Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A genome-wide association study in individuals of African ancestry reveals the importance of the Duffy-null genotype in the assessment of clozapine-related neutropenia

Abstract

Individuals of African ancestry in the United States and Europe are at increased risk of developing schizophrenia and have poorer clinical outcomes. The antipsychotic clozapine, the only licensed medication for treatment-resistant schizophrenia, is under-prescribed and has high rates of discontinuation in individuals of African ancestry, due in part to increased rates of neutropenia. The genetic basis of lower neutrophil levels in those of African ancestry has not previously been investigated in the context of clozapine treatment. We sought to identify risk alleles in the first genome-wide association study of neutrophil levels during clozapine treatment, in 552 individuals with treatment-resistant schizophrenia and robustly inferred African genetic ancestry. Two genome-wide significant loci were associated with low neutrophil counts during clozapine treatment. The most significantly associated locus was driven by rs2814778 (β = −0.9, P = 4.21 × 10−21), a known regulatory variant in the atypical chemokine receptor 1 (ACKR1) gene. Individuals homozygous for the C allele at rs2814778 were significantly more likely to develop neutropenia and have to stop clozapine treatment (OR = 20.4, P = 3.44 × 10−7). This genotype, also termed “Duffy-null”, has previously been shown to be associated with lower neutrophil levels in those of African ancestry. Our results indicate the relevance of the rs2814778 genotype for those taking clozapine and its potential as a pharmacogenetic test, dependent on the outcome of additional safety studies, to assist decision making in the initiation and on-going management of clozapine treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

References

  1. 1.

    Cantor-Graae E, Selten JP. Schizophrenia and migration: a meta-analysis and review. Am J Psychiatry. 2005;162:12–24.

    Article  Google Scholar 

  2. 2.

    McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev. 2008;30:67–76.

    Article  Google Scholar 

  3. 3.

    Fearon P, Kirkbride JB, Morgan C, Dazzan P, Morgan K, Lloyd T, et al. Incidence of schizophrenia and other psychoses in ethnic minority groups: results from the MRC AESOP Study. Psychol Med. 2006;36:1541–50.

    Article  Google Scholar 

  4. 4.

    Bresnahan M, Begg MD, Brown A, Schaefer C, Sohler N, Insel B, et al. Race and risk of schizophrenia in a US birth cohort: another example of health disparity? Int J Epidemiol. 2007;36:751–8.

    Article  Google Scholar 

  5. 5.

    Brugha T, Jenkins R, Bebbington P, Meltzer H, Lewis G, Farrell M. Risk factors and the prevalence of neurosis and psychosis in ethnic groups in Great Britain. Soc Psychiatry Psychiatr Epidemiol. 2004;39:939–46.

    Article  Google Scholar 

  6. 6.

    Boydell J, van Os J, McKenzie K, Allardyce J, Goel R, McCreadie RG, et al. Incidence of schizophrenia in ethnic minorities in London: ecological study into interactions with environment. BMJ. 2001;323:1336–8.

    CAS  Article  Google Scholar 

  7. 7.

    Bhui K, Stansfeld S, Hull S, Priebe S, Mole F, Feder G. Ethnic variations in pathways to and use of specialist mental health services in the UK. Systematic review. Br J Psychiatry. 2003;182:105–16.

    Article  Google Scholar 

  8. 8.

    Morgan C, Fearon P, Lappin J, Heslin M, Donoghue K, Lomas B, et al. Ethnicity and long-term course and outcome of psychotic disorders in a UK sample: the AESOP-10 study. Br J Psychiatry. 2017;211:88–94.

    Article  Google Scholar 

  9. 9.

    Kane J, Honigfeld G, Singer J, Meltzer H. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry. 1988;45:789–96.

    CAS  Article  Google Scholar 

  10. 10.

    Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet. 2009;373:31–41.

    CAS  Article  Google Scholar 

  11. 11.

    Tiihonen J, Mittendorfer-Rutz E, Majak M, Mehtala J, Hoti F, Jedenius E, et al. Real-world effectiveness of antipsychotic treatments in a nationwide cohort of 29823 patients with schizophrenia. JAMA Psychiatry. 2017;74:686–93.

    Article  Google Scholar 

  12. 12.

    Kuno E, Rothbard AB. Racial disparities in antipsychotic prescription patterns for patients with schizophrenia. Am J Psychiatry. 2002;159:567–72.

    Article  Google Scholar 

  13. 13.

    Kelly DL, Dixon LB, Kreyenbuhl JA, Medoff D, Lehman AF, Love RC, et al. Clozapine utilization and outcomes by race in a public mental health system: 1994-2000. J Clin Psychiatry. 2006;67:1404–11.

    CAS  Article  Google Scholar 

  14. 14.

