Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics

Abstract

Mood disorders are highly prevalent and are the leading cause of disability worldwide. The neurobiological mechanisms underlying depression remain poorly understood, although theories regarding dysfunction within various neurotransmitter systems have been postulated. Over 50 years ago, clinical studies suggested that increases in central acetylcholine could lead to depressed mood. Evidence has continued to accumulate suggesting that the cholinergic system has a important role in mood regulation. In particular, the finding that the antimuscarinic agent, scopolamine, exerts fast-onset and sustained antidepressant effects in depressed humans has led to a renewal of interest in the cholinergic system as an important player in the neurochemistry of major depression and bipolar disorder. Here, we synthesize current knowledge regarding the modulation of mood by the central cholinergic system, drawing upon studies from human postmortem brain, neuroimaging, and drug challenge investigations, as well as animal model studies. First, we describe an illustrative series of early discoveries which suggest a role for acetylcholine in the pathophysiology of mood disorders. Then, we discuss more recent studies conducted in humans and/or animals which have identified roles for both acetylcholinergic muscarinic and nicotinic receptors in different mood states, and as targets for novel therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA. 2003;289:3095–105.

    Article  PubMed  Google Scholar 

  2. Merikangas KR, Jin R, He JP, Kessler RC, Lee S, Sampson NA, et al. Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry. 2011;68:241–51.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Grande I, Berk M, Birmaher B, Vieta E. Bipolar disorder. Lancet. 2016;387:1561–72.

    Article  PubMed  Google Scholar 

  4. Ashok AH, Marques TR, Jauhar S, Nour MM, Goodwin GM, Young AH, et al. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry. 2017;22:666–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosenblat JD, McIntyre RS, Alves GS, Fountoulakis KN, Carvalho AF. Beyond monoamines-novel targets for treatment-resistant depression: a comprehensive review. Curr Neuropharmacol. 2015;13:636–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heninger GR, Delgado PL, Charney DS. The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry. 1996;29:2–11.

    Article  CAS  PubMed  Google Scholar 

  7. Furey ML, Drevets WC. Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry. 2006;63:1121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Furey ML, Drevets WC, Szczepanik J, Khanna A, Nugent A, Zarate CA Jr. Pretreatment differences in BOLD response to emotional faces correlate with antidepressant response to scopolamine. Int J Neuropsychopharmacol. 2015;18:pyv028.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Furey ML, Khanna A, Hoffman EM, Drevets WC. Scopolamine produces larger antidepressant and antianxiety effects in women than in men. Neuropsychopharmacology. 2010;35:2479–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Furey ML, Nugent AC, Speer AM, Luckenbaugh DA, Hoffman EM, Frankel E, et al. Baseline mood-state measures as predictors of antidepressant response to scopolamine. Psychiatry Res. 2012;196:62–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ellis JS, Zarate CA Jr, Luckenbaugh DA, Furey ML. Antidepressant treatment history as a predictor of response to scopolamine: clinical implications. J Affect Disord. 2014;162:39–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rowntree DW, Nevin S, Wilson A. The effects of diisopropylfluorophosphonate in schizophrenia and manic depressive psychosis. J Neurol Neurosurg Psychiatry. 1950;13:47–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gershon S, Shaw FH. Psychiatric sequelae of chronic exposure to organophosphorus insecticides. Lancet. 1961;1:1371–4.

    Article  CAS  PubMed  Google Scholar 

  14. Bowers MB Jr, Goodman E, Sim VM. Some behavioral changes in man following anticholinesterase administration. J Nerv Ment Dis. 1964;138:383–9.

    Article  PubMed  Google Scholar 

  15. Janowsky DS, el-Yousef MK, Davis JM, Sekerke HJ. A cholinergic-adrenergic hypothesis of mania and depression. Lancet. 1972;2:632–5.

    Article  CAS  PubMed  Google Scholar 

  16. van Enkhuizen J, Janowsky DS, Olivier B, Minassian A, Perry W, Young JW, et al. The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited. Eur J Pharmacol. 2015;753:114–26.

    Article  PubMed  CAS  Google Scholar 

  17. Potter WZ, Manji HK. Catecholamines in depression: an update. Clin Chem. 1994;40:279–87.

    Article  CAS  PubMed  Google Scholar 

  18. Nutt D, Demyttenaere K, Janka Z, Aarre T, Bourin M, Canonico PL, et al. The other face of depression, reduced positive affect: the role of catecholamines in causation and cure. J Psychopharmacol. 2007;21:461–71.

    Article  CAS  PubMed  Google Scholar 

  19. Grossman F, Potter WZ. Catecholamines in depression: a cumulative study of urinary norepinephrine and its major metabolites in unipolar and bipolar depressed patients versus healthy volunteers at the NIMH. Psychiatry Res. 1999;87:21–27.

    Article  CAS  PubMed  Google Scholar 

  20. Domino EF, Olds ME. Cholinergic inhibition of self-stimulation behavior. J Pharmacol Exp Ther. 1968;164:202–11.

    CAS  PubMed  Google Scholar 

  21. Olds ME, Domino EF. Comparison of muscarinic and nicotinic cholinergic agonists on self-stimulation behavior. J Pharmacol Exp Ther. 1969;166:189–204.

    CAS  PubMed  Google Scholar 

  22. Janowsky DS, el-Yousef MK, Davis JM, Hubbard B, Sekerke HJ. Cholinergic reversal of manic symptoms. Lancet. 1972;1:1236–7.

    Article  CAS  PubMed  Google Scholar 

  23. Carroll BJ, Frazer A, Schless A, Mendels J. Cholinergic reversal of manic symptoms. Lancet. 1973;1:427–8.

    Article  CAS  PubMed  Google Scholar 

  24. Davis KL, Berger PA, Hollister LE, Defraites E. Physostigmine in mania. Arch Gen Psychiatry. 1978;35:119–22.

    Article  CAS  PubMed  Google Scholar 

  25. Janowsky DS, Risch C, Parker D, Huey L, Judd L. Increased vulnerability to cholinergic stimulation in affective-disorder patients [proceedings]. Psychopharmacol Bull. 1980;16:29–31.

