Cigarette smoking during pregnancy is a major public health concern. While there are well-described consequences in early child development, there is very little known about the effects of maternal smoking on human cortical biology during prenatal life. We therefore performed a genome-wide differential gene expression analysis using RNA sequencing (RNA-seq) on prenatal (N = 33; 16 smoking-exposed) as well as adult (N = 207; 57 active smokers) human postmortem prefrontal cortices. Smoking exposure during the prenatal period was directly associated with differential expression of 14 genes; in contrast, during adulthood, despite a much larger sample size, only two genes showed significant differential expression (FDR < 10%). Moreover, 1,315 genes showed significantly different exposure effects between maternal smoking during pregnancy and direct exposure in adulthood (FDR < 10%)—these differences were largely driven by prenatal differences that were enriched for pathways previously implicated in addiction and synaptic function. Furthermore, prenatal and age-dependent differentially expressed genes were enriched for genes implicated in non-syndromic autism spectrum disorder (ASD) and were differentially expressed as a set between patients with ASD and controls in postmortem cortical regions. These results underscore the enhanced sensitivity to the biological effect of smoking exposure in the developing brain and offer insight into how maternal smoking during pregnancy affects gene expression in the prenatal human cortex. They also begin to address the relationship between in utero exposure to smoking and the heightened risks for the subsequent development of neuropsychiatric disorders.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    WHO. WHO Report on the Global Tobacco Epidemic, 2011: Warning About the Dangers of Tobacco. Geneva, Switzerland: World Health Organization; 2011.

  2. 2.

    The Health Consequences of Smoking - 50 Years of Progress: A Report of the Surgeon General National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. Atlanta (GA): Centers for Disease Control and Prevention (US); 2014

  3. 3.

    Niemela, S., Sourander, A., Surcel, H. M., Hinkka-Yli-Salomaki, S., McKeague, I. W., Cheslack-Postava, K. et al. Prenatal nicotine exposure and risk of schizophrenia among offspring in a national birth cohort. Am J Psychiatry. 2016;173:799–806. https://doi.org/10.1176/appi.ajp.2016.15060800.

  4. 4.

    Biederman J, Martelon M, Woodworth KY, Spencer TJ, Faraone SV. Is maternal smoking during pregnancy a risk factor for cigarette smoking in offspring? A longitudinal controlled study of ADHD children grown up. J Atten Disord. 2014;21:975–85. https://doi.org/10.1177/1087054714557357.

  5. 5.

    Melchior, M., Hersi, R., van der Waerden, J., Larroque, B., Saurel-Cubizolles, M. J., Chollet, A. et al. Maternal tobacco smoking in pregnancy and children’s socio-emotional development at age 5: The EDEN mother-child birth cohort study. Eur Psychiatry: J Assoc Eur Psychiatr. 2015;30:562–8. https://doi.org/10.1016/j.eurpsy.2015.03.005.

  6. 6.

    Talati A, Wickramaratne PJ, Wesselhoeft R, Weissman MM. Prenatal tobacco exposure, birthweight, and offspring psychopathology. Psychiatry Res. 2017;252:346–52. https://doi.org/10.1016/j.psychres.2017.03.016.

  7. 7.

    Holbrook BD. The effects of nicotine on human fetal development. Birth defects research. Part C, Embryo Today: Rev. 2016;108:181–92. https://doi.org/10.1002/bdrc.21128.

  8. 8.

    Curtin SC, Matthews TJ. Smoking prevalence and cessation before and during pregnancy: data from the birth certificate, 2014. Natl Vital Stat Rep: Cent Dis Control Prev, Natl Cent Health Stat, Natl Vital Stat Syst. 2016;65:1–14.

  9. 9.

    Stathopoulou A, Beratis IN, Beratis S. Prenatal tobacco smoke exposure, risk of schizophrenia, and severity of positive/negative symptoms. Schizophr Res. 2013;148:105–10. https://doi.org/10.1016/j.schres.2013.04.031.