    Whiskey E, Olofinjana O, Taylor D. The importance of the recognition of benign ethnic neutropenia in black patients during treatment with clozapine: case reports and database study. J Psychopharmacol. 2011;25:842–5.

    CAS  Article  Google Scholar 

  15. 15.

    Davis MC, Fuller MA, Strauss ME, Konicki PE, Jaskiw GE. Discontinuation of clozapine: a 15-year naturalistic retrospective study of 320 patients. Acta Psychiatr Scand. 2014;130:30–39.

    CAS  Article  Google Scholar 

  16. 16.

    Moeller FG, Chen YW, Steinberg JL, Petty F, Ripper GW, Shah N, et al. Risk factors for clozapine discontinuation among 805 patients in the VA hospital system. Ann Clin Psychiatry. 1995;7:167–73.

    CAS  Article  Google Scholar 

  17. 17.

    Munro J, O’Sullivan D, Andrews C, Arana A, Mortimer A, Kerwin R. Active monitoring of 12,760 clozapine recipients in the UK and Ireland. Beyond pharmacovigilance. Br J Psychiatry. 1999;175:576–80.

    CAS  Article  Google Scholar 

  18. 18.

    Kelly DL, Kreyenbuhl J, Dixon L, Love RC, Medoff D, Conley RR. Clozapine underutilization and discontinuation in African Americans due to leucopenia. Schizophr Bull. 2007;33:1221–4.

    Article  Google Scholar 

  19. 19.

    Myles N, Myles H, Xia S, Large M, Kisely S, Galletly C. et al. Meta-analysis examining the epidemiology of clozapine-associated neutropenia. Acta Psychiatr Scand. 2018;138:101–9.

    CAS  Article  Google Scholar 

  20. 20.

    Saito T, Ikeda M, Mushiroda T, Ozeki T, Kondo K, Shimasaki A, et al. Pharmacogenomic study of clozapine-induced agranulocytosis/granulocytopenia in a Japanese population. Biol Psychiatry. 2016;80:636–42.

    CAS  Article  Google Scholar 

  21. 21.

    Goldstein JI, Fredrik Jarskog L, Hilliard C, Alfirevic A, Duncan L, Fourches D, et al. Clozapine-induced agranulocytosis is associated with rare HLA-DQB1 and HLA-B alleles. Nat Commun. 2014;5:4757.

    CAS  Article  Google Scholar 

  22. 22.

    Legge SE, Hamshere ML, Ripke S, Pardinas AF, Goldstein JI, Rees E. et al. Genome-wide common and rare variant analysis provides novel insights into clozapine-associated neutropenia. Mol Psychiatry. 2017;22:1502–8.

    CAS  Article  Google Scholar 

  23. 23.

    Gibson C, Berliner N. How we evaluate and treat neutropenia in adults. Blood. 2014;124:1251–8. quiz 1378

    CAS  Article  Google Scholar 

  24. 24.

    Pardinas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50:381–9.

    CAS  Article  Google Scholar 

  25. 25.

    Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

    Article  Google Scholar 

  26. 26.

    Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT. Data quality control in genetic case-control association studies. Nat Protoc. 2010;5:1564–73.

    CAS  Article  Google Scholar 

  27. 27.

    McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83.

    CAS  Article  Google Scholar 

  28. 28.

    Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.

    CAS  Article  Google Scholar 

  29. 29.

    Advanced Research Computing @ Cardiff (ARCCA). Introduction to RAVEN. https://www.cardiff.ac.uk/advanced-researchcomputing/about-us/our-supercomputers (accessed 29 March 2016).

  30. 30.

    van Leeuwen EM, Kanterakis A, Deelen P, Kattenberg MV, Genome of the Netherlands Consortium, Slagboom PE, et al. Population-specific genotype imputations using minimac or IMPUTE2. Nat Protoc. 2015;10:1285–96.

    CAS  Article  Google Scholar 

  31. 31.

    Huang J, Howie B, McCarthy S, Memari Y, Walter K, Min JL, et al. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. Nat Commun. 2015;6:8111.

    CAS  Article  Google Scholar 

  32. 32.

    Phillips C, Salas A, Sanchez JJ, Fondevila M, Gomez-Tato A, Alvarez-Dios J, et al. Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs. Forensic Sci Int Genet. 2007;1:273–80.

    CAS  Article  Google Scholar 

  33. 33.

    Bulbul O, Filoglu G, Zorlu T, Altuncul H, Freire-Aradas A, Sochtig J, et al. Inference of biogeographical ancestry across central regions of Eurasia. Int J Leg Med. 2016;130:73–79.

    CAS  Article  Google Scholar 

  34. 34.

    Shriver MD, Parra EJ, Dios S, Bonilla C, Norton H, Jovel C, et al. Skin pigmentation, biogeographical ancestry and admixture mapping. Hum Genet. 2003;112:387–99.

