Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation

Abstract

The dopamine (DA) D2 receptor (D2R) is an important target for the treatment of neuropsychiatric disorders such as schizophrenia and Parkinson’s disease. However, the development of improved therapeutic strategies has been hampered by our incomplete understanding of this receptor’s downstream signaling processes in vivo and how these relate to the desired and undesired effects of drugs. D2R is a G protein-coupled receptor (GPCR) that activates G protein-dependent as well as non-canonical arrestin-dependent signaling pathways. Whether these effector pathways act alone or in concert to facilitate specific D2R-dependent behaviors is unclear. Here, we report on the development of a D2R mutant that recruits arrestin but is devoid of G protein activity. When expressed virally in “indirect pathway” medium spiny neurons (iMSNs) in the ventral striatum of D2R knockout mice, this mutant restored basal locomotor activity and cocaine-induced locomotor activity in a manner indistinguishable from wild-type D2R, indicating that arrestin recruitment can drive locomotion in the absence of D2R-mediated G protein signaling. In contrast, incentive motivation was enhanced only by wild-type D2R, signifying a dissociation in the mechanisms that underlie distinct D2R-dependent behaviors, and opening the door to more targeted therapeutics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Beninger RJ. The role of dopamine in locomotor activity and learning. Brain Res. 1983;287:173–96.

    CAS  PubMed  Google Scholar 

  2. 2.

    Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94.

    CAS  PubMed  Google Scholar 

  3. 3.

    Brozoski TJ, Brown RM, Rosvold HE, Goldman PS. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science. 1979;205:929–32.

    CAS  PubMed  Google Scholar 

  4. 4.

    Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull. 2009;35:549–62.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39:889–909.

    CAS  PubMed  Google Scholar 

  6. 6.

    Volkow ND, Fowler JS, Wang GJ, Swanson JM, Telang F. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch Neurol. 2007;64:1575–9.

    PubMed  Google Scholar 

  7. 7.

    DiMaio S, Grizenko N, Joober R. Dopamine genes and attention-deficit hyperactivity disorder: a review. J Psychiatry Neurosci. 2003;28:27–38.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Denys D, Zohar J, Westenberg HG. The role of dopamine in obsessive-compulsive disorder: preclinical and clinical evidence. J Clin Psychiatry. 2004;65(Suppl 14):11–17.

    CAS  PubMed  Google Scholar 

  9. 9.

    Buse J, Schoenefeld K, Munchau A, Roessner V. Neuromodulation in Tourette syndrome: dopamine and beyond. Neurosci Biobehav Rev. 2013;37:1069–84.

    CAS  PubMed  Google Scholar 

  10. 10.

    Seeman P. Dopamine D2 receptors as treatment targets in schizophrenia. Clin Schizophr Relat Psychoses. 2010;4:56–73.

    PubMed  Google Scholar 

  11. 11.

    Goodman LS, Gilman A, Brunton LL. Goodman & Gilman’s manual of pharmacology and therapeutics. New York: McGraw-Hill Medical; 2008. ix, 1219 pp.

    Google Scholar 

  12. 12.

    Brooks DJ. Dopamine agonists: their role in the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2000;68:685–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13:635–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Tritsch NX, Sabatini BL. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron. 2012;76:33–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63:182–217.

    CAS  PubMed  Google Scholar 

  16. 16.

    Centonze D, Grande C, Usiello A, Gubellini P, Erbs E, Martin AB, et al. Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons. J Neurosci. 2003;23:6245–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Ford CP. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience. 2014;282:13–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Wang H, Pickel VM. Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus. J Comp Neurol. 2002;442:392–404.

    CAS  PubMed  Google Scholar 

  19. 19.

    Surmeier DJ, Ding J, Day M, Wang Z, Shen W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 2007;30:228–35.

    CAS  PubMed  Google Scholar 

  20. 20.