    CAS  PubMed  Google Scholar 

  26. Risch SC, Kalin NH, Janowsky DS. Cholinergic challenges in affective illness: behavioral and neuroendocrine correlates. J Clin Psychopharmacol. 1981;1:186–92.

    Article  CAS  PubMed  Google Scholar 

  27. Risch SC, Cohen RM, Janowsky DS, Kalin NH, Murphy DL. Mood and behavioral effects of physostigmine on humans are accompanied by elevations in plasma beta-endorphin and cortisol. Science. 1980;209:1545–6.

    Article  CAS  PubMed  Google Scholar 

  28. Reynolds CF 3rd, Butters MA, Lopez O, Pollock BG, Dew MA, Mulsant BH, et al. Maintenance treatment of depression in old age: a randomized, double-blind, placebo-controlled evaluation of the efficacy and safety of donepezil combined with antidepressant pharmacotherapy. Arch Gen Psychiatry. 2011;68:51–60.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Katona C. Dementia: does depression predict donepezil response in MCI? Nat Rev Neurol. 2009;5:585–6.

    Article  CAS  PubMed  Google Scholar 

  30. Altinyazar V, Sirin FB, Sutcu R, Eren I, Omurlu IK. The red blood cell acetylcholinesterase levels of depressive patients with suicidal behavior in an agricultural area. Indian J Clin Biochem. 2016;31:473–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saricicek A, Esterlis I, Maloney KH, Mineur YS, Ruf BM, Muralidharan A, et al. Persistentbeta2*-nicotinic acetylcholinergic receptor dysfunction in major depressive disorder. Am J Psychiatry. 2012;169:851–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tamminga C, Smith RC, Chang S, Haraszti JS, Davis JM. Depression associated with oral choline. Lancet. 1976;2:905–905.

    Article  CAS  PubMed  Google Scholar 

  33. Growdon JH, Hirsch MJ, Wurtman RJ, Wiener W. Oral choline administration to patients with Tardive-Dyskinesia. New Engl J Med. 1977;297:524–7.

    Article  CAS  PubMed  Google Scholar 

  34. Casey DE. Affective changes with deanol. In: Davis KL, editors. Brain acetylcholine and neuropsychiatric disease. New York: Plenum Press, 1979.

    Chapter  Google Scholar 

  35. Brown ES, Gabrielson B. A randomized, double-blind, placebo-controlled trial of citicoline for bipolar and unipolar depression and methamphetamine dependence. J Affect Disord. 2012;143:257–60.

    Article  CAS  PubMed  Google Scholar 

  36. Castagna A, Cotroneo AM, Ruotolo G, Gareri P. The CITIRIVAD Study: CITIcoline plus RIVAstigmine in elderly patients affected with dementia study. Clin Drug Investig. 2016;36:1059–65.

    Article  CAS  PubMed  Google Scholar 

  37. Gareri P, Castagna A, Cotroneo AM, Putignano D, Conforti R, Santamaria F, et al. The citicholinage study: citicoline plus cholinesterase inhibitors in aged patients affected with alzheimer’s disease study. J Alzheimers Dis. 2017;56:557–65.

    Article  CAS  PubMed  Google Scholar 

  38. Roohi-Azizi M, Arabzadeh S, Amidfar M, Salimi S, Zarindast MR, Talaei A, et al. Citicoline combination therapy for major depressive disorder: a randomized, double-blind, placebo-controlled trial. Clin Neuropharmacol. 2017;40:1–5.

    Article  CAS  PubMed  Google Scholar 

  39. Yerevanian BI, Woolf PD, Iker HP. Plasma ACTH levels in depression before and after recovery: relationship to the dexamethasone suppression test. Psychiatry Res. 1983;10:175–81.

    Article  CAS  PubMed  Google Scholar 

  40. Young EA, Ribeiro SC. Sex differences in the ACTH response to 24H metyrapone in depression. Brain Res. 2006;1126:148–55.

    Article  CAS  PubMed  Google Scholar 

  41. Carroll BJ, Cassidy F, Naftolowitz D, Tatham NE, Wilson WH, Iranmanesh A, et al. Pathophysiology of hypercortisolism in depression. Acta Psychiatr Scand Suppl. 2007; 433:90–103.

    Article  Google Scholar 

  42. Axelson DA, Doraiswamy PM, McDonald WM, Boyko OB, Tupler LA, Patterson LJ, et al. Hypercortisolemia and hippocampal changes in depression. Psychiatry Res. 1993;47:163–73.

    Article  CAS  PubMed  Google Scholar 

  43. Bremmer MA, Deeg DJ, Beekman AT, Penninx BW, Lips P, Hoogendijk WJ. Major depression in late life is associated with both hypo- and hypercortisolemia. Biol Psychiatry. 2007;62:479–86.

    Article  CAS  PubMed  Google Scholar 

  44. Risch SC. beta-Endorphin hypersecretion in depression: possible cholinergic mechanisms. Biol Psychiatry. 1982;17:1071–9.

    CAS  PubMed  Google Scholar 

  45. Hegadoren KM, O’Donnell T, Lanius R, Coupland NJ, Lacaze-Masmonteil N. The role of beta-endorphin in the pathophysiology of major depression. Neuropeptides. 2009;43:341–53.

    Article  CAS  PubMed  Google Scholar 

  46. Goodwin GM, Austin MP, Curran SM, Ross M, Murray C, Prentice N, et al. The elevation of plasma beta-endorphin levels in major depression. J Affect Disord. 1993;29:281–9.

    Article  CAS  PubMed  Google Scholar 

  47. Rubin RT, Rhodes ME, Miller TH, Jakab RL, Czambel RK. Sequence of pituitary-adrenal cortical hormone responses to low-dose physostigmine administration in young adult women and men. Life Sci. 2006;79:2260–8.

