Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NDUFV2 pseudogene (NDUFV2P1) contributes to mitochondrial complex I deficits in schizophrenia

Abstract

Mitochondria together with other cellular components maintain a constant crosstalk, modulating transcriptional and posttranslational processes. We and others demonstrated mitochondrial multifaceted dysfunction in schizophrenia, with aberrant complex I (CoI) as a major cause. Here we show deficits in CoI activity and homeostasis in schizophrenia-derived cell lines. Focusing on a core CoI subunit, NDUFV2, one of the most severely affected subunits in schizophrenia, we observed reduced protein level and functioning, with no change in mRNA transcripts. We further show that NDUFV2 pseudogene (NDUFV2P1) expression is increased in schizophrenia-derived cells and in postmortem brain specimens. In schizophrenia and controls pooled samples, NDUFV2P1 level demonstrated a significant inverse correlation with NDUFV2 pre- and matured protein level and with CoI-driven cellular respiration. Our data suggest a role for a pseudogene in its parent-gene regulation and possibly in CoI dysfunction in schizophrenia. The abnormal expression of the pseudogene may be one element of a vicious circle in which CoI deficits lead to mitochondrial dysfunction potentially affecting genome-wide regulation of gene expression, including the expression of pseudogenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van Os J, Rutten BP, Poulton R. Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr Bull. 2008;34:1066–82.

    PubMed  PubMed Central  Google Scholar 

  2. Laruelle M, Kegeles LS, Abi-Dargham A. Glutamate, dopamine, and schizophrenia from pathophysiology to treatment. Ann NY Acad Sci. 2003;1003:138–58.

    CAS  PubMed  Google Scholar 

  3. Javitt DC. Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry. 2004;9:979, 984–997.

    Google Scholar 

  4. Nakazawa K, Zsiros V, Jiang Z, Nakao K, Kolata S, Zhang S, et al. GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology. 2012;62:1574–83.

    CAS  PubMed  Google Scholar 

  5. Yuksel C, Tegin C, O’Connor L, Du F, Ahat E, Cohen BM, et al. Phosphorus magnetic resonance spectroscopy studies in schizophrenia. J Psychiatr Res. 2015;68:157–66.

    PubMed  Google Scholar 

  6. Konradi C, Öngür D. Role of mitochondria and energy metabolism in schizophrenia and psychotic disorders. Schizophr Res. 2017;187:1–2.

    CAS  PubMed  Google Scholar 

  7. Ben-Shachar D. Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J Neurochem. 2002;83:1241–51.

    CAS  PubMed  Google Scholar 

  8. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang J-JT, Griffin JL, et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry. 2004;9:684–97.

    CAS  PubMed  Google Scholar 

  9. Roberts RC. Postmortem studies on mitochondria in schizophrenia. Schizophr Res. 2017;187:17–25.

    PubMed  PubMed Central  Google Scholar 

  10. Ben-Shachar D. Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target. Schizophr Res. 2016. https://doi.org/10.1016/j.schres.2016.10.022

    Article  PubMed  Google Scholar 

  11. Rajasekaran A, Venkatasubramanian G, Berk M, Debnath M. Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Neurosci Biobehav Rev. 2015;48:10–21.

    CAS  PubMed  Google Scholar 

  12. Robicsek O, Ene HM, Karry R, Ytzhaki O, Asor E, McPhie D, et al. Isolated mitochondria transfer improves neuronal differentiation of schizophrenia-derived induced pluripotent stem cells and rescues deficits in a rat model of the disorder. Schizophr Bull. 2018;44:432–42.

    PubMed  Google Scholar 

  13. Robicsek O, Karry R, Petit I, Salman-Kesner N, Müller F-J, Klein E, et al. Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry. 2013;18:1067–76.

  14. Bergman O, Ben-Shachar D. Mitochondrial oxidative phosphorylation system (OXPHOS) deficits in schizophrenia: possible interactions with cellular processes. Can J Psychiatry. 2016;61:457–69.

