Abstract

Neuroticism has been shown to act as an important risk factor for major depressive disorder (MDD). Genetic and neuroimaging research has independently revealed biological correlates of neurotic personality including cortical alterations in brain regions of high relevance for affective disorders. Here we investigated the influence of a polygenic score for neuroticism (PGS) on cortical brain structure in a joint discovery sample of n = 746 healthy controls (HC) and n = 268 MDD patients. Findings were validated in an independent replication sample (n = 341 HC and n = 263 MDD). Subgroup analyses stratified for case-control status and analyses of associations between neurotic phenotype and cortical measures were carried out. PGS for neuroticism was significantly associated with a decreased cortical surface area of the inferior parietal cortex, the precuneus, the rostral cingulate cortex and the inferior frontal gyrus in the discovery sample. Similar associations between PGS and surface area of the inferior parietal cortex and the precuneus were demonstrated in the replication sample. Subgroup analyses revealed negative associations in the latter regions between PGS and surface area in both HC and MDD subjects. Neurotic phenotype was negatively correlated with surface area in similar cortical regions including the inferior parietal cortex and the precuneus. No significant associations between PGS and cortical thickness were detected. The morphometric overlap of associations between both PGS and neurotic phenotype in similar cortical regions closely related to internally focused cognition points to the potential relevance of genetically shaped cortical alterations in the development of neuroticism.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Lahey BB. Public health significance of neuroticism. Am Psychol. 2009;64:241–56.

  2. 2.

    Kendler KS, Gatz M, Gardner CO, Pedersen NL. Personality and Major Depression. Arch Gen Psychiatry. 2006;63:1113.

  3. 3.

    Navrady LB, Adams MJ, Chan SWY, Ritchie SJ, McIntosh AM, McIntosh AM. Genetic risk of major depressive disorder: the moderating and mediating effects of neuroticism and psychological resilience on clinical and self-reported depression. Psychol Med. 2018;48:1890–1899.

  4. 4.

    de Moor MHM, van den Berg SM, Verweij KJH, Krueger RF, Luciano M, Arias Vasquez A, et al. Meta-analysis of genome-wide association studies for neuroticism, and the polygenic association with major depressive disorder. JAMA Psychiatry. 2015;72:642.

  5. 5.

    Smith DJ, Escott-Price V, Davies G, Bailey MES, Colodro-Conde L, Ward J, et al. Genome-wide analysis of over 106000 individuals identifies 9 neuroticism-associated loci. Mol Psychiatry. 2016;21:749–57.

  6. 6.

    Okbay A, Baselmans BML, De Neve J-E, Turley P, Nivard MG, Fontana MA, et al. Genetic variants associated with subjective well-being, depressive symptoms and neuroticism identified through genome-wide analyses. Nat Genet. 2016;48:624–33.

  7. 7.

    Gale CR, Hagenaars SP, Davies G, Hill WD, Liewald DCM, Cullen B, et al. Pleiotropy between neuroticism and physical and mental health: findings from 108038 men and women in UK Biobank. Transl Psychiatry. 2016;6:e791–e791.

  8. 8.

    Docherty AR, Moscati A, Peterson R, Edwards AC, Adkins DE, Bacanu SA, et al. SNP-based heritability estimates of the personality dimensions and polygenic prediction of both neuroticism and major depression: findings from CONVERGE. Transl Psychiatry. 2016;6:e926–e926.

  9. 9.

    Middeldorp CM, de Moor MHM, McGrath LM, Gordon SD, Blackwood DH, Costa PT, et al. The genetic association between personality and major depression or bipolar disorder. A polygenic score analysis using genome-wide association data. Transl Psychiatry. 2011;1:e50.

  10. 10.

    Takahashi H, Craig AM. Protein tyrosine phosphatases PTPδ, PTPσ, and LAR: presynaptic hubs for synapse organization. Trends Neurosci. 2013;36:522–34.

  11. 11.

    Fournier JC, Chase HW, Greenberg T, Etkin A, Almeida JR, Stiffler R, et al. Neuroticism and individual differences in neural function in unmedicated major depression: findings from the EMBARC Study. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2:138–48.

  12. 12.

    Deng Y, Li S, Zhou R, Walter M. Motivation but not valence modulates neuroticism-dependent cingulate cortex and insula activity. Hum Brain Mapp. 2018;39:1664–72. https://doi.org/10.1002/hbm.23942

  13. 13.

    Servaas MN, van der Velde J, Costafreda SG, Horton P, Ormel J, Riese H, et al. Neuroticism and the brain: a quantitative meta-analysis of neuroimaging studies investigating emotion processing. Neurosci Biobehav Rev. 2013;37:1518–29.

  14. 14.

    Schultz CC, Warziniak H, Koch K, Schachtzabel C, Güllmar D, Reichenbach JR, et al. High levels of neuroticism are associated with decreased cortical folding of the dorsolateral prefrontal cortex. Eur Arch Psychiatry Clin Neurosci. 2017;267:579–84.