    Article  CAS  PubMed  Google Scholar 

  48. Peskind ER, Raskind MA, Wingerson D, Pascualy M, Thal LJ, Dobie DJ, et al. Enhanced hypothalamic-pituitary-adrenocortical axis responses to physostigmine in normal aging. J Gerontol A Biol Sci Med Sci. 1995;50:M114–120.

    Article  CAS  PubMed  Google Scholar 

  49. Risch SC, Janowsky DS, Gillin JC. Muscarinic supersensitivity of anterior pituitary ACTH and B-endorphin release in major depressive illness. Peptides. 1983;4:789–92.

    Article  CAS  PubMed  Google Scholar 

  50. Doerr P, Berger M. Physostigmine-induced escape from dexamethasone suppression in normal adults. Biol Psychiatry. 1983;18:261–8.

    CAS  PubMed  Google Scholar 

  51. Rubin RT, O’Toole SM, Rhodes ME, Sekula LK, Czambel RK. Hypothalamo-pituitary-adrenal cortical responses to low-dose physostigmine and arginine vasopressin administration: sex differences between major depressives and matched control subjects. Psychiatry Res. 1999;89:1–20.

    Article  CAS  PubMed  Google Scholar 

  52. Modell S, Lauer CJ. Rapid eye movement (REM) sleep: an endophenotype for depression. Curr Psychiatry Rep. 2007;9:480–5.

    Article  PubMed  Google Scholar 

  53. Palagini L, Baglioni C, Ciapparelli A, Gemignani A, Riemann D. REM sleep dysregulation in depression: state of the art. Sleep Med Rev. 2013;17:377–90.

    Article  PubMed  Google Scholar 

  54. Modell S, Ising M, Holsboer F, Lauer CJ. The Munich vulnerability study on affective disorders: premorbid polysomnographic profile of affected high-risk probands. Biol Psychiatry. 2005;58:694–9.

    Article  PubMed  Google Scholar 

  55. Giles DE, Kupfer DJ, Roffwarg HP, Rush AJ, Biggs MM, Etzel BA. Polysomnographic parameters in first-degree relatives of unipolar probands. Psychiatry Res. 1989;27:127–36.

    Article  CAS  PubMed  Google Scholar 

  56. Sitaram N, Nurnberger JI Jr, Gershon ES, Gillin JC. Faster cholinergic REM sleep induction in euthymic patients with primary affective illness. Science. 1980;208:200–2.

    Article  CAS  PubMed  Google Scholar 

  57. Biard K, Douglass AB, De Koninck J. The effects of galantamine and buspirone on sleep structure: Implications for understanding sleep abnormalities in major depression. J Psychopharmacol. 2015;29:1106–11.

    Article  CAS  PubMed  Google Scholar 

  58. Gillin JC, Sitaram N, Mendelson WB, Wyatt RJ. Physostigmine alters onset but not duration of REM sleep in man. Psychopharmacology. 1978;58:111–4.

    Article  CAS  PubMed  Google Scholar 

  59. Schredl M, Weber B, Leins ML, Heuser I. Donepezil-induced REM sleep augmentation enhances memory performance in elderly, healthy persons. Exp Gerontol. 2001;36:353–61.

    Article  CAS  PubMed  Google Scholar 

  60. Gillin JC, Sutton L, Ruiz C, Kelsoe J, Dupont RM, Darko D, et al. The cholinergic rapid eye movement induction test with arecoline in depression. Arch Gen Psychiatry. 1991;48:264–70.

    Article  CAS  PubMed  Google Scholar 

  61. Sitaram N, Gillin JC. Development and use of pharmacological probes of the CNS in man: evidence of cholinergic abnormality in primary affective illness. Biol Psychiatry. 1980;15:925–55.

    CAS  PubMed  Google Scholar 

  62. Sitaram N, Nurnberger JI Jr, Gershon ES, Gillin JC. Cholinergic regulation of mood and REM sleep: potential model and marker of vulnerability to affective disorder. Am J Psychiatry. 1982;139:571–6.

    Article  CAS  PubMed  Google Scholar 

  63. Sitaram N, Dube S, Keshavan M, Davies A, Reynal P. The association of supersensitive cholinergic REM-induction and affective illness within pedigrees. J Psychiatr Res. 1987;21:487–97.

    Article  CAS  PubMed  Google Scholar 

  64. Lauriello J, Kenny WM, Sutton L, Golshan S, Ruiz C, Kelsoe J, et al. The cholinergic REM sleep induction test with pilocarpine in mildly depressed patients and normal controls. Biol Psychiatry. 1993;33:33–39.

    Article  CAS  PubMed  Google Scholar 

  65. Berkowitz A, Sutton L, Janowsky DS, Gillin JC. Pilocarpine, an orally active muscarinic cholinergic agonist, induces REM sleep and reduces delta sleep in normal volunteers. Psychiatry Res. 1990;33:113–9.

    Article  CAS  PubMed  Google Scholar 

  66. Lauer CJ, Modell S, Schreiber W, Krieg JC, Holsboer F. Prediction of the development of a first major depressive episode with a rapid eye movement sleep induction test using the cholinergic agonist RS 86. J Clin Psychopharmacol. 2004;24:356–7.

    Article  PubMed  Google Scholar 

  67. Perlis ML, Smith MT, Orff HJ, Andrews PJ, Gillin JC, Giles DE. The effects of an orally administered cholinergic agonist on REM sleep in major depression. Biol Psychiatry. 2002;51:457–62.

    Article  CAS  PubMed  Google Scholar 

  68. Nurnberger J Jr, Sitaram N, Gershon ES, Gillin JC. A twin study of cholinergic REM induction. Biol Psychiatry. 1983;18:1161–5.

    PubMed  Google Scholar 

  69. Kim EJ, Jeong DU. Transdermal scopolamine alters phasic REM activity in normal young adults. Sleep. 1999;22:515–20.

    Article  CAS  PubMed  Google Scholar 

  70. Rao U, Lutchmansingh P, Poland RE. Age-related effects of scopolamine on REM sleep regulation in normal control subjects: relationship to sleep abnormalities in depression. Neuropsychopharmacology. 1999;21:723–30.