  10. 10.

    Liao C-Y, Chen Y-J, Lee J-F, Lu C-L, Chen C-H. Cigarettes and the developing brain: picturing nicotine as a neuroteratogen using clinical and preclinical studies. Tzu Chi Med J. 2012;24:157–61. https://doi.org/10.1016/j.tcmj.2012.08.003.

  11. 11.

    Thapar, A., Fowler, T., Rice, F., Scourfield, J., van den Bree, M., Thomas, H. et al. Maternal smoking during pregnancy and attention deficit hyperactivity disorder symptoms in offspring. Am J Psychiatry. 2003;160:1985–9. https://doi.org/10.1176/appi.ajp.160.11.1985.

  12. 12.

    Nomura Y, Marks DJ, Halperin JM. Prenatal exposure to maternal and paternal smoking on attention deficit hyperactivity disorders symptoms and diagnosis in offspring. J Nerv Ment Dis. 2010;198:672–8. https://doi.org/10.1097/NMD.0b013e3181ef3489.

  13. 13.

    Joelsson, P., Chudal, R., Talati, A., Suominen, A., Brown, A. S. & Sourander, A.Prenatal smoking exposure and neuropsychiatric comorbidity of ADHD: a finnish nationwide population-based cohort study. BMC Psychiatry. 2016;16:306 https://doi.org/10.1186/s12888-016-1007-2.

  14. 14.

    Motlagh, M. G., Katsovich, L., Thompson, N., Lin, H., Kim, Y. S., Scahill, L. et al. Severe psychosocial stress and heavy cigarette smoking during pregnancy: an examination of the pre- and perinatal risk factors associated with ADHD and Tourette syndrome. Eur Child & Adolesc Psychiatry. 2010;19:755–64. https://doi.org/10.1007/s00787-010-0115-7.

  15. 15.

    Browne, H. A., Modabbernia, A., Buxbaum, J. D., Hansen, S. N., Schendel, D. E., Parner, E. T. et al. Prenatal maternal smoking and increased risk for Tourette syndrome and chronic tic disorders. J Am Acad Child Adolesc Psychiatry. 2016;55:784–91. https://doi.org/10.1016/j.jaac.2016.06.010.

  16. 16.

    Leivonen, S., Chudal, R., Joelsson, P., Ekblad, M., Suominen, A., Brown, A. S. et al. Prenatal maternal smoking and Tourette syndrome: a nationwide register study. Child Psychiatry Hum Dev. 2016;47:75–82. https://doi.org/10.1007/s10578-015-0545-z.

  17. 17.

    Wehby GL, Prater K, McCarthy AM, Castilla EE, Murray JC. The impact of maternal smoking during pregnancy on early child neurodevelopment. J Human Capital. 2011;5:207–54. https://doi.org/10.1086/660885.

  18. 18.

    Polanska K, Jurewicz J, Hanke W. Smoking and alcohol drinking during pregnancy as the risk factors for poor child neurodevelopment - A review of epidemiological studies. Int J Occup Med Environ Health. 2015;28:419–43. https://doi.org/10.13075/ijomeh.1896.00424.

  19. 19.

    Jung Y, Lee AM, McKee SA, Picciotto MR. Maternal smoking and autism spectrum disorder: meta-analysis with population smoking metrics as moderators. Sci Rep. 2017;7:4315 https://doi.org/10.1038/s41598-017-04413-1.

  20. 20.

    Joubert, B. R., Haberg, S. E., Nilsen, R. M., Wang, X., Vollset, S. E., Murphy, S. K. et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120:1425–31. https://doi.org/10.1289/ehp.1205412.

  21. 21.

    Joubert, B. R., Felix, J. F., Yousefi, P., Bakulski, K. M., Just, A. C., Breton, C. et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98:680–96. https://doi.org/10.1016/j.ajhg.2016.02.019.