    PubMed  PubMed Central  Google Scholar 

  15. Ben-Shachar D, Zuk R, Gazawi H, Reshef A, Sheinkman A, Klein E. Increased mitochondrial complex I activity in platelets of schizophrenic patients. Int J Neuropsychopharmacol. 1999;2:245–53.

    CAS  PubMed  Google Scholar 

  16. Anglin RE, Garside SL, Tarnopolsky MA, Mazurek MF, Rosebush PI. The psychiatric manifestations of mitochondrial disorders: a case and review of the literature. J Clin Psychiatry. 2012;73:506–12.

    PubMed  Google Scholar 

  17. Marin SE, Saneto RP. Neuropsychiatric features in primary mitochondrial disease. Neurol Clin. 2016;34:247–94.

    PubMed  Google Scholar 

  18. Dror N, Klein E, Karry R, Sheinkman A, Kirsh Z, Mazor M, et al. State dependent alterations in mitochondrial complex I activity in platelets: a potential peripheral marker for schizophrenia. Mol Psychiatry. 2002;7:995–1001.

    CAS  PubMed  Google Scholar 

  19. Ben-Shachar D, Karry R. Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS ONE. 2008;3:e3676.

    PubMed  PubMed Central  Google Scholar 

  20. Iwamoto K, Bundo M, Kato T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet. 2005;14:241–53.

    CAS  PubMed  Google Scholar 

  21. Washizuka S, Kakiuchi C, Mori K, Tajima O, Akiyama T, Kato T. Expression of mitochondria-related genes in lymphoblastoid cells from patients with bipolar disorder. Bipolar Disord. 2005;2:146–52.

  22. Akarsu S, Torun D, Bolu A, Erdem M, Kozan S, Ak M, et al. Mitochondrial complex I and III gene mRNA levels in schizophrenia, and their relationship with clinical features. J Mol Psychiatry. 2014;2:6.

    PubMed  PubMed Central  Google Scholar 

  23. Zhu Y, Wang Z, Ni J, Zhang Y, Chen M, Cai J, et al. Genetic variant in NDUFS1 gene is associated with schizophrenia and negative symptoms in Han Chinese. J Hum Genet. 2015;60:11–6.

    CAS  PubMed  Google Scholar 

  24. Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE. Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics. 2003;2:117–26.

    CAS  PubMed  Google Scholar 

  25. Mimaki M, Wang X, McKenzie M, Thorburn DR, Ryan MT. Understanding mitochondrial complex I assembly in health and disease. Biochim Biophys Acta. 2012;1817:851–62.

    CAS  PubMed  Google Scholar 

  26. Brenner-Lavie H, Klein E, Ben-Shachar D. Mitochondrial complex I as a novel target for intraneuronal DA: modulation of respiration in intact cells. Biochem Pharmacol. 2009;78. https://doi.org/10.1016/j.bcp.2009.03.024.

  27. Robicsek O, Karry R, Petit I, Salman-Kesner N, Muller FJ, Klein E, et al. Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry. 2013;18:1067–76.

    CAS  PubMed  Google Scholar 

  28. Brenner-Lavie H, Klein E, Zuk R, Gazawi H, Ljubuncic P, Ben-Shachar D. Dopamine modulates mitochondrial function in viable SH-SY5Y cells possibly via its interaction with complex I: Relevance to dopamine pathology in schizophrenia. Biochim Biophys Acta. 2008;1777:173–85.

    CAS  PubMed  Google Scholar 

  29. Rosenfeld M, Brenner-Lavie H, Ari SG-B, Kavushansky A, Ben-Shachar D. Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biol Psychiatry. 2011;69. https://doi.org/10.1016/j.biopsych.2011.01.010.

