Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thyroid hormone influences brain gene expression programs and behaviors in later generations by altering germ line epigenetic information

Abstract

Genetic factors do not fully account for the relatively high heritability of neurodevelopmental conditions, suggesting that non-genetic heritable factors contribute to their etiology. To evaluate the potential contribution of aberrant thyroid hormone status to the epigenetic inheritance of neurological phenotypes, we examined genetically normal F2 generation descendants of mice that were developmentally overexposed to thyroid hormone due to a Dio3 mutation. Hypothalamic gene expression profiling in postnatal day 15 F2 descendants on the paternal lineage of ancestral male and female T3-overexposed mice revealed, respectively, 1089 and 1549 differentially expressed genes. A large number of them, 675 genes, were common to both sets, suggesting comparable epigenetic effects of thyroid hormone on both the male and female ancestral germ lines. Oligodendrocyte- and neuron-specific genes were strongly overrepresented among genes showing, respectively, increased and decreased expression. Altered gene expression extended to other brain regions and was associated in adulthood with decreased anxiety-like behavior, increased marble burying and reduced physical activity. The sperm of T3-overexposed male ancestors revealed significant hypomethylation of CpG islands associated with the promoters of genes involved in the early development of the central nervous system. Some of them were candidates for neurodevelopmental disorders in humans including Nrg3, Nrxn1, Gabrb3, Gabra5, Apba2, Grik3, Reln, Nsd1, Pcdh8, En1, and Elavl2. Thus, developmental levels of thyroid hormone influence the epigenetic information of the germ line, disproportionately affecting genes with critical roles in early brain development, and leading in future generations to disease-relevant alterations in postnatal brain gene expression and adult behavior.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gupta AR, State MW. Recent advances in the genetics of autism. Biol Psychiatry. 2007;61:429–37.

    PubMed  Google Scholar 

  2. Sullivan PF. The genetics of schizophrenia. PLoS Med. 2005;2:e212.

    PubMed  PubMed Central  Google Scholar 

  3. Butler MG, McGuire AB, Masoud H, Manzardo AM. Currently recognized genes for schizophrenia: high-resolution chromosome ideogram representation. Am J Med Genet B Neuropsychiatr Genet. 2016;171b:181–202.

    PubMed  Google Scholar 

  4. Sandin S, Lichtenstein P, Kuja-Halkola R, Hultman C, Larsson H, Reichenberg A. The heritability of Autism spectrum disorder. JAMA. 2017;318:1182–4.

    PubMed  PubMed Central  Google Scholar 

  5. de Zeeuw EL, van Beijsterveldt CEM, Hoekstra RA, Bartels M, Boomsma DI. The etiology of autistic traits in preschoolers: a population-based twin study. J Child Psychol Psychiatry. 2017;58:893–901.

    PubMed  Google Scholar 

  6. Tick B, Bolton P, Happe F, Rutter M, Rijsdijk F. Heritability of autism spectrum disorders: a meta-analysis of twin studies. J Child Psychol Psychiatry. 2016;57:585–95.

    PubMed  Google Scholar 

  7. Yip BHK, Bai D, Mahjani B, Klei L, Pawitan Y, Hultman CM et al. Heritable Variation, With Little or No Maternal Effect, Accounts for Recurrence Risk to Autism Spectrum Disorder in Sweden. Biol Psychiatry. 2018;83:589–97.

  8. Chen JA, Penagarikano O, Belgard TG, Swarup V, Geschwind DH. The emerging picture of autism spectrum disorder: genetics and pathology. Annu Rev Pathol. 2015;10:111–44.

    CAS  PubMed  Google Scholar 

  9. Huguet G, Benabou M, Bourgeron T The Genetics of Autism Spectrum Disorders. In: Sassone-Corsi P, Christen Y (eds). A Time for Metabolism and Hormones. Springer Copyright 2016, The Author(s). Cham (CH), 2016, pp 101–29.

  10. Bourgeron T. Current knowledge on the genetics of autism and propositions for future research. C R Biol. 2016;339:300–7.

