Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Developmental effects of maternal smoking during pregnancy on the human frontal cortex transcriptome

Abstract

Cigarette smoking during pregnancy is a major public health concern. While there are well-described consequences in early child development, there is very little known about the effects of maternal smoking on human cortical biology during prenatal life. We therefore performed a genome-wide differential gene expression analysis using RNA sequencing (RNA-seq) on prenatal (N = 33; 16 smoking-exposed) as well as adult (N = 207; 57 active smokers) human postmortem prefrontal cortices. Smoking exposure during the prenatal period was directly associated with differential expression of 14 genes; in contrast, during adulthood, despite a much larger sample size, only two genes showed significant differential expression (FDR < 10%). Moreover, 1,315 genes showed significantly different exposure effects between maternal smoking during pregnancy and direct exposure in adulthood (FDR < 10%)—these differences were largely driven by prenatal differences that were enriched for pathways previously implicated in addiction and synaptic function. Furthermore, prenatal and age-dependent differentially expressed genes were enriched for genes implicated in non-syndromic autism spectrum disorder (ASD) and were differentially expressed as a set between patients with ASD and controls in postmortem cortical regions. These results underscore the enhanced sensitivity to the biological effect of smoking exposure in the developing brain and offer insight into how maternal smoking during pregnancy affects gene expression in the prenatal human cortex. They also begin to address the relationship between in utero exposure to smoking and the heightened risks for the subsequent development of neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO. WHO Report on the Global Tobacco Epidemic, 2011: Warning About the Dangers of Tobacco. Geneva, Switzerland: World Health Organization; 2011.

  2. The Health Consequences of Smoking - 50 Years of Progress: A Report of the Surgeon General National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. Atlanta (GA): Centers for Disease Control and Prevention (US); 2014

  3. Niemela, S., Sourander, A., Surcel, H. M., Hinkka-Yli-Salomaki, S., McKeague, I. W., Cheslack-Postava, K. et al. Prenatal nicotine exposure and risk of schizophrenia among offspring in a national birth cohort. Am J Psychiatry. 2016;173:799–806. https://doi.org/10.1176/appi.ajp.2016.15060800.

    Article  PubMed  Google Scholar 

  4. Biederman J, Martelon M, Woodworth KY, Spencer TJ, Faraone SV. Is maternal smoking during pregnancy a risk factor for cigarette smoking in offspring? A longitudinal controlled study of ADHD children grown up. J Atten Disord. 2014;21:975–85. https://doi.org/10.1177/1087054714557357.

    Article  PubMed  Google Scholar 

  5. Melchior, M., Hersi, R., van der Waerden, J., Larroque, B., Saurel-Cubizolles, M. J., Chollet, A. et al. Maternal tobacco smoking in pregnancy and children’s socio-emotional development at age 5: The EDEN mother-child birth cohort study. Eur Psychiatry: J Assoc Eur Psychiatr. 2015;30:562–8. https://doi.org/10.1016/j.eurpsy.2015.03.005.

    Article  CAS  Google Scholar 

  6. Talati A, Wickramaratne PJ, Wesselhoeft R, Weissman MM. Prenatal tobacco exposure, birthweight, and offspring psychopathology. Psychiatry Res. 2017;252:346–52. https://doi.org/10.1016/j.psychres.2017.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Holbrook BD. The effects of nicotine on human fetal development. Birth defects research. Part C, Embryo Today: Rev. 2016;108:181–92. https://doi.org/10.1002/bdrc.21128.

    Article  CAS  Google Scholar 

  8. Curtin SC, Matthews TJ. Smoking prevalence and cessation before and during pregnancy: data from the birth certificate, 2014. Natl Vital Stat Rep: Cent Dis Control Prev, Natl Cent Health Stat, Natl Vital Stat Syst. 2016;65:1–14.

    Google Scholar 

  9. Stathopoulou A, Beratis IN, Beratis S. Prenatal tobacco smoke exposure, risk of schizophrenia, and severity of positive/negative symptoms. Schizophr Res. 2013;148:105–10. https://doi.org/10.1016/j.schres.2013.04.031.

    Article  PubMed  Google Scholar 

  10. Liao C-Y, Chen Y-J, Lee J-F, Lu C-L, Chen C-H. Cigarettes and the developing brain: picturing nicotine as a neuroteratogen using clinical and preclinical studies. Tzu Chi Med J. 2012;24:157–61. https://doi.org/10.1016/j.tcmj.2012.08.003.