    Burke DA, Rotstein HG, Alvarez VA. Striatal local circuitry: a new framework for lateral inhibition. Neuron. 2017;96:267–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Greengard P, Allen PB, Nairn AC. Beyond the dopamine receptor: the DARPP- 32/protein phosphatase-1 cascade. Neuron. 1999;23:435–47.

    CAS  PubMed  Google Scholar 

  22. 22.

    Surmeier DJ, Eberwine J, Wilson CJ, Cao Y, Stefani A, Kitai ST. Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc Natl Acad Sci USA. 1992;89:10178–82.

    CAS  PubMed  Google Scholar 

  23. 23.

    Surmeier DJ, Bargas J, Hemmings HC Jr., Nairn AC, Greengard P. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron. 1995;14:385–97.

    CAS  PubMed  Google Scholar 

  24. 24.

    Cepeda C, Chandler SH, Shumate LW, Levine MS. Persistent Na+ conductance in medium-sized neostriatal neurons: characterization using infrared videomicroscopy and whole cell patch-clamp recordings. J Neurophysiol. 1995;74:1343–8.

    CAS  PubMed  Google Scholar 

  25. 25.

    Hernandez-Lopez S, Bargas J, Surmeier DJ, Reyes A, Galarraga E. D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+conductance. J Neurosci. 1997;17:3334–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Schiffmann SN, Lledo PM, Vincent JD. Dopamine D1 receptor modulates the voltage- gated sodium current in rat striatal neurones through a protein kinase A. J Physiol. 1995;483(Pt 1):95–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Andersson M, Konradi C, Cenci MA. cAMP response element-binding protein is required for dopamine-dependent gene expression in the intact but not the dopamine-denervated striatum. J Neurosci. 2001;21:9930–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Free RB, Chun LS, Moritz AE, Miller BN, Doyle TB, Conroy JL, et al. Discovery and characterization of a G protein-biased agonist that inhibits beta-arrestin recruitment to the D2 dopamine receptor. Mol Pharmacol. 2014;86:96–105.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kim KM, Valenzano KJ, Robinson SR, Yao WD, Barak LS, Caron MG. Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J Biol Chem. 2001;276:37409–14.

    CAS  PubMed  Google Scholar 

  30. 30.

    DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK. Beta-arrestins and cell signaling. Annu Rev Physiol. 2007;69:483–510.

    CAS  PubMed  Google Scholar 

  31. 31.

    Allen JA, Yost JM, Setola V, Chen X, Sassano MF, Chen M, et al. Discovery of beta-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc Natl Acad Sci USA. 2011;108:18488–93.

    CAS  PubMed  Google Scholar 

  32. 32.

    Chen X, McCorvy JD, Fischer MG, Butler KV, Shen Y, Roth BL, et al. Discovery of G protein-biased D2 dopamine receptor partial agonists. J Med Chem. 2016;59:10601–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Chen X, Sassano MF, Zheng L, Setola V, Chen M, Bai X, et al. Structure-functional selectivity relationship studies of beta-arrestin-biased dopamine D(2) receptor agonists. J Med Chem. 2012;55:7141–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Conroy JL, Free RB, Sibley DR. Identification of G protein-biased agonists that fail to recruit beta-arrestin or promote internalization of the D1 dopamine receptor. ACS Chem Neurosci. 2015;6:681–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell. 2005;122:261–73.

    CAS  PubMed  Google Scholar 

  36. 36.

    Bateup HS, Santini E, Shen W, Birnbaum S, Valjent E, Surmeier DJ, et al. Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci USA. 2010;107:14845–50.

    CAS  PubMed  Google Scholar 

  37. 37.

    Gallo EF, Meszaros J, Sherman JD, Chohan MO, Teboul E, Choi CS, et al. Accumbens dopamine D2 receptors increase motivation by decreasing inhibitory transmission to the ventral pallidum. Nat Commun. 2018;9:1086.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Gallo EF, Salling MC, Feng B, Moron JA, Harrison NL, Javitch JA et al. Upregulation of dopamine D2 receptors in the nucleus accumbens indirect pathway increases locomotion but does not reduce alcohol consumption. Neuropsychopharmacology. 2015;40:1609-18.