    Article  CAS  PubMed  Google Scholar 

  71. Poland RE, McCracken JT, Lutchmansingh P, Lesser IM, Tondo L, Edwards C, et al. Differential response of rapid eye movement sleep to cholinergic blockade by scopolamine in currently depressed, remitted, and normal control subjects. Biol Psychiatry. 1997;41:929–38.

    Article  CAS  PubMed  Google Scholar 

  72. Sokolski KN, Demet EM. Increased pupillary sensitivity to pilocarpine in depression. Prog Neuropsychopharmacol Biol Psychiatry. 1996;20:253–62.

    Article  CAS  PubMed  Google Scholar 

  73. Sokolski KN, DeMet EM. Cholinergic sensitivity predicts severity of mania. Psychiatry Res. 2000;95:195–200.

    Article  CAS  PubMed  Google Scholar 

  74. Mineur YS, Obayemi A, Wigestrand MB, Fote GM, Calarco CA, Li AM, et al. Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc Natl Acad Sci USA. 2013;110:3573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Addy NA, Nunes EJ, Wickham RJ. Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test. Behav Brain Res. 2015;288:54–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mineur YS, Mose TN, Blakeman S, Picciotto MR. Hippocampal alpha7 nicotinic ACh receptors contribute to modulation of depression-like behaviour in C57BL/6J mice. Br J Pharmacol. 2017;175:1903–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Mineur YS, Bentham MP, Zhou WL, Plantenga ME, McKee SA, Picciotto MR. Antidepressant-like effects of guanfacine and sex-specific differences in effects on c-fos immunoreactivity and paired-pulse ratio in male and female mice. Psychopharmacology. 2015;232:3539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van Enkhuizen J, Milienne-Petiot M, Geyer MA, Young JW. Modeling bipolar disorder in mice by increasing acetylcholine or dopamine: chronic lithium treats most, but not all features. Psychopharmacology. 2015;232:3455–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Druhan JP, Fibiger HC, Phillips AG. Differential effects of cholinergic drugs on discriminative cues and self-stimulation produced by electrical stimulation of the ventral tegmental area. Psychopharmacology. 1989;97:331–8.

    Article  CAS  PubMed  Google Scholar 

  80. Dori A, Soreq H. ARP, the cleavable C-terminal peptide of “readthrough” acetylcholinesterase, promotes neuronal development and plasticity. J Mol Neurosci. 2006;28:247–55.

    Article  CAS  PubMed  Google Scholar 

  81. Kaufer D, Friedman A, Seidman S, Soreq H. Anticholinesterases induce multigenic transcriptional feedback response suppressing cholinergic neurotransmission. Chem Biol Interact. 1999;119–20:349–60.

    Article  Google Scholar 

  82. Shaked I, Zimmerman G, Soreq H. Stress-induced alternative splicing modulations in brain and periphery: acetylcholinesterase as a case study. Ann N Y Acad Sci. 2008;1148:269–81.

    Article  CAS  PubMed  Google Scholar 

  83. Nijholt I, Farchi N, Kye M, Sklan EH, Shoham S, Verbeure B, et al. Stress-induced alternative splicing of acetylcholinesterase results in enhanced fear memory and long-term potentiation. Mol Psychiatry. 2004;9:174–83.

    Article  CAS  PubMed  Google Scholar 

  84. Small KM, Nunes E, Hughley S, Addy NA. Ventral tegmental area muscarinic receptors modulate depression and anxiety-related behaviors in rats. Neurosci Lett. 2016;616:80–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chau DT, Rada PV, Kim K, Kosloff RA, Hoebel BG. Fluoxetine alleviates behavioral depression while decreasing acetylcholine release in the nucleus accumbens shell. Neuropsychopharmacology. 2011;36:1729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chau DT, Rada P, Kosloff RA, Taylor JL, Hoebel BG. Nucleus accumbens muscarinic receptors in the control of behavioral depression: antidepressant-like effects of local M1 antagonist in the Porsolt swim test. Neuroscience. 2001;104:791–8.

    Article  CAS  PubMed  Google Scholar 

  87. Taylor KM, Mark GP, Hoebel BG. Conditioned taste aversion from neostigmine or methyl-naloxonium in the nucleus accumbens. Physiol Behav. 2011;104:82–86.

    Article  CAS  PubMed  Google Scholar 

  88. Chau D, Rada PV, Kosloff RA, Hoebel BG. Cholinergic, M1 receptors in the nucleus accumbens mediate behavioral depression. A possible downstream target for fluoxetine. Ann N Y Acad Sci. 1999;877:769–74.

    Article  CAS  PubMed  Google Scholar 

  89. Warner-Schmidt JL, Schmidt EF, Marshall JJ, Rubin AJ, Arango-Lievano M, Kaplitt MG, et al. Cholinergic interneurons in the nucleus accumbens regulate depression-like behavior. Proc Natl Acad Sci USA. 2012;109:11360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. El-Yousef MK, Janowsky DS, Davis JM, Rosenblatt JE. Induction of severe depression by physostigmine in marihuana intoxicated individuals. Br J Addict Alcohol Other Drugs. 1973;68:321–5.

    Article  CAS  PubMed  Google Scholar 

  91. Janowsky DS, Risch SC, Kennedy B, Ziegler M, Huey L. Central muscarinic effects of physostigmine on mood, cardiovascular function, pituitary and adrenal neuroendocrine release. Psychopharmacology. 1986;89:150–4.

    Article  CAS  PubMed  Google Scholar 

  92. Nurnberger JI Jr., Jimerson DC, Simmons-Alling S, Tamminga C, Nadi NS, Lawrence D, et al. Behavioral, physiological, and neuroendocrine responses to arecoline in normal twins and “well state” bipolar patients. Psychiatry Res. 1983;9:191–200.