  30. Petit I, Kesner NS, Karry R, Robicsek O, Aberdam E, Muller FJ, et al. Induced pluripotent stem cells from hair follicles as a cellular model for neurodevelopmental disorders. Stem Cell Res. 2012;8:134–40.

    CAS  PubMed  Google Scholar 

  31. Wallace DC. Mitochondrial diseases in man and mouse. Science. 1999;283:1482–8.

    CAS  PubMed  Google Scholar 

  32. Keeney PM, Xie J, Capaldi RA, Bennett JP. Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci. 2006;26:5256–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fattal O, Budur K, Vaughan AJ, Franco K. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics. 2006;47:1–7.

    PubMed  Google Scholar 

  34. Scola G, Kim HK, Young LT, Andreazza AC. A fresh look at complex I in microarray data: clues to understanding disease-specific mitochondrial alterations in bipolar disorder. Biol Psychiatry. 2013;73:e4–5.

    PubMed  Google Scholar 

  35. Sie L, Loong S, Tan EK. Utility of lymphoblastoid cell lines. J Neurosci Res. 2009;87:1953–9.

    CAS  PubMed  Google Scholar 

  36. Sei Y, Ren-Patterson R, Li Z, Tunbridge EM, Egan MF, Kolachana BS, et al. Neuregulin1-induced cell migration is impaired in schizophrenia: association with neuregulin1 and catechol-o-methyltransferase gene polymorphisms. Mol Psychiatry. 2007;12:946–57.

    CAS  PubMed  Google Scholar 

  37. Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, et al. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ Health Perspect. 2014;122:1271–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Salminen A, Kauppinen A, Hiltunen M, Kaarniranta K. Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process. Ageing Res Rev. 2014;16:45–65.

    CAS  PubMed  Google Scholar 

  39. Bernacki SH, Stankovic AK, Williams LO, Beck JC, Herndon JE, Snow-Bailey K, et al. Establishment of stably EBV-transformed cell lines from residual clinical blood samples for use in performance evaluation and quality assurance in molecular genetic testing. J Mol Diagn. 2003;5:227–30.

    PubMed  PubMed Central  Google Scholar 

  40. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH. The stanley foundation brain collection and neuropathology consortium. Schizophr Res. 2000;44:151–5.

    CAS  PubMed  Google Scholar 

  41. Sims NR, Anderson MF. Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat Protoc. 2008;3:1228–39.

    CAS  PubMed  Google Scholar 

  42. Brenner-Lavie H, Klein E, Zuk R, Gazawi H, Ljubuncic P, Ben-Shachar D. Dopamine modulates mitochondrial function in viable SH-SY5Y cells possibly via its interaction with complex I: relevance to dopamine pathology in schizophrenia. Biochim Biophys Acta. 2008;1777:173–85.

    CAS  PubMed  Google Scholar 

  43. Karry R, Klein E, Shachar DBen. Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiatry. 2004;55:676–84.

    CAS  PubMed  Google Scholar 

  44. Wittig I, Braun H-P, Schägger H. Blue native PAGE. Nat Protoc. 2006;1:418–28.

    CAS  PubMed  Google Scholar 

  45. Calvaruso MA, Smeitink J, Nijtmans L. Electrophoresis techniques to investigate defects in oxidative phosphorylation. Methods. 2008;46:281–7.

    CAS  PubMed  Google Scholar 

  46. Wittig I, Carrozzo R, Santorelli FM, Schägger H. Functional assays in high-resolution clear native gels to quantify mitochondrial complexes in human biopsies and cell lines. Electrophoresis. 2007;28:3811–20.

    CAS  PubMed  Google Scholar 

  47. Chomyn A. In vivo labeling and analysis of human mitochondrial translation products. Methods Enzymol. 1996;264:197–211.

    CAS  PubMed  Google Scholar 

  48. Wiedemann N, Pfanner N, Rehling P. Import of precursor proteins into isolated yeast mitochondria. Methods Mol Biol. 2006;313:373–83.