    Article  Google Scholar 

  11. Thapar, A., Fowler, T., Rice, F., Scourfield, J., van den Bree, M., Thomas, H. et al. Maternal smoking during pregnancy and attention deficit hyperactivity disorder symptoms in offspring. Am J Psychiatry. 2003;160:1985–9. https://doi.org/10.1176/appi.ajp.160.11.1985.

    Article  PubMed  Google Scholar 

  12. Nomura Y, Marks DJ, Halperin JM. Prenatal exposure to maternal and paternal smoking on attention deficit hyperactivity disorders symptoms and diagnosis in offspring. J Nerv Ment Dis. 2010;198:672–8. https://doi.org/10.1097/NMD.0b013e3181ef3489.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Joelsson, P., Chudal, R., Talati, A., Suominen, A., Brown, A. S. & Sourander, A.Prenatal smoking exposure and neuropsychiatric comorbidity of ADHD: a finnish nationwide population-based cohort study. BMC Psychiatry. 2016;16:306 https://doi.org/10.1186/s12888-016-1007-2.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Motlagh, M. G., Katsovich, L., Thompson, N., Lin, H., Kim, Y. S., Scahill, L. et al. Severe psychosocial stress and heavy cigarette smoking during pregnancy: an examination of the pre- and perinatal risk factors associated with ADHD and Tourette syndrome. Eur Child & Adolesc Psychiatry. 2010;19:755–64. https://doi.org/10.1007/s00787-010-0115-7.

    Article  Google Scholar 

  15. Browne, H. A., Modabbernia, A., Buxbaum, J. D., Hansen, S. N., Schendel, D. E., Parner, E. T. et al. Prenatal maternal smoking and increased risk for Tourette syndrome and chronic tic disorders. J Am Acad Child Adolesc Psychiatry. 2016;55:784–91. https://doi.org/10.1016/j.jaac.2016.06.010.

    Article  PubMed  Google Scholar 

  16. Leivonen, S., Chudal, R., Joelsson, P., Ekblad, M., Suominen, A., Brown, A. S. et al. Prenatal maternal smoking and Tourette syndrome: a nationwide register study. Child Psychiatry Hum Dev. 2016;47:75–82. https://doi.org/10.1007/s10578-015-0545-z.

    Article  PubMed  Google Scholar 

  17. Wehby GL, Prater K, McCarthy AM, Castilla EE, Murray JC. The impact of maternal smoking during pregnancy on early child neurodevelopment. J Human Capital. 2011;5:207–54. https://doi.org/10.1086/660885.

    Article  Google Scholar 

  18. Polanska K, Jurewicz J, Hanke W. Smoking and alcohol drinking during pregnancy as the risk factors for poor child neurodevelopment - A review of epidemiological studies. Int J Occup Med Environ Health. 2015;28:419–43. https://doi.org/10.13075/ijomeh.1896.00424.

    Article  PubMed  Google Scholar 

  19. Jung Y, Lee AM, McKee SA, Picciotto MR. Maternal smoking and autism spectrum disorder: meta-analysis with population smoking metrics as moderators. Sci Rep. 2017;7:4315 https://doi.org/10.1038/s41598-017-04413-1.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Joubert, B. R., Haberg, S. E., Nilsen, R. M., Wang, X., Vollset, S. E., Murphy, S. K. et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120:1425–31. https://doi.org/10.1289/ehp.1205412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Joubert, B. R., Felix, J. F., Yousefi, P., Bakulski, K. M., Just, A. C., Breton, C. et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98:680–96. https://doi.org/10.1016/j.ajhg.2016.02.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawashima, A., Koide, K., Ventura, W., Hori, K., Takenaka, S., Maruyama, D. et al. Effects of maternal smoking on the placental expression of genes related to angiogenesis and apoptosis during the first trimester. PLoS One. 2014;9:e106140. https://doi.org/10.1371/journal.pone.0106140.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chatterton, Z., Hartley, B. J., Seok, M. H., Mendelev, N., Chen, S., Milekic, M. et al. In utero exposure to maternal smoking is associated with DNA methylation alterations and reduced neuronal content in the developing fetal brain. Epigenetics & Chromatin. 2017;10:4. https://doi.org/10.1186/s13072-017-0111-y.