    PubMed  Google Scholar 

  11. Ziats MN, Rennert OM. The evolving diagnostic and genetic landscapes of Autism spectrum disorder. Front Genet. 2016;7:65.

    PubMed  PubMed Central  Google Scholar 

  12. De Rubeis S, Buxbaum JD. Genetics and genomics of autism spectrum disorder: embracing complexity. Hum Mol Genet. 2015;24(R1):R24–31.

    PubMed  PubMed Central  Google Scholar 

  13. Persico AM, Bourgeron T. Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci. 2006;29:349–58.

    CAS  PubMed  Google Scholar 

  14. Kinney DK, Munir KM, Crowley DJ, Miller AM. Prenatal stress and risk for autism. Neurosci & Biobehav Rev. 2008;32:1519–32.

    Google Scholar 

  15. Molloy CA, Morrow AL, Meinzen-Derr J, Dawson G, Bernier R, Dunn M, et al. Familial autoimmune thyroid disease as a risk factor for regression in children with Autism Spectrum Disorder: a CPEA Study. J Autism & Dev Disord. 2006;36:317–24.

    Google Scholar 

  16. Dunaway KW, Islam MS, Coulson RL, Lopez SJ, Vogel Ciernia A, Chu RG, et al. Cumulative Impact of Polychlorinated Biphenyl and Large Chromosomal Duplications on DNA Methylation, Chromatin, and Expression of Autism Candidate Genes. Cell Rep. 2016;17:3035–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Vineis P, Pearce N. Missing heritability in genome-wide association study research. Nat Rev Genet. 2010;11:589.

    CAS  PubMed  Google Scholar 

  18. Shen X. The curse of the missing heritability. Front Genet. 2013;4:225.

    PubMed  PubMed Central  Google Scholar 

  19. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. [Review] [84 refs]. Nature. 2009;461:747–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Trerotola M, Relli V, Simeone P, Alberti S. Epigenetic inheritance and the missing heritability. Hum Genom. 2015;9:17.

    Google Scholar 

  21. Koch L. Disease genetics: insights into missing heritability. Nat Rev Genet. 2014;15:218.

    CAS  PubMed  Google Scholar 

  22. Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet. 2011;88:294–305. 88(3):294–305, 2011 Mar 11

    PubMed  PubMed Central  Google Scholar 

  23. Yuan TF, Li A, Sun X, Ouyang H, Campos C, Rocha NB et al. Transgenerational inheritance of paternal neurobehavioral phenotypes: stress, addiction, ageing and metabolism. Mol Neurobiol. 2016;53:6367–76.

  24. Bohacek J, Mansuy IM. Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nat Rev Genet. 2015;16:641–52.

    CAS  PubMed  Google Scholar 

  25. Wei Y, Yang CR, Wei YP, Zhao ZA, Hou Y, Schatten H, et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci USA. 2014;111:1873–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Skinner MK, Guerrero-Bosagna C, Haque M, Nilsson E, Bhandari R, McCarrey JR. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line. PLoS ONE. 2013;8:e66318.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bernal J. Thyroid hormones and brain development. Vitam & Horm. 2005;71:95–122.

    CAS  Google Scholar 

  28. Refetoff S, Weiss RE, Usala S. The syndromes of resistance to thyroid hormones. Endo Rev. 1993;14:348–99.

    CAS  Google Scholar 

  29. Kempers MJE, van Tijn DA, van Trotsenburg ASP, de Vijlder JJM, Wiedijk BM. Central congenital hypothyroidism due to gestational hyperthyroidism: detection where prevention failed. J Clin Endocrinol Metab. 2003;88:5851–7.

    CAS  PubMed  Google Scholar 

  30. Boelaert K, Newby PR, Simmonds MJ, Holder RL, Carr-Smith JD, Heward JM, et al. Prevalence and relative risk of other autoimmune diseases in subjects with autoimmune thyroid disease. Am J Med. 2010;123:183.e181–189.