    Article  PubMed  Google Scholar 

  93. Sunderland T, Tariot PN, Newhouse PA. Differential responsivity of mood, behavior, and cognition to cholinergic agents in elderly neuropsychiatric populations. Brain Res. 1988;472:371–89.

    Article  CAS  PubMed  Google Scholar 

  94. Davis KL, Hollander E, Davidson M, Davis BM, Mohs RC, Horvath TB. Induction of depression with oxotremorine in patients with Alzheimer’s disease. Am J Psychiatry. 1987;144:468–71.

    Article  CAS  PubMed  Google Scholar 

  95. Krieg JC, Berger M. Treatment of mania with the cholinomimetic agent RS 86. Br J Psychiatry. 1986;148:613.

    Article  CAS  PubMed  Google Scholar 

  96. Janowsky DS, el-Yousef MK, Davis JM. Acetylcholine and depression. Psychosom Med. 1974;36:248–57.

    Article  CAS  PubMed  Google Scholar 

  97. Janowsky DS, Risch SC, Kennedy B, Ziegler MG, Huey LY. Acute effects of physostigmine and neostigmine in man. Mil Med. 1986;151:48–51.

    Article  CAS  PubMed  Google Scholar 

  98. Dohanich GP, Johnson AE, Nock B, McEwen BS, Feder HH. Distribution of cholinergic muscarinic binding sites in guinea-pig brain as determined by in vitro autoradiography of [3H]N-methyl scopolamine binding. Eur J Pharmacol. 1985;119:9–16.

    Article  CAS  PubMed  Google Scholar 

  99. Iannazzo L, Majewski H. M(2)/M(4)-muscarinic receptors mediate automodulation of acetylcholine outflow from mouse cortex. Neurosci Lett. 2000;287:129–32.

    Article  CAS  PubMed  Google Scholar 

  100. Cannon DM, Carson RE, Nugent AC, Eckelman WC, Kiesewetter DO, Williams J, et al. Reduced muscarinic type 2 receptor binding in subjects with bipolar disorder. Arch Gen Psychiatry. 2006;63:741–7.

    Article  CAS  PubMed  Google Scholar 

  101. Charles HC, Lazeyras F, Krishnan KR, Boyko OB, Payne M, Moore D. Brain choline in depression: in vivo detection of potential pharmacodynamic effects of antidepressant therapy using hydrogen localized spectroscopy. Prog Neuropsychopharmacol Biol Psychiatry. 1994;18:1121–7.

    Article  CAS  PubMed  Google Scholar 

  102. MacMaster FP, Kusumakar V. Choline in pediatric depression. Mcgill J Med. 2006;9:24–27.

    PubMed  PubMed Central  Google Scholar 

  103. Gibbons AS, Scarr E, McLean C, Sundram S, Dean B. Decreased muscarinic receptor binding in the frontal cortex of bipolar disorder and major depressive disorder subjects. J Affect Disord. 2009;116:184–91.

    Article  CAS  PubMed  Google Scholar 

  104. Zavitsanou K, Katsifis A, Yu Y, Huang XF. M2/M4 muscarinic receptor binding in the anterior cingulate cortex in schizophrenia and mood disorders. Brain Res Bull. 2005;65:397–403.

    Article  CAS  PubMed  Google Scholar 

  105. Zavitsanou K, Katsifis A, Mattner F, Huang XF. Investigation of m1/m4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology. 2004;29:619–25.

    Article  PubMed  CAS  Google Scholar 

  106. Jeon WJ, Gibbons AS, Dean B. The use of a modified [3H]4-DAMP radioligand binding assay with increased selectivity for muscarinic M3 receptor shows that cortical CHRM3 levels are not altered in mood disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2013;47:7–12.

    Article  CAS  PubMed  Google Scholar 

  107. Milaneschi Y, Lamers F, Peyrot WJ, Abdellaoui A, Willemsen G, Hottenga JJ, et al. Polygenic dissection of major depression clinical heterogeneity. Mol Psychiatry. 2016;21:516–22.

    Article  CAS  PubMed  Google Scholar 

  108. Peterson RE, Cai N, Dahl AW, Bigdeli TB, Edwards AC, Webb BT, et al. Molecular genetic analysis subdivided by adversity exposure suggests etiologic heterogeneity in major depression. Am J Psychiatry. 2018;175:545–54.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Janowsky DS, Risch SC, Gillin JC. Adrenergic-cholinergic balance and the treatment of affective disorders. Prog Neuropsychopharmacol Biol Psychiatry. 1983;7:297–307.

    Article  CAS  PubMed  Google Scholar 

  110. Janowsky DS, Overstreet DH, Nurnberger JI Jr. Is cholinergic sensitivity a genetic marker for the affective disorders? Am J Med Genet. 1994;54:335–44.

    Article  CAS  PubMed  Google Scholar 

  111. Coid J, Strang J. Mania secondary to procyclidine (“Kemadrin”) abuse. Br J Psychiatry. 1982;141:81–84.

    Article  CAS  PubMed  Google Scholar 

  112. Smith JM. Abuse of the antiparkinson drugs: a review of the literature. J Clin Psychiatry. 1980;41:351–4.

    CAS  PubMed  Google Scholar 

  113. Jellinek T, Gardos G, Cole JO. Adverse effects of antiparkinson drug withdrawal. Am J Psychiatry. 1981;138:1567–71.

    Article  CAS  PubMed  Google Scholar 

  114. Newhouse PA, Sunderland T, Tariot PN, Weingartner H, Thompson K, Mellow AM, et al. The effects of acute scopolamine in geriatric depression. Arch Gen Psychiatry. 1988;45:906–12.

    Article  CAS  PubMed  Google Scholar 

  115. Gillin JC, Lauriello J, Kelsoe JR, Rapaport M, Golshan S, Kenny WM, et al. No antidepressant effect of biperiden compared with placebo in depression: a double-blind 6-week clinical trial. Psychiatry Res. 1995;58:99–105.