  39. 39.

    Wang S, Che T, Levit A, Shoichet BK, Wacker D, Roth BL. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature. 2018;555:269–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Guo W, Shi L, Javitch JA. The fourth transmembrane segment forms the interface of the dopamine D2 receptor homodimer. J Biol Chem. 2003;278:4385–8.

    CAS  PubMed  Google Scholar 

  41. 41.

    Clayton CC, Donthamsetti P, Lambert NA, Javitch JA, Neve KA. Mutation of three residues in the third intracellular loop of the dopamine D2 receptor creates an internalization-defective receptor. J Biol Chem. 2014;289:33663–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Donthamsetti P, Quejada JR, Javitch JA, Gurevich VV, Lambert NA. Using Bioluminescence Resonance Energy Transfer (BRET) to characterize agonist-induced arrestin recruitment to modified and unmodified G protein-coupled receptors. Curr Protoc Pharmacol. 2015; 70:2.14.1–14.

  43. 43.

    Hamdan FF, Rochdi MD, Breton B, Fessart D, Michaud DE, Charest PG, et al. Unraveling G protein-coupled receptor endocytosis pathways using real-time monitoring of agonist-promoted interaction between beta-arrestins and AP-2. J Biol Chem. 2007;282:29089–29100.

    CAS  PubMed  Google Scholar 

  44. 44.

    Jiang LI, Collins J, Davis R, Lin KM, DeCamp D, Roach T, et al. Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. J Biol Chem. 2007;282:10576–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Neve KA, Ford CP, Buck DC, Grandy DK, Neve RL, Phillips TJ. Normalizing dopamine D2 receptor-mediated responses in D2 null mutant mice by virus-mediated receptor restoration: comparing D2L and D2S. Neuroscience. 2013;248:479–87.

    CAS  PubMed  Google Scholar 

  46. 46.

    Bohn LM, Zhou L, Ho JH. Approaches to assess functional selectivity in GPCRs: evaluating G protein signaling in an endogenous environment. Methods Mol Biol. 2015;1335:177–89.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Hua T, Vemuri K, Pu M, Qu L, Han GW, Wu Y, et al. Crystal structure of the human cannabinoid receptor CB1. Cell. 2016;167:750–62. e714

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Trifilieff P, Feng B, Urizar E, Winiger V, Ward RD, Taylor KM, et al. Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Mol Psychiatry. 2013;18:1025–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Peterson SM, Pack TF, Wilkins AD, Urs NM, Urban DJ, Bass CE, et al. Elucidation of G-protein and beta-arrestin functional selectivity at the dopamine D2 receptor. Proc Natl Acad Sci USA. 2015;112:7097–102.

    CAS  PubMed  Google Scholar 

  50. 50.

    Lan H, Liu Y, Bell MI, Gurevich VV, Neve KA. A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding. Mol Pharmacol. 2009;75:113–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Rose SJ, Pack TF, Peterson SM, Payne K, Borrelli E, Caron MG. Engineered D2R variants reveal the balanced and biased contributions of G-protein and beta-arrestin to dopamine-dependent functions. Neuropsychopharmacology. 2017;43:1164–73.

  52. 52.

    Nakajima K, Wess J. Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol Pharmacol. 2012;82:575–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Ballesteros A, Weinstein H. Integrated methods for the construction of three-dimensional models of structure−function relations in G protein-coupled receptors. Methods Neurosci. 1995;25:366–428.

    CAS  Google Scholar 

  54. 54.

    Rovati GE, Capra V, Neubig RR. The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol Pharmacol. 2007;71:959–64.

    CAS  PubMed  Google Scholar 

  55. 55.