    CAS  PubMed  Google Scholar 

  49. Kao S-H, Wang W-L, Chen C-Y, Chang Y-L, Wu Y-Y, Wang Y-T, et al. Analysis of protein stability by the cycloheximide chase assay. Bio Protoc. 2015;5. https://doi.org/10.21769/BioProtoc.1374.

  50. Chae YC, Caino MC, Lisanti S, Ghosh JC, Dohi T, Danial NN, et al. Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s. Cancer Cell. 2012;22:331–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dong Z-W, Shao P, Diao L-T, Zhou H, Yu C-H, Qu L-H. RTL-P: a sensitive approach for detecting sites of 2’-O-methylation in RNA molecules. Nucleic Acids Res. 2012;40:e157.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lazarou M, McKenzie M, Ohtake A, Thorburn DR, Ryan MT. Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol Cell Biol. 2007;27:4228–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dieteren CE, Koopman WJ, Swarts HG, Peters JG, Maczuga P, van Gemst JJ, et al. Subunit-specific incorporation efficiency and kinetics in mitochondrial complex I homeostasis. J Biol Chem. 2012;287:41851–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Washizuka S, Iwamoto K, Kakiuchi C, Bundo M, Kato T. Expression of mitochondrial complex I subunit gene NDUFV2 in the lymphoblastoid cells derived from patients with bipolar disorder and schizophrenia. Neurosci Res. 2009;63:199–204.

    CAS  PubMed  Google Scholar 

  55. Washizuka S, Kakiuchi C, Mori K, Kunugi H, Tajima O, Akiyama T, et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder. Am J Med Genet. 2003;120:72–8.

    Google Scholar 

  56. De Rasmo D, Signorile A, Santeramo A, Larizza M, Lattanzio P, Capitanio G, et al. Intramitochondrial adenylyl cyclase controls the turnover of nuclear-encoded subunits and activity of mammalian complex I of the respiratory chain. Biochim Biophys Acta. 2015;1853:183–91.

    PubMed  Google Scholar 

  57. Haynes CM, Ron D. The mitochondrial UPR—protecting organelle protein homeostasis. J Cell Sci. 2010;123:3849–55.

    CAS  PubMed  Google Scholar 

  58. Rivadeneira DB, Caino MC, Seo JH, Angelin A, Wallace DC, Languino LR, et al. Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion. Sci Signal. 2015;8:ra80.

    PubMed  PubMed Central  Google Scholar 

  59. Motorin Y, Muller S, Behm-Ansmant I, Branlant C. Identification of modified residues in RNAs by reverse transcription-based methods. Methods Enzymol. 2007;425:21–53.

    CAS  PubMed  Google Scholar 

  60. Vilfan ID, Tsai Y-C, Clark TA, Wegener J, Dai Q, Yi C, et al. Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. J Nanobiotechnol. 2013;11:8.

    CAS  Google Scholar 

  61. Clay HB, Sillivan S, Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci. 2011;29:311–24.

    CAS  PubMed  Google Scholar 

  62. Telford JE, Kilbride SM, Davey GP. Complex I is rate-limiting for oxygen consumption in the nerve terminal. J Biol Chem. 2009;284:9109–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sazanov LA, Hinchliffe P. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science. 2006;311:1430–6.

    CAS  PubMed  Google Scholar 

  64. Sing A, Tsatskis Y, Fabian L, Hester I, Rosenfeld R, Serricchio M, et al. The atypical cadherin fat directly regulates mitochondrial function and metabolic state. Cell. 2014;158:1293–308.

    CAS  PubMed  Google Scholar 

  65. Oruganty-Das A, Ng T, Udagawa T, Goh ELKK, Richter JD. Translational control of mitochondrial energy production mediates neuron morphogenesis. Cell Metab. 2012;16:789–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen T, Wu Q, Zhang Y, Zhang D. NDUFV2 regulates neuronal migration in the developing cerebral cortex through modulation of the multipolar–bipolar transition. Brain Res. 2015;1625:102–10.