  22. 22.

    Kawashima, A., Koide, K., Ventura, W., Hori, K., Takenaka, S., Maruyama, D. et al. Effects of maternal smoking on the placental expression of genes related to angiogenesis and apoptosis during the first trimester. PLoS One. 2014;9:e106140. https://doi.org/10.1371/journal.pone.0106140.

  23. 23.

    Chatterton, Z., Hartley, B. J., Seok, M. H., Mendelev, N., Chen, S., Milekic, M. et al. In utero exposure to maternal smoking is associated with DNA methylation alterations and reduced neuronal content in the developing fetal brain. Epigenetics & Chromatin. 2017;10:4. https://doi.org/10.1186/s13072-017-0111-y.

  24. 24.

    Betancur C, Sakurai T, Buxbaum JD. The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders. Trends Neurosci. 2009;32:402–12. https://doi.org/10.1016/j.tins.2009.04.003.

  25. 25.

    Tsai, N. P., Wilkerson, J. R., Guo, W., Maksimova, M. A., DeMartino, G. N., Cowan, C. W. et al. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell. 2012;151:1581–94. https://doi.org/10.1016/j.cell.2012.11.040.

  26. 26.

    Park S, Frisen J, Barbacid M. Aberrant axonal projections in mice lacking EphA8 (Eek) tyrosine protein kinase receptors. EMBO J. 1997;16:3106–14. https://doi.org/10.1093/emboj/16.11.3106.

  27. 27.

    Basu SN, Kollu R, Banerjee-Basu S. AutDB: a gene reference resource for autism research. Nucleic Acids Res. 2009;37:D832–836. https://doi.org/10.1093/nar/gkn835.

  28. 28.

    Birnbaum R, Jaffe AE, Hyde TM, Kleinman JE, Weinberger DR. Prenatal expression patterns of genes associated with neuropsychiatric disorders. Am J Psychiatry. 2014;171:758–67. https://doi.org/10.1176/appi.ajp.2014.13111452.

  29. 29.

    Parikshak, N. N., Swarup, V., Belgard, T. G., Irimia, M., Ramaswami, G., Gandal, M. J. et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature. 2016;540:423–7. https://doi.org/10.1038/nature20612.

  30. 30.

    Jaffe, A. E., Straub, R. E., Shin, J. H., Tao, R., Gao, Y., Collado-Torres, L. et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat Neurosci 2018;21:1117–25, https://doi.org/10.1038/s41593-018-0197-y.

  31. 31.

    Jaffe, A. E., Tao, R., Norris, A. L., Kealhofer, M., Nellore, A., Shin, J. H. et al. qSVA framework for RNA quality correction in differential expression analysis. Proc Natl Acad Sci USA. 2017;114:7130–5. https://doi.org/10.1073/pnas.1617384114.

  32. 32.

    Stanwood GD, Levitt P. Drug exposure early in life: functional repercussions of changing neuropharmacology during sensitive periods of brain development. Curr Opin Pharmacol. 2004;4:65–71. https://doi.org/10.1016/j.coph.2003.09.003.

  33. 33.

    Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108(Suppl 3):511–33.

  34. 34.

    Rodier PM. Developing brain as a target of toxicity. Environ Health Perspect. 1995;103(Suppl 6):73–6.

  35. 35.

    Al Mamun, A., O'Callaghan, F. V., Alati, R., O'Callaghan, M., Najman, J. M., Williams, G. M. et al. Does maternal smoking during pregnancy predict the smoking patterns of young adult offspring? A birth cohort study. Tob Control. 2006;15:452–7. https://doi.org/10.1136/tc.2006.016790.

  36. 36.

    Kandel DB, Wu P, Davies M. Maternal smoking during pregnancy and smoking by adolescent daughters. Am J Public Health. 1994;84:1407–13.

  37. 37.