    Gales C, Rebois RV, Hogue M, Trieu P, Breit A, Hebert TE, et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods. 2005;2:177–84.

    CAS  PubMed  Google Scholar 

  56. 56.

    Roth CB, Hanson MA, Stevens RC. Stabilization of the human beta2-adrenergic receptor TM4-TM3-TM5 helix interface by mutagenesis of Glu122(3.41), a critical residue in GPCR structure. J Mol Biol. 2008;376:1305–19.

    CAS  PubMed  Google Scholar 

  57. 57.

    Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science. 2010;330:1091–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Gazi L, Nickolls SA, Strange PG. Functional coupling of the human dopamine D2 receptor with G alphai1, G alpha i2, G alpha i3 and G alpha o G proteins: evidence for agonist regulation of G protein selectivity. Br J Pharmacol. 2003;138:775–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Lane JR, Powney B, Wise A, Rees S, Milligan G. G protein coupling and ligand selectivity of the D2L and D3 dopamine receptors. J Pharmacol Exp Ther. 2008;325:319–30.

    CAS  PubMed  Google Scholar 

  60. 60.

    Jiang M, Spicher K, Boulay G, Wang Y, Birnbaumer L. Most central nervous system D2 dopamine receptors are coupled to their effectors by Go. Proc Natl Acad Sci USA. 2001;98:3577–82.

    CAS  PubMed  Google Scholar 

  61. 61.

    Marcott PF, Gong S, Donthamsetti P, Grinnell SG, Nelson MN, Newman AH, et al. Regional heterogeneity of D2-receptor signaling in the dorsal striatum and nucleus accumbens. Neuron. 2018;98:575–87. e574

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Roberts DJ, Lin H, Strange PG. Investigation of the mechanism of agonist and inverse agonist action at D2 dopamine receptors. Biochem Pharmacol. 2004;67:1657–65.

    CAS  PubMed  Google Scholar 

  63. 63.

    Han Y, Moreira IS, Urizar E, Weinstein H, Javitch JA. Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol. 2009;5:688–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Klewe IV, Nielsen SM, Tarpo L, Urizar E, Dipace C, Javitch JA, et al. Recruitment of beta-arrestin2 to the dopamine D2 receptor: insights into anti-psychotic and anti- parkinsonian drug receptor signaling. Neuropharmacology. 2008;54:1215–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Griffin G, Atkinson PJ, Showalter VM, Martin BR, Abood ME. Evaluation of cannabinoid receptor agonists and antagonists using the guanosine-5’-O-(3-[35S]thio)-triphosphate binding assay in rat cerebellar membranes. J Pharmacol Exp Ther. 1998;285:553–60.

    CAS  PubMed  Google Scholar 

  66. 66.

    Kelly MA, Rubinstein M, Phillips TJ, Lessov CN, Burkhart-Kasch S, Zhang G, et al. Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci. 1998;18:3470–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Chausmer AL, Elmer GI, Rubinstein M, Low MJ, Grandy DK, Katz JL. Cocaine-induced locomotor activity and cocaine discrimination in dopamine D2 receptor mutant mice. Psychopharmacology (Berl). 2002;163:54–61.

    CAS  Google Scholar 

  68. 68.

    Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA. Modulation of Ca2+channels by G-protein beta gamma subunits. Nature. 1996;380:258–62.

    CAS  PubMed  Google Scholar 

  69. 69.

    Ikeda SR. Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. Nature. 1996;380:255–8.

    CAS  PubMed  Google Scholar 

  70. 70.

    Martel P, Leo D, Fulton S, Berard M, Trudeau LE. Role of Kv1 potassium channels in regulating dopamine release and presynaptic D2 receptor function. PLoS ONE. 2011;6:e20402.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010;466:622–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Cazorla M, de Carvalho FD, Chohan MO, Shegda M, Chuhma N, Rayport S, et al. Dopamine D2 receptors regulate the anatomical and functional balance of basal ganglia circuitry. Neuron. 2014;81:153–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Carvalho Poyraz F, Holzner E, Bailey MR, Meszaros J, Kenney L, Kheirbek MA, et al. Decreasing Striatopallidal Pathway Function Enhances Motivation by Energizing the Initiation of Goal-Directed Action. J Neurosci: Off J Soc Neurosci. 2016;36:5988–6001.