    CAS  PubMed  Google Scholar 

  67. Wu X-M, Yang C-Q, Mao Y-B, Wang L-J, Shangguan X-X, Chen X-Y. Targeting insect mitochondrial complex I for plant protection. Plant Biotechnol J. 2016;14:1925–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry. 2012;17:887–905.

  69. Washizuka S, Kametani M, Sasaki T, Tochigi M, Umekage T, Kohda K, et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with schizophrenia in the Japanese population. Am J Med Genet B Neuropsychiatr Genet. 2006;141:301–4.

    Google Scholar 

  70. Martin J, Mahlke K, Pfanner N. Role of an energized inner membrane in mitochondrial protein import. Delta psi drives the movement of presequences. J Biol Chem. 1991;266:18051–7.

    CAS  PubMed  Google Scholar 

  71. Rosenfeld M, Brenner-Lavie H, Ari SG, Kavushansky A, Ben-Shachar D. Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biol Psychiatry. 2011;69:980–8.

    CAS  PubMed  Google Scholar 

  72. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106-7:1–16.

    Google Scholar 

  73. Sirur A, Knott M, Best RB. Effect of interactions with the chaperonin cavity on protein folding and misfolding. Phys Chem Chem Phys. 2014;16:6358–66.

    CAS  PubMed  Google Scholar 

  74. Washizuka S, Iwamoto K, Kakiuchi C, Bundo M, Kato T. Expression of mitochondrial complex I subunit gene NDUFV2 in the lymphoblastoid cells derived from patients with bipolar disorder and schizophrenia. Neurosci Res. 2009;63:199–204.

    CAS  PubMed  Google Scholar 

  75. Zhang Z, Gerstein M. Large-scale analysis of pseudogenes in the human genome. Curr Opin Genet Dev. 2004;14:328–35.

    CAS  PubMed  Google Scholar 

  76. Matsumoto N, Laub F, Aldabe R, Zhang W, Ramirez F, Yoshida T, et al. Cloning the cDNA for a new human zinc finger protein defines a group of closely related Kruppel-like transcription factors. J Biol Chem. 1998;273:28229–37.

    CAS  PubMed  Google Scholar 

  77. Zhang Z, Harrison PM, Liu Y, Gerstein M. Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res. 2003;13:2541–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pei B, Sisu C, Frankish A, Howald C, Habegger L, Mu XJ, et al. The GENCODE pseudogene resource. Genome Biol. 2012;13:R51.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Pink RC, Wicks K, Caley DP, Punch EK, Jacobs L, Carter DRF. Pseudogenes: pseudo-functional or key regulators in health and disease? RNA. 2011;17:792–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature. 2008;453:534–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465:1033–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Chiefari E, Iiritano S, Paonessa F, Le Pera I, Arcidiacono B, Filocamo M, et al. Pseudogene-mediated posttranscriptional silencing of HMGA1 can result in insulin resistance and type 2 diabetes. Nat Commun. 2010;1:40.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Liat Linde, Ph.D., Dr. Nili Avidan, Ph.D., and Ronit Hod, Ph.D. from The Genomics Core Facility at the Rappaport Faculty of Medicine, Technion, for transcriptomic and data analysis services.

Funding

This study was supported by grants from the Israel Science Foundation-ISF (1295/11).

Author contributions

OB, RK, and DB-S conceived the experiments. OB, RK, and JM performed the experiments. OB and DB-S wrote the manuscript. DB-S secured funding. All authors contributed to and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorit Ben-Shachar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergman, O., Karry, R., Milhem, J. et al. NDUFV2 pseudogene (NDUFV2P1) contributes to mitochondrial complex I deficits in schizophrenia. Mol Psychiatry 25, 805–820 (2020). https://doi.org/10.1038/s41380-018-0309-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0309-9

This article is cited by

Search

Quick links