    Google Scholar 

  35. 35.

    Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science. 2008;319:1100–4.

    CAS  Article  Google Scholar 

  36. 36.

    Tishkoff SA, Kidd KK. Implications of biogeography of human populations for ‘race’ and medicine. Nat Genet. 2004;36:S21–27.

    CAS  Article  Google Scholar 

  37. 37.

    Bryc K, Durand EY, Macpherson JM, Reich D, Mountain JL. The genetic ancestry of African Americans, Latinos, and European Americans across the United States. Am J Hum Genet. 2015;96:37–53.

    CAS  Article  Google Scholar 

  38. 38.

    Avena S, Via M, Ziv E, Perez-Stable EJ, Gignoux CR, Dejean C, et al. Heterogeneity in genetic admixture across different regions of Argentina. PLoS One. 2012;7:e34695.

    CAS  Article  Google Scholar 

  39. 39.

    Graffelman J. Exploring diallelic genetic markers: the HardyWeinberg Package. J Stat Softw. 2015;64:1–23.

    Article  Google Scholar 

  40. 40.

    Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.

    CAS  Article  Google Scholar 

  41. 41.

    Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and pitfalls in the application of mixed-model association methods. Nat Genet. 2014;46:100–6.

    Article  Google Scholar 

  42. 42.

    Yang J, Ferreira T, Morris AP, Medland SE, Genetic Investigation of ANthropometric Traits (GIANT) Consortium, DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet. 2012;44:361–75.

    CAS  Article  Google Scholar 

  43. 43.

    Zheng X, Shen J, Cox C, Wakefield JC, Ehm MG, Nelson MR, et al. HIBAG--HLA genotype imputation with attribute bagging. Pharm J. 2014;14:192–200.

    CAS  Google Scholar 

  44. 44.

    Levin AM, Adrianto I, Datta I, Iannuzzi MC, Trudeau S, Li J, et al. Association of HLA-DRB1 with sarcoidosis susceptibility and progression in African Americans. Am J Respir Cell Mol Biol. 2015;53:206–16.

    CAS  Article  Google Scholar 

  45. 45.

    Conomos MP, Miller MB, Thornton TA. Robust inference of population structure for ancestry prediction and correction of stratification in the presence of relatedness. Genet Epidemiol. 2015;39:276–93.

    Article  Google Scholar 

  46. 46.

    Reich D, Nalls MA, Kao WH, Akylbekova EL, Tandon A, Patterson N, et al. Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet. 2009;5:e1000360.

    Article  Google Scholar 

  47. 47.

    Rajagopal S. Clozapine, agranulocytosis, and benign ethnic neutropenia. Postgrad Med J. 2005;81:545–6.

    CAS  Article  Google Scholar 

  48. 48.

    Manu P, Sarvaiya N, Rogozea LM, Kane JM, Correll CU. Benign ethnic neutropenia and clozapine use: a systematic review of the evidence and treatment recommendations. J Clin Psychiatry. 2016;77:e909–916.

    Article  Google Scholar 

  49. 49.

    Haddy TB, Rana SR, Castro O. Benign ethnic neutropenia: what is a normal absolute neutrophil count? J Lab Clin Med. 1999;133:15–22.

    CAS  Article  Google Scholar 

  50. 50.

    Thobakgale CF, Ndung’u T. Neutrophil counts in persons of African origin. Curr Opin Hematol. 2014;21:50–57.

    Article  Google Scholar 

  51. 51.

    Reiner AP, Lettre G, Nalls MA, Ganesh SK, Mathias R, Austin MA, et al. Genome-wide association study of white blood cell count in 16,388 African Americans: the continental origins and genetic epidemiology network (COGENT). PLoS Genet. 2011;7:e1002108.

    CAS  Article  Google Scholar 

  52. 52.

    Nalls MA, Wilson JG, Patterson NJ, Tandon A, Zmuda JM, Huntsman S, et al. Admixture mapping of white cell count: genetic locus responsible for lower white blood cell count in the Health ABC and Jackson Heart studies. Am J Hum Genet. 2008;82:81–87.

    CAS  Article  Google Scholar 

  53. 53.

    The Charge Consortium Hematology Working Group. Meta-analysis of rare and common exome chip variants identifies S1PR4 and other loci influencing blood cell traits. Nat Genet. 2016;48:867–76.

    Article  Google Scholar 

  54. 54.

    Davis MB, Walens A, Hire R, Mumin K, Brown AM, Ford D, et al. Distinct transcript isoforms of the atypical chemokine receptor 1 (ACKR1)/Duffy antigen receptor for chemokines (DARC) gene are expressed in lymphoblasts and altered isoform levels are associated with genetic ancestry and the Duffy-null allele. PLoS One. 2015;10:e0140098.