  15. 15.

    Kapogiannis D, Sutin A, Davatzikos C, Costa P, Resnick S. The five factors of personality and regional cortical variability in the baltimore longitudinal study of aging. Hum Brain Mapp. 2013;34:2829–40.

  16. 16.

    Lu F, Huo Y, Li M, Chen H, Liu F, Wang Y, et al. Relationship between personality and gray matter volume in healthy young adults: a voxel-based morphometric study. PLoS ONE. 2014;9:e88763.

  17. 17.

    Riccelli R, Toschi N, Nigro S, Terracciano A, Passamonti L. Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality. Soc Cogn Affect Neurosci. 2017;12:nsw175.

  18. 18.

    Price JL, Drevets WC. Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci. 2012;16:61–71.

  19. 19.

    Rive MM, van Rooijen G, Veltman DJ, Phillips ML, Schene AH, Ruhé HG. Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neurosci Biobehav Rev. 2013;37:2529–53.

  20. 20.

    Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry. 2003;54:515–28.

  21. 21.

    Chang M, Womer FY, Edmiston EK, Bai C, Zhou Q, Jiang X, et al. Neurobiological commonalities and distinctions among three major psychiatric diagnostic categories: A Structural MRI Study. Schizophr Bull. 2018;44:65–74.

  22. 22.

    Wittchen H-U, Wunderlich U, Gruschwitz S, Zaudig M. SKID-I. Strukturiertes Klinisches Interview für DSM-IV. Hogrefe: Göttingen, 1997.

  23. 23.

    Beck AT, Steer RA. Beck Depression Inventory: manual. The Psychological Corporation, Harcourt Brace Jovanovich.: San Antonio, 1987.

  24. 24.

    Costa PT, McCrae RR Revised NEO Personality Inventory (NEO-PI-RTM) and NEO Five Factor Inventory (NEO-FFI): Professional manual. Psychological Assessment Resources: Odessa, FL, 1992.

  25. 25.

    Dannlowski U, Grabe HJ, Wittfeld K, Klaus J, Konrad C, Grotegerd D, et al. Multimodal imaging of a tescalcin (TESC)-regulating polymorphism (rs7294919)-specific effects on hippocampal gray matter structure. Mol Psychiatry. 2015;20:398–404.

  26. 26.

    Opel N, Redlich R, Kaehler C, Grotegerd D, Dohm K, Heindel W, et al. Prefrontal gray matter volume mediates genetic risks for obesity. Mol Psychiatry. 2017;22:703–10.

  27. 27.

    Vogelbacher C, Möbius TWD, Sommer J, Schuster V, Dannlowski U, Kircher T, et al. The Marburg-Münster Affective Disorders Cohort Study (MACS): a quality assurance protocol for MR neuroimaging data. Neuroimage. 2018;172:450–60.

  28. 28.

    Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

  29. 29.

    Krug A, Dietsche B, Zöllner R, Yüksel D, Nöthen MM, Forstner AJ et al. Polygenic risk for schizophrenia affects working memory and its neural correlates in healthy subjects. Schizophr Res. 2018; 0. https://doi.org/10.1016/j.schres.2018.01.013.

  30. 30.

    Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

  31. 31.

    Benjamini Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.

  32. 32.

    Schmaal L, Hibar DP, Sämann PG, Hall GB, Baune BT, Jahanshad N, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry. 2017;22:900–9.

  33. 33.

    Karsten J, Penninx BWJH, Riese H, Ormel J, Nolen WA, Hartman CA. The state effect of depressive and anxiety disorders on big five personality traits. J Psychiatr Res. 2012;46:644–50.

  34. 34.

    Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex. 2009;19:2728–35.

  35. 35.

    Eyler LT, Chen C-H, Panizzon MS, Fennema-Notestine C, Neale MC, Jak A, et al. A comparison of heritability maps of cortical surface area and thickness and the influence of adjustment for whole brain measures: a magnetic resonance imaging twin study. Twin Res Hum Genet. 2012;15:304–14.

  36. 36.

    Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage. 2010;53:1135–46.

  37. 37.

    Buckner RL, Andrews-Hanna JR, Schacter DL. The Brain’s Default Network. Ann N Y Acad Sci. 2008;1124:1–38.

  38. 38.

    Driver J, Noesselt T. Multisensory interplay reveals crossmodal influences on ‘Sensory-Specific’ brain regions, neural responses, and judgments. Neuron. 2008;57:11–23.

  39. 39.

    Perkins AM, Arnone D, Smallwood J, Mobbs D. Thinking too much: self-generated thought as the engine of neuroticism. Trends Cogn Sci. 2015;19:492–8.

  40. 40.

    Zhang S, Li C-SR. Functional clustering of the human inferior parietal lobule by whole-brain connectivity mapping of resting-state functional magnetic resonance imaging signals. Brain Connect. 2014;4:53–69.

  41. 41.

    Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB, et al. Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci USA. 2009;106:20069–74.

  42. 42.

