Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shank3 mutation in a mouse model of autism leads to changes in the S-nitroso-proteome and affects key proteins involved in vesicle release and synaptic function

Abstract

Mutation in the SHANK3 human gene leads to different neuropsychiatric diseases including Autism Spectrum Disorder (ASD), intellectual disabilities and Phelan-McDermid syndrome. Shank3 disruption in mice leads to dysfunction of synaptic transmission, behavior, and development. Protein S-nitrosylation, the nitric oxide (NO)-mediated posttranslational modification (PTM) of cysteine thiols (SNO), modulates the activity of proteins that regulate key signaling pathways. We tested the hypothesis that Shank3 mutation would generate downstream effects on PTM of critical proteins that lead to modification of synaptic functions. SNO-proteins in two ASD-related brain regions, cortex and striatum of young and adult InsG3680(+/+) mice (a human mutation-based Shank3 mouse model), were identified by an innovative mass spectrometric method, SNOTRAP. We found changes of the SNO-proteome in the mutant compared to WT in both ages. Pathway analysis showed enrichment of processes affected in ASD. SNO-Calcineurin in mutant led to a significant increase of phosphorylated Synapsin1 and CREB, which affect synaptic vesicle mobilization and gene transcription, respectively. A significant increase of 3-nitrotyrosine was found in the cortical regions of the adult mutant, signaling both oxidative and nitrosative stress. Neuronal NO Synthase (nNOS) was examined for levels and localization in neurons and no significant difference was found in WT vs. mutant. S-nitrosoglutathione concentrations were higher in mutant mice compared to WT. This is the first study on NO-related molecular changes and SNO-signaling in the brain of an ASD mouse model that allows the characterization and identification of key proteins, cellular pathways, and neurobiological mechanisms that might be affected in ASD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci. 2015;16:551–63.

    CAS  PubMed  Google Scholar 

  2. Ronemus M, Iossifov I, Levy D, Wigler M. The role of de novo mutations in the genetics of autism spectrum disorders. Nat Rev Genet. 2014;15:133–41.

    CAS  PubMed  Google Scholar 

  3. Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron. 2011;70:898–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011;68:1095–102.

    PubMed  PubMed Central  Google Scholar 

  5. Modabbernia A, Velthorst E, Reichenberg A. Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Mol Autism. 2017;8:13.

    PubMed  PubMed Central  Google Scholar 

  6. Barak B, Feng G. Neurobiology of social behavior abnormalities in autism and Williams syndrome. Nat Neurosci. 2016;19:647–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Edition F, Association AP. Diagnostic and statistical manual of mental disorders. Washington: American Psychological Association; 1994.

    Google Scholar 

  8. Phelan K, McDermid H. The 22q13. 3 deletion syndrome (Phelan-McDermid syndrome). Mol Syndromol. 2011;2:186–201.

    PubMed  PubMed Central  Google Scholar 

  9. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39:25–7.

    CAS  PubMed  Google Scholar 

  10. Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Human Genet. 2007;81:1289–97.

    CAS  Google Scholar 

  11. Gauthier J, Spiegelman D, Piton A, Lafrenière RG, Laurent S, St‐Onge J, et al. Novel de novo SHANK3 mutation in autistic patients. Am J Med Genet Part B: Neuropsychiatr Genet. 2009;150:421–4.

    Google Scholar 

  12. Boccuto L, Lauri M, Sarasua SM, Skinner CD, Buccella D, Dwivedi A, et al. Prevalence of SHANK3 variants in patients with different subtypes of autism spectrum disorders. Eur J Hum Genet. 2013;21:310–6.

    CAS  PubMed  Google Scholar 

  13. Du Y, Weed SA, Xiong W-C, Marshall TD, Parsons JT. Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. Mol Cell Biol. 1998;18:5838–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron. 1999;23:569–82.

    CAS  PubMed  Google Scholar 

  15. Boeckers TM, Winter C, Smalla K-H, Kreutz MR, Bockmann J, Seidenbecher C, et al. Proline-rich synapse-associated proteins ProSAP1 and ProSAP2 interact with synaptic proteins of the SAPAP/GKAP family. Biochem Biophys Res Commun. 1999;264:247–52.

    CAS  PubMed  Google Scholar 

  16. Monteiro P, Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci. 2017;18:147–57.

    CAS  PubMed  Google Scholar 

  17. Sheng M, Kim E. The Shank family of scaffold proteins. J Cell Sci. 2000;113:1851–6.

    CAS  PubMed  Google Scholar 

  18. Sheng M, Kim E. The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol. 2011;3:a005678.

    PubMed  PubMed Central  Google Scholar 

  19. McAllister AK. Dynamic aspects of CNS synapse formation. Annu Rev Neurosci. 2007;30:425–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P, et al. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron. 1999;23:583–92.