    Google Scholar 

  74. 74.

    Ferguson SM, Neumaier JF. Grateful DREADDs: engineered receptors reveal how neural circuits regulate behavior. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2012;37:296–7.

    Google Scholar 

  75. 75.

    Bergson C, Levenson R, Goldman-Rakic PS, Lidow MS. Dopamine receptor-interacting proteins: the Ca(2+) connection in dopamine signaling. Trends Pharmacol Sci. 2003;24:486–92.

    CAS  PubMed  Google Scholar 

  76. 76.

    Beaulieu JM, Tirotta E, Sotnikova TD, Masri B, Salahpour A, Gainetdinov RR, et al. Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo. J Neurosci. 2007;27:881–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Miller JS, Tallarida RJ, Unterwald EM. Cocaine-induced hyperactivity and sensitization are dependent on GSK3. Neuropharmacology. 2009;56:1116–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Beaulieu JM, Sotnikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainetdinov RR, et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA. 2004;101:5099–104.

    CAS  PubMed  Google Scholar 

  79. 79.

    Li YC, Xi D, Roman J, Huang YQ, Gao WJ. Activation of glycogen synthase kinase-3 beta is required for hyperdopamine and D2 receptor-mediated inhibition of synaptic NMDA receptor function in the rat prefrontal cortex. J Neurosci. 2009;29:15551–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Li YC, Gao WJ. GSK-3beta activity and hyperdopamine-dependent behaviors. Neurosci Biobehav Rev. 2011;35:645–54.

    CAS  PubMed  Google Scholar 

  81. 81.

    Cooper AJ, Stanford IM. Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABA(A) IPSCs in vitro. Neuropharmacology. 2001;41:62–71.

    CAS  PubMed  Google Scholar 

  82. 82.

    Tecuapetla F, Koos T, Tepper JM, Kabbani N, Yeckel MF. Differential dopaminergic modulation of neostriatal synaptic connections of striatopallidal axon collaterals. J Neurosci. 2009;29:8977–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Floran B, Floran L, Sierra A, Aceves J. D2 receptor-mediated inhibition of GABA release by endogenous dopamine in the rat globus pallidus. Neurosci Lett. 1997;237:1–4.

    CAS  PubMed  Google Scholar 

  84. 84.

    Kohnomi S, Koshikawa N, Kobayashi M. D(2)-like dopamine receptors differentially regulate unitary IPSCs depending on presynaptic GABAergic neuron subtypes in rat nucleus accumbens shell. J Neurophysiol. 2012;107:692–703.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Eric Teboul and Jeremy Sherman for technical assistance, and the Rodent Neurobehavioral Analysis Core at the New York Psychiatric Institute.

Author contributions

PD, EFG, DCB, ELS, YZ, and JRL performed the experiments. LMB, KAN, CK, and JAJ supervised the project. PD, EFG, CK, and JAJ wrote the manuscript, with input from JRL, LMB, and KAN. This work was supported by NIH grants DA044696 to PD, MH093672 to CK, DA009158 to LMB, MH54137 and DA022413 to JAJ, MH107648 to EFG, by Merit Review Award BX003279 to KAN from the US Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Biomedical Laboratory Research, and Development, by the Lieber Center for Schizophrenia Research, and by the Hope for Depression Research Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Javitch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Donthamsetti, P., Gallo, E.F., Buck, D.C. et al. Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation. Mol Psychiatry 25, 2086–2100 (2020). https://doi.org/10.1038/s41380-018-0212-4

Download citation

Further reading

Search

Quick links