    Kircher TT, Senior C, Phillips ML, Benson PJ, Bullmore ET, Brammer M, et al. Towards a functional neuroanatomy of self processing: effects of faces and words. Brain Res Cogn Brain Res. 2000;10:133–44.

  43. 43.

    Opel N, Zwanzger P, Redlich R, Grotegerd D, Dohm K, Arolt V, et al. Differing brain structural correlates of familial and environmental risk for major depressive disorder revealed by a combined VBM/pattern recognition approach. Psychol Med. 2016;46:277–90.

  44. 44.

    Dannlowski U, Stuhrmann A, Beutelmann V, Zwanzger P, Lenzen T, Grotegerd D, et al. Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol Psychiatry. 2012;71:286–93.

  45. 45.

    Redlich R, Almeida JJR, Grotegerd D, Opel N, Kugel H, Heindel W, et al. Brain morphometric biomarkers distinguishing unipolar and bipolar depression. JAMA Psychiatry. 2014;71:1222.

Download references

Acknowledgements

This work was funded by the German Research Foundation (DFG, grant FOR2107 DA1151/5–1 and DA1151/5–2 to UD; SFB-TRR58, Projects C09 and Z02 to UD; FOR2107 KR3822/7–2, KO4291/3–1, and KR3822/5–1 to AK; JA1890/7–1 and JA1890/7–2 to AJ; NE2254/1-2 to IN; RI908/11-2 to MR; NO246/10-2 to MMN; HA7070/2-2 to TH; KI588/14-1 and KI588/14-2 to TK) and the Interdisciplinary Center for Clinical Research (IZKF) of the medical faculty of Münster (grant Dan3/012/17 to UD) and the Deanery of the Medical Faculty of the University of Münster.

Author information

Author notes

  1. These authors contributed equally: Bernhard T. Baune, Udo Dannlowski.

Affiliations

  1. Department of Psychiatry, University of Münster, Münster, Germany

    • Nils Opel
    • , Ronny Redlich
    • , Jonathan Repple
    • , Claas Kaehler
    • , Dominik Grotegerd
    • , Katharina Dohm
    • , Dario Zaremba
    • , Elisabeth J. Leehr
    • , Joscha Böhnlein
    • , Katharina Förster
    • , Christian Bürger
    • , Susanne Meinert
    • , Verena Enneking
    • , Daniel Emden
    • , Ramona Leenings
    • , Nils Winter
    • , Tim Hahn
    • , Volker Arolt
    •  & Udo Dannlowski
  2. Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, Australia

    • Azmeraw T. Amare
    •  & Bernhard T. Baune
  3. South Australian Academic Health Science and Translation Centre, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia

    • Azmeraw T. Amare
  4. Department of Mathematics and Computer Science, University of Münster, Münster, Germany

    • Claas Kaehler
  5. Institute of Clinical Radiology, University of Münster, Münster, Germany

    • Walter Heindel
    •  & Jochen Bauer
  6. Department of Psychiatry, University of Marburg, Marburg, Germany

    • David Wilhelms
    • , Simon Schmitt
    • , Andreas Jansen
    • , Axel Krug
    • , Igor Nenadic
    •  & Tilo Kircher
  7. Department of Genetic Epidemiology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany

    • Marcella Rietschel
    •  & Stephanie Witt
  8. Institute of Human Genetics, University of Bonn, Bonn, Germany; Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany

    • Andreas J. Forstner
    •  & Markus M. Nöthen
  9. Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia

    • Bernhard T. Baune

Authors

  1. Search for Nils Opel in:

  2. Search for Azmeraw T. Amare in:

  3. Search for Ronny Redlich in:

  4. Search for Jonathan Repple in:

  5. Search for Claas Kaehler in:

  6. Search for Dominik Grotegerd in:

  7. Search for Katharina Dohm in:

  8. Search for Dario Zaremba in:

  9. Search for Elisabeth J. Leehr in:

  10. Search for Joscha Böhnlein in:

  11. Search for Katharina Förster in:

  12. Search for Christian Bürger in:

  13. Search for Susanne Meinert in:

  14. Search for Verena Enneking in:

  15. Search for Daniel Emden in:

  16. Search for Ramona Leenings in:

  17. Search for Nils Winter in:

  18. Search for Tim Hahn in:

  19. Search for Walter Heindel in:

  20. Search for Jochen Bauer in:

  21. Search for David Wilhelms in:

  22. Search for Simon Schmitt in:

  23. Search for Andreas Jansen in:

  24. Search for Axel Krug in:

  25. Search for Igor Nenadic in:

  26. Search for Marcella Rietschel in:

  27. Search for Stephanie Witt in:

  28. Search for Andreas J. Forstner in:

  29. Search for Markus M. Nöthen in:

  30. Search for Tilo Kircher in:

  31. Search for Volker Arolt in:

  32. Search for Bernhard T. Baune in:

  33. Search for Udo Dannlowski in:

Conflict of interest

All authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Udo Dannlowski.

Electronic supplementary material

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/s41380-018-0236-9