    Article  Google Scholar 

  24. Betancur C, Sakurai T, Buxbaum JD. The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders. Trends Neurosci. 2009;32:402–12. https://doi.org/10.1016/j.tins.2009.04.003.

    Article  CAS  PubMed  Google Scholar 

  25. Tsai, N. P., Wilkerson, J. R., Guo, W., Maksimova, M. A., DeMartino, G. N., Cowan, C. W. et al. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell. 2012;151:1581–94. https://doi.org/10.1016/j.cell.2012.11.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park S, Frisen J, Barbacid M. Aberrant axonal projections in mice lacking EphA8 (Eek) tyrosine protein kinase receptors. EMBO J. 1997;16:3106–14. https://doi.org/10.1093/emboj/16.11.3106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Basu SN, Kollu R, Banerjee-Basu S. AutDB: a gene reference resource for autism research. Nucleic Acids Res. 2009;37:D832–836. https://doi.org/10.1093/nar/gkn835.

    Article  CAS  PubMed  Google Scholar 

  28. Birnbaum R, Jaffe AE, Hyde TM, Kleinman JE, Weinberger DR. Prenatal expression patterns of genes associated with neuropsychiatric disorders. Am J Psychiatry. 2014;171:758–67. https://doi.org/10.1176/appi.ajp.2014.13111452.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Parikshak, N. N., Swarup, V., Belgard, T. G., Irimia, M., Ramaswami, G., Gandal, M. J. et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature. 2016;540:423–7. https://doi.org/10.1038/nature20612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jaffe, A. E., Straub, R. E., Shin, J. H., Tao, R., Gao, Y., Collado-Torres, L. et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat Neurosci 2018;21:1117–25, https://doi.org/10.1038/s41593-018-0197-y.

  31. Jaffe, A. E., Tao, R., Norris, A. L., Kealhofer, M., Nellore, A., Shin, J. H. et al. qSVA framework for RNA quality correction in differential expression analysis. Proc Natl Acad Sci USA. 2017;114:7130–5. https://doi.org/10.1073/pnas.1617384114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stanwood GD, Levitt P. Drug exposure early in life: functional repercussions of changing neuropharmacology during sensitive periods of brain development. Curr Opin Pharmacol. 2004;4:65–71. https://doi.org/10.1016/j.coph.2003.09.003.

    Article  CAS  PubMed  Google Scholar 

  33. Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108(Suppl 3):511–33.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rodier PM. Developing brain as a target of toxicity. Environ Health Perspect. 1995;103(Suppl 6):73–6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Al Mamun, A., O'Callaghan, F. V., Alati, R., O'Callaghan, M., Najman, J. M., Williams, G. M. et al. Does maternal smoking during pregnancy predict the smoking patterns of young adult offspring? A birth cohort study. Tob Control. 2006;15:452–7. https://doi.org/10.1136/tc.2006.016790.

    Article  PubMed  Google Scholar 

  36. Kandel DB, Wu P, Davies M. Maternal smoking during pregnancy and smoking by adolescent daughters. Am J Public Health. 1994;84:1407–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lieb R, Schreier A, Pfister H, Wittchen HU. Maternal smoking and smoking in adolescents: a prospective community study of adolescents and their mothers. Eur Addict Res. 2003;9:120–30. https://doi.org/10.1159/000070980.

    Article  PubMed  Google Scholar 

  38. Demyanenko, G. P., Mohan, V., Zhang, X., Brennaman, L. H., Dharbal, K. E., Tran, T. S. et al. Neural cell adhesion molecule NrCAM regulates Semaphorin 3F-induced dendritic spine remodeling. J Neurosci: Off J Soc Neurosci. 2014;34:11274–87. https://doi.org/10.1523/JNEUROSCI.1774-14.2014.

    Article  Google Scholar 

  39. Fitzli, D., Stoeckli, E. T., Kunz, S., Siribour, K., Rader, C., Kunz, B. et al. A direct interaction of axonin-1 with NgCAM-related cell adhesion molecule (NrCAM) results in guidance, but not growth of commissural axons. J Cell Biol. 2000;149:951–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sakurai T. The role of NrCAM in neural development and disorders--beyond a simple glue in the brain. Mol Cell Neurosci. 2012;49:351–63. https://doi.org/10.1016/j.mcn.2011.12.002.