    Google Scholar 

  31. McLachlan SM, Rapoport B. Breaking tolerance to thyroid antigens: changing concepts in thyroid autoimmunity. Endocr Rev. 2014;35:59–105.

    CAS  PubMed  Google Scholar 

  32. Giera S, Bansal R, Ortiz-Toro TM, Taub DG, Zoeller RT. Individual polychlorinated biphenyl (PCB) congeners produce tissue- amd genespecific effects on thyroid hormone signaling during development. Endocrinology. 2011;152:2909–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bansal R, Tighe D, Danai A, Rawn DF, Gaertner DW, Arnold DL, et al. Polybrominated diphenyl ether (DE-71) interferes with thyroid hormone action independent of effects on circulating levels of thyroid hormone in male rats. Endocrinology. 2014;155:4104–12.

    PubMed  PubMed Central  Google Scholar 

  34. Legrand J. Effects of thyroid hormones on central nervous system development. In: Yanai J, (ed). Neurobehavioral Teratology.. New York: Elsevier; 1984. p. 331–63.

    Google Scholar 

  35. Calvo R, Obregón MJ, Ruiz de Ona C, Escobar del Rey F, de Escobar GM. Congenital hypothyroidism, as studied in rats: crucial role of maternal thyroxine but not 3,5,3’-triiodothyronine in the protection of the fetal brain. J Clin Invest. 1990;86:889–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Crawford S, van Baar AL, Brouwers EP, Pop VJ. Neonatal effects of maternal hypothyroxinemia during early pregnancy. Pediatrics. 2006;117:161–7.

    PubMed  Google Scholar 

  37. Reuss ML, Paneth N, Pinto-Martin JA, Lorenz JM, Susser M. The relation of transient hypothyroxinemia in preterm infants to neurologic development at two years of age. N Eng J Med. 1996;334:821–7.

    CAS  Google Scholar 

  38. Andersen SL, Laurberg P, Wu CS, Olsen J. Attention deficit hyperactivity disorder and autism spectrum disorder in children born to mothers with thyroid dysfunction: a Danish nationwide cohort study. BJOG. 2014;121:1365–74.

    CAS  PubMed  Google Scholar 

  39. Khan A, Harney JW, Zavacki AM, Sajdel-Sulkowska EM. Disrupted brain thyroid hormone homeostasis and altered thyroid hormone-dependent brain gene expression in autism spectrum disorders. J Physiol Pharmacol. 2014;65:257–72.

    CAS  PubMed  Google Scholar 

  40. Sadamatsu M, Kanai H, Xu X, Liu Y, Kato N. Review of animal models for autism: implication of thyroid hormone. Congenit Anom (Kyoto). 2006;46:1–9.

    CAS  Google Scholar 

  41. Gyllenberg D, Sourander A, Surcel HM, Hinkka-Yli-Salomaki S, McKeague IW, Brown ASHypothyroxinemiaDuringGestation. and Offspring Schizophrenia in a National Birth Cohort. Biol Psychiatry. 2016;79:962–70.

    CAS  PubMed  Google Scholar 

  42. Modesto T, Tiemeier H, Peeters RP, Jaddoe VW, Hofman A, Verhulst FC, et al. Maternal Mild Thyroid Hormone Insufficiency in Early Pregnancy and Attention-Deficit/Hyperactivity Disorder Symptoms in Children. JAMA Pediatr. 2015;169:838–45.

    PubMed  Google Scholar 

  43. Bakke JL, Lawrence NL, Robinson S, Bennett J. Observations on the untreated progeny of hypothyroid male rats. Metab: Clin & Exp. 1976;25:437–44.

    CAS  Google Scholar 

  44. Bakke JL, Lawrence NL, Robinson S, Bennett J. Endocrine studies in the untreated F1 and F2 progeny of rats treated neonatally with thyroxine. Biol Neonate. 1977;31:71–83.