    Lieb R, Schreier A, Pfister H, Wittchen HU. Maternal smoking and smoking in adolescents: a prospective community study of adolescents and their mothers. Eur Addict Res. 2003;9:120–30. https://doi.org/10.1159/000070980.

  38. 38.

    Demyanenko, G. P., Mohan, V., Zhang, X., Brennaman, L. H., Dharbal, K. E., Tran, T. S. et al. Neural cell adhesion molecule NrCAM regulates Semaphorin 3F-induced dendritic spine remodeling. J Neurosci: Off J Soc Neurosci. 2014;34:11274–87. https://doi.org/10.1523/JNEUROSCI.1774-14.2014.

  39. 39.

    Fitzli, D., Stoeckli, E. T., Kunz, S., Siribour, K., Rader, C., Kunz, B. et al. A direct interaction of axonin-1 with NgCAM-related cell adhesion molecule (NrCAM) results in guidance, but not growth of commissural axons. J Cell Biol. 2000;149:951–68.

  40. 40.

    Sakurai T. The role of NrCAM in neural development and disorders--beyond a simple glue in the brain. Mol Cell Neurosci. 2012;49:351–63. https://doi.org/10.1016/j.mcn.2011.12.002.

  41. 41.

    Sakurai, T., Ramoz, N., Reichert, J. G., Corwin, T. E., Kryzak, L., Smith, C. J. et al. Association analysis of the NrCAM gene in autism and in subsets of families with severe obsessive-compulsive or self-stimulatory behaviors. Psychiatr Genet. 2006;16:251–7. https://doi.org/10.1097/01.ypg.0000242196.81891.c9.

  42. 42.

    Moy SS, Nonneman RJ, Young NB, Demyanenko GP, Maness PF. Impaired sociability and cognitive function in Nrcam-null mice. Behav Brain Res. 2009;205:123–31. https://doi.org/10.1016/j.bbr.2009.06.021.

  43. 43.

    Marui, T., Funatogawa, I., Koishi, S., Yamamoto, K., Matsumoto, H., Hashimoto, O. et al. Association of the neuronal cell adhesion molecule (NRCAM) gene variants with autism. Int J Neuropsychopharmacol. 2009;12:1–10. https://doi.org/10.1017/S1461145708009127.

  44. 44.

    Barbeau D, Liang JJ, Robitalille Y, Quirion R, Srivastava LK. Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc Natl Acad Sci USA. 1995;92:2785–9.

  45. 45.

    Brennaman LH, Maness PF. NCAM in neuropsychiatric and neurodegenerative disorders. Adv Exp Med Biol. 2010;663:299–317. https://doi.org/10.1007/978-1-4419-1170-4_19.

  46. 46.

    Poltorak, M., Khoja, I., Hemperly, J. J., Williams, J. R., el-Mallakh, R. & Freed, W. J. Disturbances in cell recognition molecules (N-CAM and L1 antigen) in the CSF of patients with schizophrenia. Exp Neurol. 1995;131:266–72.

  47. 47.

    Padula, A. E., Griffin, W. C., 3rd, Lopez, M. F., Nimitvilai, S., Cannady, R., McGuier, N. S. et al. KCNN genes that encode small-conductance Ca2+-activated K+channels influence alcohol and drug addiction. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2015;40:1928–39. https://doi.org/10.1038/npp.2015.42.

  48. 48.

    Cadet, J. L., Brannock, C., Krasnova, I. N., Jayanthi, S., Ladenheim, B., McCoy, M. T. et al. Genome-wide DNA hydroxymethylation identifies potassium channels in the nucleus accumbens as discriminators of methamphetamine addiction and abstinence. Mol Psychiatry, https://doi.org/10.1038/mp.2016.48 (2016).

  49. 49.

    Talhout, R., Schulz, T., Florek, E., van Benthem, J., Wester, P. & Opperhuizen, A. Hazardous compounds in tobacco smoke. Int J Environ Res Public Health. 2011;8:613–28. https://doi.org/10.3390/ijerph8020613.