    Article  Google Scholar 

  55. 55.

    Pierron D, Heiske M, Razafindrazaka H, Pereda-Loth V, Sanchez J, Alva O, et al. Strong selection during the last millennium for African ancestry in the admixed population of Madagascar. Nat Commun. 2018;9:932.

    Article  Google Scholar 

  56. 56.

    Duchene J, Novitzky-Basso I, Thiriot A, Casanova-Acebes M, Bianchini M, Etheridge SL, et al. Atypical chemokine receptor 1 on nucleated erythroid cells regulates hematopoiesis. Nat Immunol. 2017;18:753–61.

    CAS  Article  Google Scholar 

  57. 57.

    Permanyer M, Bosnjak B, Forster R. Dual role for atypical chemokine receptor 1 in myeloid cell hematopoiesis and distribution. Cell Mol Immunol. 2018;15:399–401.

    CAS  Article  Google Scholar 

  58. 58.

    Richardson CM, Davis EA, Vyas GR, DiPaula BA, McMahon RP, Kelly DL. Evaluation of the safety of clozapine use in patients with benign neutropenia. J Clin Psychiatry. 2016;77:e1454–e1459.

    Article  Google Scholar 

  59. 59.

    Howes RE, Patil AP, Piel FB, Nyangiri OA, Kabaria CW, Gething PW, et al. The global distribution of the Duffy blood group. Nat Commun. 2011;2:266.

    Article  Google Scholar 

  60. 60.

    Meyer S, Vollmert C, Trost N, Bronnimann C, Gottschalk J, Buser A, et al. High-throughput Kell, Kidd, and Duffy matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry-based blood group genotyping of 4000 donors shows close to full concordance with serotyping and detects new alleles. Transfusion. 2014;54:3198–207.

    CAS  Article  Google Scholar 

  61. 61.

    Lopez GH, Morrison J, Condon JA, Wilson B, Martin JR, Liew YW, et al. Duffy blood group phenotype-genotype correlations using high-resolution melting analysis PCR and microarray reveal complex cases including a new null FY*A allele: the role for sequencing in genotyping algorithms. Vox Sang. 2015;109:296–303.

    CAS  Article  Google Scholar 

  62. 62.

    Hoher G, Fiegenbaum M, Almeida S. Molecular basis of the Duffy blood group system. Blood Transfus. 2018;16:93–100.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Rios M, Chaudhuri A, Mallinson G, Sausais L, Gomensoro-Garcia AE, Hannon J, et al. New genotypes in Fy(a-b-) individuals: nonsense mutations (Trp to stop) in the coding sequence of either FY A or FY B. Brit J Haematol. 2000;108:448–54.

    CAS  Article  Google Scholar 

  64. 64.

    Langhi DM Jr., Bordin JO. Duffy blood group and malaria. Hematology. 2006;11:389–98.

    CAS  Article  Google Scholar 

  65. 65.

    Liu YD, Zhang B, Kuang H, Korakavi G, Lu LY, Yu XC. Zinc finger protein 618 regulates the function of UHRF2 (ubiquitin-like with PHD and ring finger domains 2) as a specific 5-hydroxymethylcytosine reader. J Biol Chem. 2016;291:13679–88.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This project was supported by Medical Research Council (MRC) Centre (MR/L010305/1), Program (G0800509) and Project ("STRATA", MR/L011794/1) grants to Cardiff University. The project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 279227 (CRESTAR Consortium; http://www.crestar-project.eu/). This publication reflects only the authors’ views and the European Union is not liable for any use that may be made of the information contained therein. We acknowledge Leyden Delta and Magna Laboratories, UK, for supporting the CLOZUK2 sample collection, anonymisation and data preparation (Andy Walker and Anouschka Colson). We acknowledge deCODE genetics (Hreinn Stefansson and colleagues) for genotyping of the CLOZUK2 sample. We acknowledge the MRC Centre laboratory staff (particularly Lucinda Hopkins, Lesley Bates and Catherine Bresner) at Cardiff University for laboratory sample management and Wayne Lawrence and Mark Einon at Cardiff University for support with the use and setup of computational infrastructures.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James T. R. Walters.

Ethics declarations

Conflict of interest

DAC is a full-time employee and stockholder of Eli Lilly and Company. MH, JAJ and KJ are full-time employees of Leyden Delta B.V. The remaining authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Legge, S.E., Pardiñas, A.F., Helthuis, M. et al. A genome-wide association study in individuals of African ancestry reveals the importance of the Duffy-null genotype in the assessment of clozapine-related neutropenia. Mol Psychiatry 24, 328–337 (2019). https://doi.org/10.1038/s41380-018-0335-7

Download citation

Further reading

Search

Quick links