    CAS  PubMed  Google Scholar 

  45. Tunc-Ozcan E, Wert SL, Lim PH, Ferreira A, Redei EE. Hippocampus-dependent memory and allele-specific gene expression in adult offspring of alcohol-consuming dams after neonatal treatment with thyroxin or metformin. Mol Psychiatry. 2018;23:1643–51.

  46. Tunc-Ozcan E, Harper KM, Graf EN, Redei EE. Thyroxine administration prevents matrilineal intergenerational consequences of in utero ethanol exposure in rats. Horm Behav. 2016;82:1–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hernandez A, Martinez ME, Fiering S, Galton VA, St Germain D. Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Investig. 2006;116:476–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hernandez A. Structure and function of the type 3 deiodinase gene. Thyroid: Off J Am Thyroid Assoc. 2005;15:865–74.

    CAS  Google Scholar 

  49. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci: Off J Soc Neurosci. 2014;34:11929–47.

    CAS  Google Scholar 

  50. Osborne JD, Flatow J, Holko M, Lin SM, Kibbe WA, Zhu LJ, et al. Annotating the human genome with Disease Ontology. BMC Genom. 2009;10(Suppl 1):S6.

    Google Scholar 

  51. Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics. 2007;23:257–8.

    CAS  PubMed  Google Scholar 

  52. Du P, Feng G, Flatow J, Song J, Holko M, Kibbe WA, et al. From disease ontology to disease-ontology lite: statistical methods to adapt a general-purpose ontology for the test of gene-ontology associations. Bioinformatics. 2009;25:i63–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4:P3.

    PubMed  Google Scholar 

  54. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    PubMed  Google Scholar 

  55. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.

    PubMed  Google Scholar 

  56. Martinez ME, Charalambous M, Saferali A, Fiering S, Naumova AK, St Germain D, et al. Genomic imprinting variations in the mouse type 3 deiodinase gene between tissues and brain regions. Mol Endocrinol. 2014;28:1875–86.

    PubMed  PubMed Central  Google Scholar 

  57. Hernandez A, Fiering S, Martinez E, Galton VA, St Germain D. The gene locus encoding iodothyronine deiodinase type 3 (Dio3) is imprinted in the fetus and expresses antisense transcripts. Endocrinology. 2002;143:4483–6.

    CAS  PubMed  Google Scholar 

  58. Tsai C, Lin SP, Ito M, Takagi N, Ferguson-Smith ST, Genomic AC. Imprinting contributes to thyroid hormone metabolism in the mouse embryo. Curr Biol. 2002;12:1221–6.

    CAS  PubMed  Google Scholar 

  59. Sittig LJ, Herzing LBK, Shukla PK, Redei EE. Parent-of-origin allelic contributions to deiodinase-3 expression elicit localized hyperthyroid milieu in the hippocampus. Mol Psychiatry. 2011;16:786–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ueta CintiaB, Behzad, Oskouei N, Jose ELO. R Pinto, Mayrin M Correa, Gordana Simovic, Warner S Simonides, Joshua M Hare, Antonio C Bianco. Absence of myocardial thyroid hormone inactivating deiodinase results in restrictive cardiomyopathy in mice. Mol Endocrinol. 2012;26:809–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Barez-Lopez S, Obregon MJ, Bernal J, Guadano-Ferraz A. Thyroid hormone economy in the perinatal mouse brain: implications for cerebral cortex development. Cereb Cortex. 2018;28:1783–93.

    PubMed  Google Scholar 

  62. Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, et al. A map of the cis-regulatory sequences in the mouse genome. Nature. 2012;488:116–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chatonnet F, Flamant F, Morte B. A temporary compendium of thyroid hormone target genes in brain. Biochim Biophys Acta. 2015;1849:122–9.