    Article  CAS  PubMed  Google Scholar 

  41. Sakurai, T., Ramoz, N., Reichert, J. G., Corwin, T. E., Kryzak, L., Smith, C. J. et al. Association analysis of the NrCAM gene in autism and in subsets of families with severe obsessive-compulsive or self-stimulatory behaviors. Psychiatr Genet. 2006;16:251–7. https://doi.org/10.1097/01.ypg.0000242196.81891.c9.

    Article  PubMed  Google Scholar 

  42. Moy SS, Nonneman RJ, Young NB, Demyanenko GP, Maness PF. Impaired sociability and cognitive function in Nrcam-null mice. Behav Brain Res. 2009;205:123–31. https://doi.org/10.1016/j.bbr.2009.06.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marui, T., Funatogawa, I., Koishi, S., Yamamoto, K., Matsumoto, H., Hashimoto, O. et al. Association of the neuronal cell adhesion molecule (NRCAM) gene variants with autism. Int J Neuropsychopharmacol. 2009;12:1–10. https://doi.org/10.1017/S1461145708009127.

    Article  CAS  PubMed  Google Scholar 

  44. Barbeau D, Liang JJ, Robitalille Y, Quirion R, Srivastava LK. Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc Natl Acad Sci USA. 1995;92:2785–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brennaman LH, Maness PF. NCAM in neuropsychiatric and neurodegenerative disorders. Adv Exp Med Biol. 2010;663:299–317. https://doi.org/10.1007/978-1-4419-1170-4_19.

    Article  CAS  PubMed  Google Scholar 

  46. Poltorak, M., Khoja, I., Hemperly, J. J., Williams, J. R., el-Mallakh, R. & Freed, W. J. Disturbances in cell recognition molecules (N-CAM and L1 antigen) in the CSF of patients with schizophrenia. Exp Neurol. 1995;131:266–72.

    Article  CAS  PubMed  Google Scholar 

  47. Padula, A. E., Griffin, W. C., 3rd, Lopez, M. F., Nimitvilai, S., Cannady, R., McGuier, N. S. et al. KCNN genes that encode small-conductance Ca2+-activated K+channels influence alcohol and drug addiction. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2015;40:1928–39. https://doi.org/10.1038/npp.2015.42.

    Article  CAS  Google Scholar 

  48. Cadet, J. L., Brannock, C., Krasnova, I. N., Jayanthi, S., Ladenheim, B., McCoy, M. T. et al. Genome-wide DNA hydroxymethylation identifies potassium channels in the nucleus accumbens as discriminators of methamphetamine addiction and abstinence. Mol Psychiatry, https://doi.org/10.1038/mp.2016.48 (2016).

  49. Talhout, R., Schulz, T., Florek, E., van Benthem, J., Wester, P. & Opperhuizen, A. Hazardous compounds in tobacco smoke. Int J Environ Res Public Health. 2011;8:613–28. https://doi.org/10.3390/ijerph8020613.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jaffe, A. E., Gao, Y., Deep-Soboslay, A., Tao, R., Hyde, T. M., Weinberger, D. R. et al. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat Neurosci. 2016;19:40–7. https://doi.org/10.1038/nn.4181.

    Article  CAS  PubMed  Google Scholar 

  51. Ursini, G., Punzi, G., Chen, Q., Marenco, S., Robinson, J. F., Porcelli, A. et al. Convergence of placenta biology and genetic risk for schizophrenia. Nat Med 2018;24:792–801 https://doi.org/10.1038/s41591-018-0021-y.

    Article  Google Scholar 

  52. Quinn, P. D., Rickert, M. E., Weibull, C. E., Johansson, A. L. V., Lichtenstein, P., Almqvist, C. et al. Association between maternal smoking during pregnancy and severe mental illness in offspring. JAMA Psychiatry. 2017;74:589–96. https://doi.org/10.1001/jamapsychiatry.2017.0456.

    Article  PubMed  PubMed Central  Google Scholar 

  53. D’Onofrio BM, Van Hulle CA, Goodnight JA, Rathouz PJ, Lahey BB. Is maternal smoking during pregnancy a causal environmental risk factor for adolescent antisocial behavior? Testing etiological theories and assumptions. Psychol Med. 2012;42:1535–45. https://doi.org/10.1017/S0033291711002443.