  50. 50.

    Jaffe, A. E., Gao, Y., Deep-Soboslay, A., Tao, R., Hyde, T. M., Weinberger, D. R. et al. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat Neurosci. 2016;19:40–7. https://doi.org/10.1038/nn.4181.

  51. 51.

    Ursini, G., Punzi, G., Chen, Q., Marenco, S., Robinson, J. F., Porcelli, A. et al. Convergence of placenta biology and genetic risk for schizophrenia. Nat Med 2018;24:792–801 https://doi.org/10.1038/s41591-018-0021-y.

  52. 52.

    Quinn, P. D., Rickert, M. E., Weibull, C. E., Johansson, A. L. V., Lichtenstein, P., Almqvist, C. et al. Association between maternal smoking during pregnancy and severe mental illness in offspring. JAMA Psychiatry. 2017;74:589–96. https://doi.org/10.1001/jamapsychiatry.2017.0456.

  53. 53.

    D’Onofrio BM, Van Hulle CA, Goodnight JA, Rathouz PJ, Lahey BB. Is maternal smoking during pregnancy a causal environmental risk factor for adolescent antisocial behavior? Testing etiological theories and assumptions. Psychol Med. 2012;42:1535–45. https://doi.org/10.1017/S0033291711002443.

  54. 54.

    D'Onofrio, B. M., Van Hulle, C. A., Waldman, I. D., Rodgers, J. L., Harden, K. P., Rathouz, P. J. et al. Smoking during pregnancy and offspring externalizing problems: an exploration of genetic and environmental confounds. Dev Psychopathol. 2008;20:139–64. https://doi.org/10.1017/S0954579408000072.

  55. 55.

    Cecil, C. A., Walton, E., Smith, R. G., Viding, E., McCrory, E. J., Relton, C. L. et al. DNA methylation and substance-use risk: a prospective, genome-wide study spanning gestation to adolescence. Transl Psychiatry. 2016;6:e976. https://doi.org/10.1038/tp.2016.247.

  56. 56.

    Collado-Torres, L., Nellore, A., Frazee, A. C., Wilks, C., Love, M. I., Langmead, B. et al. Flexible expressed region analysis for RNA-seq with derfinder. Nucleic Acids Res. 2017;45:e9 https://doi.org/10.1093/nar/gkw852.

  57. 57.

    Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. https://doi.org/10.1093/nar/gkv007.

  58. 58.

    Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3. https://doi.org/10.1093/bioinformatics/bts034.

  59. 59.

    Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

  60. 60.

    Gene Ontology C. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43:D1049–56. https://doi.org/10.1093/nar/gku1179.

  61. 61.

    Yu G, Wang LG, Yan GR, He QY. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics. 2015;31:608–9. https://doi.org/10.1093/bioinformatics/btu684.

  62. 62.

    Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2016;44:D481–87. https://doi.org/10.1093/nar/gkv1351.

  63. 63.

    Milacic, M., Haw, R., Rothfels, K., Wu, G., Croft, D., Hermjakob, H. et al. Annotating cancer variants and anti-cancer therapeutics in reactome. Cancers. 2012;4:1180–211. https://doi.org/10.3390/cancers4041180.

  64. 64.

    Yu G., Wang L.G., Han Y., He Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: a J Integr Biol. 2012;16:284–7. https://doi.org/10.1089/omi.2011.0118.

  65. 65.

    Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J. et al. STRINGv10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52. https://doi.org/10.1093/nar/gku1003.

  66. 66.

    Agrawal, A., Pergadia, M.L., Balasubramanian, S., Saccone, S.F., Hinrichs, A.L., Saccone, N.L., et al. Further evidence for an association between the gamma-aminobutyric acid receptor A, subunit 4 genes on chromosome 4 and Fagerstrom Test for Nicotine Dependence. Addiction 2009;104:471–7.