    CAS  PubMed  Google Scholar 

  64. Hernandez A, Quignodon L, Martinez ME, Flamant F, St. Germain DL. Type 3 deiodinase deficiency causes spatial an temporal alterations in brain T3 signaling that are dissociated from serum thyroid hormone levels. Endocrinology. 2010;151:5550–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Stohn JP, Martinez ME, Hernandez A. Decreased anxiety- and depression-like behaviors and hyperactivity in a type 3 deiodinase-deficient mouse showing brain thyrotoxicosis and peripheral hypothyroidism. Psychoneuroendocrinology. 2016;74:46–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Martinez ME, Karaczyn A, Stohn JP, Donnelly WT, Croteau W, Peeters RP, et al. The Type 3 deiodinase is a critical determinant of appropriate thyroid hormone action in the developing testis. Endocrinology. 2016;157:1276–88.

    PubMed  PubMed Central  Google Scholar 

  67. Pascual A, Aranda A. Thyroid hormone receptors, cell growth and differentiation. Biochim Biophys Acta. 2013;1830:3908–16.

    CAS  PubMed  Google Scholar 

  68. Kyono Y, Subramani A, Ramadoss P, Hollenberg AN, Bonett RM, Denver RJ. Liganded thyroid hormone receptors transactivate the DNA methyltransferase 3a gene in mouse neuronal cells. Endocrinology. 2016;157:3647–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fonseca TL, Fernandes GW, McAninch EA, Bocco BM, Abdalla SM, Ribeiro MO, et al. Perinatal deiodinase 2 expression in hepatocytes defines epigenetic susceptibility to liver steatosis and obesity. Proc Natl Acad Sci USA. 2015;112:14018–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Amador-Arjona A, Cimadamore F, Huang CT, Wright R, Lewis S, Gage FH, et al. SOX2 primes the epigenetic landscape in neural precursors enabling proper gene activation during hippocampal neurogenesis. Proc Natl Acad Sci USA. 2015;112:E1936–1945.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lopez-Juarez A, Remaud S, Hassani Z, Jolivet P, Pierre Simons J, Sontag T, et al. Thyroid hormone signaling acts as a neurogenic switch by repressing Sox2 in the adult neural stem cell niche. Cell Stem Cell. 2012;10:531–43.

    CAS  PubMed  Google Scholar 

  72. Memic F, Knoflach V, Sadler R, Tegerstedt G, Sundstrom E, Guillemot F, et al. Ascl1 Is required for the development of specific neuronal subtypes in the enteric nervous system. J Neurosci: Off J Soc Neurosci. 2016;36:4339–50.

    CAS  Google Scholar 

  73. Gulacsi AA, Anderson SA. Beta-catenin-mediated Wnt signaling regulates neurogenesis in the ventral telencephalon. Nat Neurosci. 2008;11:1383–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mozzi A, Guerini FR, Forni D, Costa AS, Nemni R, Baglio F, et al. REST, a master regulator of neurogenesis, evolved under strong positive selection in humans and in non human primates. Sci Rep. 2017;7:9530.

    PubMed  PubMed Central  Google Scholar 

  75. Bianco AC. Minireview: cracking the metabolic code for thyroid hormone signaling. Endocrinology. 2011;152:3306–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Remaud S, Ortiz FC, Perret-Jeanneret M, Aigrot MS, Gothie JD, Fekete C et al. Transient hypothyroidism favors oligodendrocyte generation providing functional remyelination in the adult mouse brain. Elife 2017; 6. e29996.

Download references

Acknowledgements

We are grateful to Joseph Nadeau for his critical review of the manuscript and to Amanda Drake for technical advice. This study was supported by grants MH096050 and DK095908 from the National Institute of Mental Health and National Institute of Diabetes, Digestive and Kidney Diseases, respectively. This work used the Confocal Microscopy Core, the Histopathology Core, the Physiology Core and the Molecular Phenotyping Core at Maine Medical Center Research Institute, that are supported by grants P30GM106391, P30GM103392, P20GM121301, and U54GM115516 from the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Hernandez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, M.E., Duarte, C.W., Stohn, J.P. et al. Thyroid hormone influences brain gene expression programs and behaviors in later generations by altering germ line epigenetic information. Mol Psychiatry 25, 939–950 (2020). https://doi.org/10.1038/s41380-018-0281-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0281-4

This article is cited by

Search

Quick links