    Article  PubMed  Google Scholar 

  54. D'Onofrio, B. M., Van Hulle, C. A., Waldman, I. D., Rodgers, J. L., Harden, K. P., Rathouz, P. J. et al. Smoking during pregnancy and offspring externalizing problems: an exploration of genetic and environmental confounds. Dev Psychopathol. 2008;20:139–64. https://doi.org/10.1017/S0954579408000072.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cecil, C. A., Walton, E., Smith, R. G., Viding, E., McCrory, E. J., Relton, C. L. et al. DNA methylation and substance-use risk: a prospective, genome-wide study spanning gestation to adolescence. Transl Psychiatry. 2016;6:e976. https://doi.org/10.1038/tp.2016.247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Collado-Torres, L., Nellore, A., Frazee, A. C., Wilks, C., Love, M. I., Langmead, B. et al. Flexible expressed region analysis for RNA-seq with derfinder. Nucleic Acids Res. 2017;45:e9 https://doi.org/10.1093/nar/gkw852.

    Article  PubMed  Google Scholar 

  57. Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. https://doi.org/10.1093/nar/gkv007.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3. https://doi.org/10.1093/bioinformatics/bts034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gene Ontology C. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43:D1049–56. https://doi.org/10.1093/nar/gku1179.

    Article  Google Scholar 

  61. Yu G, Wang LG, Yan GR, He QY. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics. 2015;31:608–9. https://doi.org/10.1093/bioinformatics/btu684.

    Article  CAS  PubMed  Google Scholar 

  62. Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2016;44:D481–87. https://doi.org/10.1093/nar/gkv1351.

    Article  CAS  PubMed  Google Scholar 

  63. Milacic, M., Haw, R., Rothfels, K., Wu, G., Croft, D., Hermjakob, H. et al. Annotating cancer variants and anti-cancer therapeutics in reactome. Cancers. 2012;4:1180–211. https://doi.org/10.3390/cancers4041180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yu G., Wang L.G., Han Y., He Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: a J Integr Biol. 2012;16:284–7. https://doi.org/10.1089/omi.2011.0118.

    Article  CAS  Google Scholar 

  65. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J. et al. STRINGv10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52. https://doi.org/10.1093/nar/gku1003.

    Article  CAS  PubMed  Google Scholar 

  66. Agrawal, A., Pergadia, M.L., Balasubramanian, S., Saccone, S.F., Hinrichs, A.L., Saccone, N.L., et al. Further evidence for an association between the gamma-aminobutyric acid receptor A, subunit 4 genes on chromosome 4 and Fagerstrom Test for Nicotine Dependence. Addiction 2009;104:471–7.

  67. Ishiguro, H., Liu, Q.-R., Gong, J.-P., Hall, F.S., Ujike, H., Morales, M. et al. NrCAM in Addiction Vulnerability: Positional Cloning, Drug-Regulation, Haplotype-Specific Expression and Altered Drug Reward in Knockout Mice. Neuropsychopharmacology 2006;31:572-84.

    Article  CAS  PubMed  Google Scholar 

  68. Padula, A.E., Griffin, W.C., Lopez, M.F., Nimitvilai, S., Cannady, R., McGuier, N.S. et al. KCNN Genes that Encode Small-Conductance Ca2+-Activated K+ Channels Influence Alcohol and Drug Addiction. Neuropsychopharmacology 2015;40:1928-39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SAS, LCT, CAM, ADS, LJB, BSM, EOJ, DBH, and AEJ were supported by R01DA042090.

Author contributions

SAS: performed analyses and led the writing of the manuscript. LCT: performed analyses and contributed to the writing of the manuscript. CAM, LJB, BSM, and EOJ: contributed to the interpretation of the results and writing of the manuscript. JHS: performed data generation. ADS: performed clinical reviews and oversaw the assessment of toxicology. RT: performed RNA extractions. MAH: generated nicotine and cotinine data. TMH: performed tissue dissections, contributed to the study design, interpretation of the results, and writing of the manuscript. DRW: contributed to the study design, interpretation of the results, and writing of the manuscript. DBH: contributed to the study design, statistical analyses, interpretation of the results, and writing of the manuscript. JEK and AEJ: co-led the study, including the design, statistical analyses, interpretation, and writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joel E. Kleinman or Andrew E. Jaffe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semick, S.A., Collado-Torres, L., Markunas, C.A. et al. Developmental effects of maternal smoking during pregnancy on the human frontal cortex transcriptome. Mol Psychiatry 25, 3267–3277 (2020). https://doi.org/10.1038/s41380-018-0223-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0223-1

This article is cited by

Search

Quick links