    Article  CAS  PubMed  Google Scholar 

  116. Gillin JC, Sutton L, Ruiz C, Darko D, Golshan S, Risch SC, et al. The effects of scopolamine on sleep and mood in depressed patients with a history of alcoholism and a normal comparison group. Biol Psychiatry. 1991;30:157–69.

    Article  CAS  PubMed  Google Scholar 

  117. Khajavi D, Farokhnia M, Modabbernia A, Ashrafi M, Abbasi SH, Tabrizi M, et al. Oral scopolamine augmentation in moderate to severe major depressive disorder: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry. 2012;73:1428–33.

    Article  CAS  PubMed  Google Scholar 

  118. Ghosal S, Bang E, Yue W, Hare BD, Lepack AE, Girgenti MJ, et al. Activity-dependent brain-derived neurotrophic factor release is required for the rapid antidepressant actions of scopolamine. Biol Psychiatry. 2017;83:29–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Navarria A, Wohleb ES, Voleti B, Ota KT, Dutheil S, Lepack AE, et al. Rapid antidepressant actions of scopolamine: role of medial prefrontal cortex and M1-subtype muscarinic acetylcholine receptors. Neurobiol Dis. 2015;82:254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wohleb ES, Wu M, Gerhard DM, Taylor SR, Picciotto MR, Alreja M, et al. GABA interneurons mediate the rapid antidepressant-like effects of scopolamine. J Clin Invest. 2016;126:2482–94.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Voleti B, Navarria A, Liu RJ, Banasr M, Li N, Terwilliger R, et al. Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses. Biol Psychiatry. 2013;74:742–9.

    Article  CAS  PubMed  Google Scholar 

  122. Geoffroy M, Scheel-Kruger J, Christensen AV. Effect of imipramine in the “learned helplessness” model of depression in rats is not mimicked by combinations of specific reuptake inhibitors and scopolamine. Psychopharmacology. 1990;101:371–5.

    Article  CAS  PubMed  Google Scholar 

  123. Ramaker MJ, Dulawa SC. Identifying fast-onset antidepressants using rodent models. Mol Psychiatry. 2017;22:656–65.

    Article  CAS  PubMed  Google Scholar 

  124. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Witkin JM, Overshiner C, Li X, Catlow JT, Wishart GN, Schober DA, et al. M1 and m2 muscarinic receptor subtypes regulate antidepressant-like effects of the rapidly acting antidepressant scopolamine. J Pharmacol Exp Ther. 2014;351:448–56.

    Article  CAS  PubMed  Google Scholar 

  128. Hughes JR. Tobacco withdrawal in self-quitters. J Consult Clin Psychol. 1992;60:689–97.

    Article  CAS  PubMed  Google Scholar 

  129. Hughes JR, Gust SW, Skoog K, Keenan RM, Fenwick JW. Symptoms of tobacco withdrawal. A replication and extension. Arch Gen Psychiatry. 1991;48:52–59.

    Article  CAS  PubMed  Google Scholar 

  130. Covey LS, Glassman AH, Stetner F. Depression and depressive symptoms in smoking cessation. Compr Psychiatry. 1990;31:350–4.

    Article  CAS  PubMed  Google Scholar 

  131. Covey LS, Glassman AH, Stetner F. Major depression following smoking cessation. Am J Psychiatry. 1997;154:263–5.

    Article  CAS  PubMed  Google Scholar 

  132. Shiffman S, Ferguson SG, Gwaltney CJ, Balabanis MH, Shadel WG. Reduction of abstinence-induced withdrawal and craving using high-dose nicotine replacement therapy. Psychopharmacology. 2006;184:637–44.

    Article  CAS  PubMed  Google Scholar 

  133. McClernon FJ, Hiott FB, Westman EC, Rose JE, Levin ED. Transdermal nicotine attenuates depression symptoms in nonsmokers: a double-blind, placebo-controlled trial. Psychopharmacology. 2006;189:125–33.

    Article  CAS  PubMed  Google Scholar 

  134. Salin-Pascual RJ, Rosas M, Jimenez-Genchi A, Rivera-Meza BL, Delgado-Parra V. Antidepressant effect of transdermal nicotine patches in nonsmoking patients with major depression. J Clin Psychiatry. 1996;57:387–9.

    CAS  PubMed  Google Scholar 

  135. Salin-Pascual RJ, de la Fuente JR, Galicia-Polo L, Drucker-Colin R. Effects of transderman nicotine on mood and sleep in nonsmoking major depressed patients. Psychopharmacology. 1995;121:476–9.

    Article  CAS  PubMed  Google Scholar 

  136. Markou A, Kosten TR, Koob GF. Neurobiological similarities in depression and drug dependence: a self-medication hypothesis. Neuropsychopharmacology. 1998;18:135–74.

    Article  CAS  PubMed  Google Scholar 

  137. Fava M, Ramey T, Pickering E, Kinrys G, Boyer S, Altstiel L. A randomized, double-blind, placebo-controlled phase 2 study of the augmentation of a nicotinic acetylcholine receptor partial agonist in depression: is there a relationship to leptin levels? J Clin Psychopharmacol. 2015;35:51–56.

    Article  CAS  PubMed  Google Scholar 

  138. Wang HR, Woo YS, Bahk WM. Ineffectiveness of nicotinic acetylcholine receptor antagonists for treatment-resistant depression: a meta-analysis. Int Clin Psychopharmacol. 2016;31:241–8.

    Article  PubMed  Google Scholar 

  139. Moller HJ, Demyttenaere K, Olausson B, Szamosi J, Wilson E, Hosford D, et al. Two Phase III randomised double-blind studies of fixed-dose TC-5214 (dexmecamylamine) adjunct to ongoing antidepressant therapy in patients with major depressive disorder and an inadequate response to prior antidepressant therapy. World J Biol Psychiatry. 2015;16:483–501.

