J. Working memory and autism: a review of literature. Res Autism Spectr Disord. 2014;8:1316–32.

    Google Scholar 

  28. 28.

    Martin J, Cooper M, Hamshere ML, Pocklington A, Scherer SW, Kent L, et al. Biological overlap of attention-deficit/hyperactivity disorder and autism spectrum disorder: evidence from copy number variants. J Am Acad Child Adolesc Psychiatry. 2014;53:761–70. e726.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lionel AC, Crosbie J, Barbosa N, Goodale T, Thiruvahindrapuram B, Rickaby J, et al. Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Sci Transl Med. 2011;3:95ra75–95ra75.

    CAS  PubMed  Google Scholar 

  30. 30.

    Williams NM, Franke B, Mick E, Anney RJ, Freitag CM, Gill M, et al. Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: the role of rare variants and duplications at 15q13. 3. Am J Psychiatry. 2012;169:195–204.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Consortium C-DGotPG. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381:1371–9.

    Google Scholar 

  32. 32.

    Hamshere ML, Stergiakouli E, Langley K, Martin J, Holmans P, Kent L, et al. Shared polygenic contribution between childhood attention-deficit hyperactivity disorder and adult schizophrenia. Br J Psychiatry. 2013;203:107–11.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Wechsler D. Wechsler abbreviated scale of intelligence. San Antonio, TX: Psychological Corporation; 1999.

    Google Scholar 

  34. 34.

    Wechsler D. Wechsler Abbreviated Scale of Intelligence (2nd ed.). San Antonio, TX: Psychological Corporation; 2011.

    Google Scholar 

  35. 35.

    Wechsler D, Scales PI, Index VC Wechsler Preschool and Primary Scale of Intelligence—Fourth Edition. 2012.

  36. 36.

    Holdnack H. Wechsler test of adult reading: WTAR. San Antonio, TX: The Psychological Corporation; 2001.

    Google Scholar 

  37. 37.

    Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31:1487–505.

    Google Scholar 

  38. 38.

    Wechsler D. Wechsler intelligence scale for children-WISC-IV. Psychological Corporation, 2003.

  39. 39.

    Woodcock RW, McGrew KS, Mather N. Woodcock-Johnson tests of achievement. Itasca, IL: Riverside Publishing; 2001.

    Google Scholar 

  40. 40.

    Conners CK. Conners’ continuous performance test. North Tonawanda, NY: Multi-Health Systems; 2000.

    Google Scholar 

  41. 41.

    Egeland J, Kovalik-Gran I. Measuring several aspects of attention in one test: the factor structure of conners’s continuous performance test. J Atten Disord. 2008;13:339–46.

    Google Scholar 

  42. 42.

    Templ M, Kowarik A, Filzmoser P. Iterative stepwise regression imputation using standard and robust methods. Comput Stat Data Anal. 2011;55:2793–806.

    Google Scholar 

  43. 43.

    Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E et al. Discovery of the first genome-wide significant risk loci for ADHD. bioRxiv 2017.

  44. 44.

    Consortium ASDWGotPG. PGC-ASD summary statistics from a meta-analysis of 5,305 ASD-diagnosed cases and 5,305 pseudocontrols of European descent (based on similarity to CEPH reference genotypes) 2015.

  45. 45.

    SWGotPG Consortium, Ripke S, Neale BM, Corvin A, JTR Walters, Farh K-H, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Google Scholar 

  46. 46.

    Euesden J, Lewis CM, O’Reilly PF. PRSice: polygenic risk score software. Bioinformatics. 2015;31:1466–8.

    CAS  Google Scholar 

  47. 47.

    Chatterjee N, Wheeler B, Sampson J, Hartge P, Chanock SJ, Park J-H. Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies. Nat Genet. 2013;45:400–405e403.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Larsson H, Dilshad R, Lichtenstein P, Barker ED. Developmental trajectories of DSM-IV symptoms of attention-deficit/hyperactivity disorder: genetic effects, family risk and associated psychopathology. J Child Psychol Psychiatry. 2011;52:954–63.

    Google Scholar 

  49. 49.

    Kuntsi J, Pinto R, Price TS, van der Meere JJ, Frazier-Wood AC, Asherson P. The separation of ADHD inattention and hyperactivity-impulsivity symptoms: pathways from genetic effects to cognitive impairments and symptoms. J Abnorm Child Psychol. 2014;42:127–36.

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Willcutt EG, Pennington BF, Olson RK, DeFries JC. Understanding comorbidity: a twin study of reading disability and attention-deficit/hyperactivity disorder. Am J Med Genet Part B: Neuropsychiatr Genet. 2007;144B:709–14.

    Google Scholar 

  51. 51.

    Wood AC, Rijsdijk F, Asherson P, Kuntsi J. Hyperactive-impulsive symptom scores and oppositional behaviours reflect alternate manifestations of a single liability. Behav Genet. 2009;39:447–60.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Weiler MD, Bernstein JH, Bellinger DC, Waber DP. Processing speed in children with attention deficit/hyperactivity disorder, inattentive type. Child Neuropsychol. 2000;6:218–34.