  67. 67.

    Ishiguro, H., Liu, Q.-R., Gong, J.-P., Hall, F.S., Ujike, H., Morales, M. et al. NrCAM in Addiction Vulnerability: Positional Cloning, Drug-Regulation, Haplotype-Specific Expression and Altered Drug Reward in Knockout Mice. Neuropsychopharmacology 2006;31:572-84.

  68. 68.

    Padula, A.E., Griffin, W.C., Lopez, M.F., Nimitvilai, S., Cannady, R., McGuier, N.S. et al. KCNN Genes that Encode Small-Conductance Ca2+-Activated K+ Channels Influence Alcohol and Drug Addiction. Neuropsychopharmacology 2015;40:1928-39.

Download references


SAS, LCT, CAM, ADS, LJB, BSM, EOJ, DBH, and AEJ were supported by R01DA042090.

Author contributions

SAS: performed analyses and led the writing of the manuscript. LCT: performed analyses and contributed to the writing of the manuscript. CAM, LJB, BSM, and EOJ: contributed to the interpretation of the results and writing of the manuscript. JHS: performed data generation. ADS: performed clinical reviews and oversaw the assessment of toxicology. RT: performed RNA extractions. MAH: generated nicotine and cotinine data. TMH: performed tissue dissections, contributed to the study design, interpretation of the results, and writing of the manuscript. DRW: contributed to the study design, interpretation of the results, and writing of the manuscript. DBH: contributed to the study design, statistical analyses, interpretation of the results, and writing of the manuscript. JEK and AEJ: co-led the study, including the design, statistical analyses, interpretation, and writing of the manuscript.

Author information


  1. Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA

    • Stephen A. Semick
    • , Leonardo Collado-Torres
    • , Joo Heon Shin
    • , Amy Deep-Soboslay
    • , Ran Tao
    • , Thomas M. Hyde
    • , Daniel R. Weinberger
    • , Joel E. Kleinman
    •  & Andrew E. Jaffe
  2. Center for Computational Biology, Johns Hopkins University, Baltimore, MD, 21205, USA

    • Leonardo Collado-Torres
    •  & Andrew E. Jaffe
  3. Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park 3040 East Cornwallis Road, NC, 27709, USA

    • Christina A. Markunas
    •  & Dana B. Hancock
  4. The Lambert Center for the Study of Medicinal Cannabis and Hemp, Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, USA

    • Marilyn A. Huestis
  5. Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA

    • Laura J. Bierut
  6. Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA

    • Brion S. Maher
    •  & Andrew E. Jaffe
  7. Fellow Program and Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park 3040 East Cornwallis Road, NC, 27709, USA

    • Eric O. Johnson
  8. Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA

    • Thomas M. Hyde
    • , Daniel R. Weinberger
    •  & Joel E. Kleinman
  9. Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA

    • Thomas M. Hyde
    •  & Daniel R. Weinberger
  10. Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA

    • Daniel R. Weinberger
  11. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA

    • Daniel R. Weinberger
    •  & Andrew E. Jaffe
  12. Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA

    • Andrew E. Jaffe


  1. Search for Stephen A. Semick in:

  2. Search for Leonardo Collado-Torres in:

  3. Search for Christina A. Markunas in:

  4. Search for Joo Heon Shin in:

  5. Search for Amy Deep-Soboslay in:

  6. Search for Ran Tao in:

  7. Search for Marilyn A. Huestis in:

  8. Search for Laura J. Bierut in:

  9. Search for Brion S. Maher in:

  10. Search for Eric O. Johnson in:

  11. Search for Thomas M. Hyde in:

  12. Search for Daniel R. Weinberger in:

  13. Search for Dana B. Hancock in:

  14. Search for Joel E. Kleinman in:

  15. Search for Andrew E. Jaffe in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding authors

Correspondence to Joel E. Kleinman or Andrew E. Jaffe.

Electronic supplementary material

About this article

Publication history