    Article  PubMed  Google Scholar 

  140. Shytle RD, Silver AA, Lukas RJ, Newman MB, Sheehan DV, Sanberg PR. Nicotinic acetylcholine receptors as targets for antidepressants. Mol Psychiatry. 2002;7:525–35.

    Article  CAS  PubMed  Google Scholar 

  141. Slemmer JE, Martin BR, Damaj MI. Bupropion is a nicotinic antagonist. J Pharmacol Exp Ther. 2000;295:321–7.

    CAS  PubMed  Google Scholar 

  142. Kenny PJ, Markou A. Neurobiology of the nicotine withdrawal syndrome. Pharmacol Biochem Behav. 2001;70:531–49.

    Article  CAS  PubMed  Google Scholar 

  143. Frahm S, Slimak MA, Ferrarese L, Santos-Torres J, Antolin-Fontes B, Auer S, et al. Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula. Neuron. 2011;70:522–35.

    Article  CAS  PubMed  Google Scholar 

  144. Salas R, Pieri F, De Biasi M. Decreased signs of nicotine withdrawal in mice null for the beta4 nicotinic acetylcholine receptor subunit. J Neurosci. 2004;24:10035–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Salas R, Orr-Urtreger A, Broide RS, Beaudet A, Paylor R, De Biasi M. The nicotinic acetylcholine receptor subunit alpha 5 mediates short-term effects of nicotine in vivo. Mol Pharmacol. 2003;63:1059–66.

    Article  CAS  PubMed  Google Scholar 

  146. Upton M, Lotfipour S. alpha2-Null mutant mice have altered levels of neuronal activity in restricted midbrain and limbic brain regions during nicotine withdrawal as demonstrated by cfos expression. Biochem Pharmacol. 2015;97:558–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kenny PJ, Markou A. Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacology. 2006;31:1203–11.

    Article  CAS  PubMed  Google Scholar 

  148. Andreasen JT, Redrobe JP. Nicotine, but not mecamylamine, enhances antidepressant-like effects of citalopram and reboxetine in the mouse forced swim and tail suspension tests. Behav Brain Res. 2009;197:150–6.

    Article  CAS  PubMed  Google Scholar 

  149. Andreasen JT, Henningsen K, Bate S, Christiansen S, Wiborg O. Nicotine reverses anhedonic-like response and cognitive impairment in the rat chronic mild stress model of depression: comparison with sertraline. J Psychopharmacol. 2011;25:1134–41.

    Article  CAS  PubMed  Google Scholar 

  150. Esterlis I, Hannestad JO, Bois F, Sewell RA, Tyndale RF, Seibyl JP, et al. Imaging changes in synaptic acetylcholine availability in living human subjects. J Nucl Med. 2013;54:78–82.

    Article  PubMed  Google Scholar 

  151. Hannestad JO, Cosgrove KP, DellaGioia NF, Perkins E, Bois F, Bhagwagar Z, et al. Changes in the cholinergic system between bipolar depression and euthymia as measured with [123I]5IA single photon emission computed tomography. Biol Psychiatry. 2013;74:768–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Villegier AS, Gallager B, Heston J, Belluzzi JD, Leslie FM. Age influences the effects of nicotine and monoamine oxidase inhibition on mood-related behaviors in rats. Psychopharmacology. 2010;208:593–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tizabi Y, Overstreet DH, Rezvani AH, Louis VA, Clark E Jr., Janowsky DS, et al. Antidepressant effects of nicotine in an animal model of depression. Psychopharmacol (Berl). 1999;142:193–9.

    Article  CAS  Google Scholar 

  154. Haj-Mirzaian A, Kordjazy N, Haj-Mirzaian A, Ostadhadi S, Ghasemi M, Amiri S, et al. Evidence for the involvement of NMDA receptors in the antidepressant-like effect of nicotine in mouse forced swimming and tail suspension tests. Psychopharmacology. 2015;232:3551–61.

    Article  CAS  PubMed  Google Scholar 

  155. Vieyra-Reyes P, Mineur YS, Picciotto MR, Tunez I, Vidaltamayo R, Drucker-Colin R. Antidepressant-like effects of nicotine and transcranial magnetic stimulation in the olfactory bulbectomy rat model of depression. Brain Res Bull. 2008;77:13–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Andreasen JT, Redrobe JP. Antidepressant-like effects of nicotine and mecamylamine in the mouse forced swim and tail suspension tests: role of strain, test and sex. Behav Pharmacol. 2009;20:286–95.

    Article  CAS  PubMed  Google Scholar 

  157. Andreasen JT, Olsen GM, Wiborg O, Redrobe JP. Antidepressant-like effects of nicotinic acetylcholine receptor antagonists, but not agonists, in the mouse forced swim and mouse tail suspension tests. J Psychopharmacol. 2009;23:797–804.

    Article  CAS  PubMed  Google Scholar 

  158. Aboul-Fotouh S. Behavioral effects of nicotinic antagonist mecamylamine in a rat model of depression: prefrontal cortex level of BDNF protein and monoaminergic neurotransmitters. Psychopharmacology. 2015;232:1095–105.

    Article  CAS  PubMed  Google Scholar 

  159. Mineur YS, Fote GM, Blakeman S, Cahuzac EL, Newbold SA, Picciotto MR. Multiple nicotinic acetylcholine receptor subtypes in the mouse amygdala regulate affective behaviors and response to social stress. Neuropsychopharmacology. 2016;41:1579–87.

    Article  CAS  PubMed  Google Scholar 

  160. Rollema H, Guanowsky V, Mineur YS, Shrikhande A, Coe JW, Seymour PA, et al. Varenicline has antidepressant-like activity in the forced swim test and augments sertraline’s effect. Eur J Pharmacol. 2009;605:114–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Reperant C, Pons S, Dufour E, Rollema H, Gardier AM, Maskos U. Effect of the alpha4beta2* nicotinic acetylcholine receptor partial agonist varenicline on dopamine release in beta2 knock-out mice with selective re-expression of the beta2 subunit in the ventral tegmental area. Neuropharmacology. 2010;58:346–50.