    CAS  PubMed  Google Scholar 

  53. 53.

    Pinheiro J, Bates D, DebRoy S, Sakar D, Team RC nlme: linear and nonlinear mixed effects models. R Package Version 31-1311 2018.

  54. 54.

    Tingley D, Yamamoto T, Hirose K, Keele L, Imai K mediation: R package for causal mediation analysis. J Stat Softw. 2014;1:5.

  55. 55.

    Hayes AF. Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. Guilford Publications 2017.

  56. 56.

    Nikolas MA, Burt SA. Genetic and environmental influences on ADHD symptom dimensions of inattention and hyperactivity: a meta-analysis. J Abnorm Psychol. 2010;119:1–17.

    PubMed  Google Scholar 

  57. 57.

    McLoughlin G, Ronald A, Kuntsi J, Asherson P, Plomin R. Genetic support for the dual nature of attention deficit hyperactivity disorder: Substantial genetic overlap between the inattentive and hyperactive–impulsive components. J Abnorm Child Psychol. 2007;35:999–1008.

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Muster R, Choudhury S, Sharp W, Sudre G, Shaw P. Mapping the neuroanatomic substrates of cognition in familial attention deficit hyperactivity disorder. Psychol Med. 2018;24:1–8.

  59. 59.

    Olesen PJ, Nagy Z, Westerberg H, Klingberg T. Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network. Brain Res Cogn Brain Res. 2003;18:48–57.

    PubMed  Google Scholar 

  60. 60.

    Niogi SN, Mukherjee P, Ghajar J, McCandliss BD. Individual differences in distinct components of attention are linked to anatomical variations in distinct white matter tracts. Front Neuroanat. 2010;4:2.

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Narayanan NS, Laubach M. Top-down control of motor cortex ensembles by dorsomedial prefrontal cortex. Neuron. 2006;52:921–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Venkatraman V, Rosati AG, Taren AA, Huettel SA. Resolving response, decision, and strategic control: evidence for a functional topography in dorsomedial prefrontal cortex. J Neurosci. 2009;29:13158–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Horst NK, Laubach M. The role of rat dorsomedial prefrontal cortex in spatial working memory. Neuroscience. 2009;164:444–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Eickhoff SB, Laird AR, Fox PT, Bzdok D, Hensel L. Functional segregation of the human dorsomedial prefrontal cortex. Cereb Cortex. 2014;26:304–21.

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. Functional-anatomic fractionation of the brain’s default network. Neuron. 2010;65:550–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Fassbender C, Zhang H, Buzy WM, Cortes CR, Mizuiri D, Beckett L, et al. A lack of default network suppression is linked to increased distractibility in ADHD. Brain Res. 2009;1273:114–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Wen X, Yao L, Liu Y, Ding M. Causal interactions in attention networks predict behavioral performance. J Neurosci. 2012;32:1284–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Rosenberg MD, Finn ES, Scheinost D, Papademetris X, Shen X, Constable RT et al. A neuromarker of sustained attention from whole-brain functional connectivity. Nat Neurosci. 2015;19:165–71.

  69. 69.

    Hagenaars SP, Harris SE, Davies G, Hill WD, Liewald DC, Ritchie SJ, et al. Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N=112 151) and 24 GWAS consortia. Mol Psychiatry. 2016;21:1624.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Savage JE, Jansen PR, Stringer S, Watanabe K, Bryois J, de Leeuw CA et al. GWAS meta-analysis (N=279,930) identifies new genes and functional links to intelligence. bioRxiv. 2017;184853.

  71. 71.

    Martin J, Hamshere ML, Stergiakouli E, O’Donovan MC, Thapar A. Genetic risk for attention-deficit/hyperactivity disorder contributes to neurodevelopmental traits in the general population. Biol Psychiatry. 2014;76:664–71.

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Kuntsi J, Wood AC, Johnson KA, Andreou P, Arias-Vasquez A, Buitelaar JK, et al. Separation of cognitive impairments in attention-deficit/hyperactivity disorder into 2 familial factors. Arch Gen Psychiatry. 2010;67:1159–66.

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Wood A, Asherson P, Van Der Meere J, Kuntsi J. Separation of genetic influences on attention deficit hyperactivity disorder symptoms and reaction time performance from those on IQ. Psychol Med. 2010;40:1027–37.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was funded by the intramural programs of the National Human Genome Research Institute and the National Institute of Mental Health. We thank participants and their families.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philip Shaw.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sudre, G., Frederick, J., Sharp, W. et al. Mapping associations between polygenic risks for childhood neuropsychiatric disorders, symptoms of attention deficit hyperactivity disorder, cognition, and the brain. Mol Psychiatry 25, 2482–2492 (2020). https://doi.org/10.1038/s41380-019-0350-3

Download citation

Further reading

Search

Quick links