    Article  CAS  PubMed  Google Scholar 

  162. Philip NS, Carpenter LL, Tyrka AR, Whiteley LB, Price LH. Varenicline augmentation in depressed smokers: an 8-week, open-label study. J Clin Psychiatry. 2009;70:1026–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mineur YS, Einstein EB, Seymour PA, Coe JW, O’Neill BT, Rollema H, et al. alpha 4 beta 2 nicotinic acetylcholine receptor partial agonists with low intrinsic efficacy have antidepressant-like properties. Behav Pharmacol. 2011;22:291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mineur YS, Cahuzac EL, Mose TN, Bentham MP, Plantenga ME, Thompson DC et al. Interaction between noradrenergic and cholinergic signaling in amygdala regulates anxiety- and depression-related behaviors in mice. Neuropsychopharmacology. 2018.

  165. Ballinger EC, Ananth M, Talmage DA, Role LW. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron. 2016;91:1199–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rada P, Colasante C, Skirzewski M, Hernandez L, Hoebel B. Behavioral depression in the swim test causes a biphasic, long-lasting change in accumbens acetylcholine release, with partial compensation by acetylcholinesterase and muscarinic-1 receptors. Neuroscience. 2006;141:67–76.

    Article  CAS  PubMed  Google Scholar 

  167. Singh P, Singh TG. Modulation of muscarinic system with serotonin-norepinephrine reuptake inhibitor antidepressant attenuates depression in mice. Indian J Pharmacol. 2015;47:388–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Palucha-Poniewiera A, Podkowa K, Lenda T, Pilc A. The involvement of monoaminergic neurotransmission in the antidepressant-like action of scopolamine in the tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry. 2017;79:155–61. Pt B

    Article  CAS  PubMed  Google Scholar 

  169. Beiranvand F, Zlabinger C, Orr-Urtreger A, Ristl R, Huck S, Scholze P. Nicotinic acetylcholine receptors control acetylcholine and noradrenaline release in the rodent habenulo-interpeduncular complex. Br J Pharmacol. 2014;171:5209–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Barik J, Wonnacott S. Indirect modulation by alpha7 nicotinic acetylcholine receptors of noradrenaline release in rat hippocampal slices: interaction with glutamate and GABA systems and effect of nicotine withdrawal. Mol Pharmacol. 2006;69:618–28.

    Article  CAS  PubMed  Google Scholar 

  171. Kenny PJ, File SE, Neal MJ. Evidence for a complex influence of nicotinic acetylcholine receptors on hippocampal serotonin release. J Neurochem. 2000;75:2409–14.

    Article  CAS  PubMed  Google Scholar 

  172. Dougherty JJ, Nichols RA. Cross-regulation between colocalized nicotinic acetylcholine and 5-HT3 serotonin receptors on presynaptic nerve terminals. Acta Pharmacol Sin. 2009;30:788–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Schwartz RD, Lehmann J, Kellar KJ. Presynaptic nicotinic cholinergic receptors labeled by [3H]acetylcholine on catecholamine and serotonin axons in brain. J Neurochem. 1984;42:1495–8.

    Article  CAS  PubMed  Google Scholar 

  174. Sharples CG, Kaiser S, Soliakov L, Marks MJ, Collins AC, Washburn M, et al. UB-165: a novel nicotinic agonist with subtype selectivity implicates the alpha4beta2* subtype in the modulation of dopamine release from rat striatal synaptosomes. J Neurosci. 2000;20:2783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Maggi L, Sher E, Cherubini E. Regulation of GABA release by nicotinic acetylcholine receptors in the neonatal rat hippocampus. J Physiol. 2001;536:89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Aracri P, Consonni S, Morini R, Perrella M, Rodighiero S, Amadeo A, et al. Tonic modulation of GABA release by nicotinic acetylcholine receptors in layer V of the murine prefrontal cortex. Cereb Cortex. 2010;20:1539–55.

    Article  PubMed  Google Scholar 

  177. Li DP, Pan YZ, Pan HL. Acetylcholine attenuates synaptic GABA release to supraoptic neurons through presynaptic nicotinic receptors. Brain Res. 2001;920:151–8.

    Article  CAS  PubMed  Google Scholar 

  178. Garduno J, Galindo-Charles L, Jimenez-Rodriguez J, Galarraga E, Tapia D, Mihailescu S, et al. Presynaptic alpha4beta2 nicotinic acetylcholine receptors increase glutamate release and serotonin neuron excitability in the dorsal raphe nucleus. J Neurosci. 2012;32:15148–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bortz DM, Mikkelsen JD, Bruno JP. Localized infusions of the partial alpha 7 nicotinic receptor agonist SSR180711 evoke rapid and transient increases in prefrontal glutamate release. Neuroscience. 2013;255:55–67.

    Article  CAS  PubMed  Google Scholar 

  180. Reno LA, Zago W, Markus RP. Release of [(3)H]-L-glutamate by stimulation of nicotinic acetylcholine receptors in rat cerebellar slices. Neuroscience. 2004;124:647–53.

    Article  CAS  PubMed  Google Scholar 

  181. Kim J, Isokawa M, Ledent C, Alger BE. Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus. J Neurosci. 2002;22:10182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Risch SC, Siever LJ, Gillin JC, Janowsky DS, Sitaram N, Weker J, et al. Differential mood effects of arecoline in depressed-patients and normal volunteers. Psychopharmacol Bull. 1983;19:696–8.

    Google Scholar 

  183. Casey DE. Mood alterations during deanol therapy. Psychopharmacology. 1979;62:187–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SCD was funded by a Rising Star Depression Research Award in Memory of George Largay, R21-MH115395-01, and a NARSAD Independent Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie C. Dulawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dulawa, S.C., Janowsky, D.S. Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol Psychiatry 24, 694–709 (2019). https://doi.org/10.1038/s41380-018-0219-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0219-x

This article is cited by

Search

Quick links