    CAS  PubMed  Google Scholar 

  21. Baron MK, Boeckers TM, Vaida B, Faham S, Gingery M, Sawaya MR, et al. An architectural framework that may lie at the core of the postsynaptic density. Science. 2006;311:531–5.

    CAS  PubMed  Google Scholar 

  22. Kreienkamp H-J. Scaffolding proteins at the postsynaptic density: shank as the architectural framework. Handb Exp Pharmacol. 2008;186:365–80.

    CAS  Google Scholar 

  23. Peca J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472:437–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Graybiel AM. Habits, rituals, and the evaluative brain. Annu Rev Neurosci. 2008;31:359–87.

    CAS  PubMed  Google Scholar 

  25. Ting JT, Feng G. Neurobiology of obsessive–compulsive disorder: insights into neural circuitry dysfunction through mouse genetics. Curr Opin Neurobiol. 2011;21:842–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shepherd GM. Corticostriatal connectivity and its role in disease. Nat Rev Neurosci. 2013;14:278–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Muehlmann A, Lewis M. Abnormal repetitive behaviours: shared phenomenology and pathophysiology. J Intellect Disabil Res. 2012;56:427–40.

    CAS  PubMed  Google Scholar 

  28. Welch JM, Lu J, Rodriguiz RM, Trotta NC, Peca J, Ding J-D, et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature. 2007;448:894–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou Y, Kaiser T, Monteiro P, Zhang X, Van der Goes MS, Wang D, et al. Mice with Shank3 mutations associated with ASD and schizophrenia display both shared and distinct defects. Neuron. 2016;89:147–62.

    CAS  PubMed  Google Scholar 

  30. Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism. 2010;1:15.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dichter GS. Functional magnetic resonance imaging of autism spectrum disorders. Dialog- Clin Neurosci. 2012;14:319–51.

    Google Scholar 

  32. Mei Y, Monteiro P, Zhou Y, Kim J-A, Gao X, Fu Z, et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature. 2016;530:481–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ting JT, Peça J, Feng G. Functional consequences of mutations in postsynaptic scaffolding proteins and relevance to psychiatric disorders. Annu Rev Neurosci. 2012;35:49–71.

    CAS  PubMed  Google Scholar 

  34. Peça J, Feng G. Cellular and synaptic network defects in autism. Curr Opin Neurobiol. 2012;22:866–72.

    PubMed  PubMed Central  Google Scholar 

  35. Snyder SH, Bredt DS. Biological roles of nitric oxide. Sci Am. 1992;266:68–71.

    CAS  PubMed  Google Scholar 

  36. Bredt D, Snyder S. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–95.

    CAS  PubMed  Google Scholar 

  37. Bredt DS, Hwang PM. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991;351:714.

    CAS  PubMed  Google Scholar 

  38. Förstermann U, Schmidt HH, Pollock JS, Sheng H, Mitchell JA, Warner TD, et al. Isoforms of nitric oxide synthase characterization and purification from different cell types. Biochem Pharmacol. 1991;42:1849–57.

    PubMed  Google Scholar 

  39. Nakamura T, Prikhodko OA, Pirie E, Nagar S, Akhtar MW, Oh C-K, et al. Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiol Dis. 2015;84:99–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Garry P, Ezra M, Rowland M, Westbrook J, Pattinson K. The role of the nitric oxide pathway in brain injury and its treatment—from bench to bedside. Exp Neurol. 2015;263:235–43.

    CAS  PubMed  Google Scholar 

  41. Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol. 2001;3:193–7.

    CAS  PubMed  Google Scholar 

  42. Smith BC, Marletta MA. Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Curr Opin Chem Biol. 2012;16:498–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakamura T, Tu S, Akhtar MW, Sunico CR, Okamoto Si, Lipton SA. Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron. 2013;78:596–614.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Seth D, Hess DT, Hausladen A, Wang L, Wang Y-j, Stamler JS. A multiplex enzymatic machinery for cellular protein S-nitrosylation. Mol Cell. 2018;69:451–.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cakatay U, Telci A, Kayali R, Tekeli F, Akcay T, Sivas A. Relation of oxidative protein damage and nitrotyrosine levels in the aging rat brain. Exp Gerontol. 2001;36:221–9.

    CAS  PubMed  Google Scholar 

  46. Darwish RS, Amiridze N, Aarabi B. Nitrotyrosine as an oxidative stress marker: evidence for involvement in neurologic outcome in human traumatic brain injury. J Trauma Acute Care Surg. 2007;63:439–42.

    Google Scholar 

  47. Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys. 1992;298:431–7.

    CAS  PubMed  Google Scholar 

  48. Stamler JS, Lamas S, Fang FC. Nitrosylation: the prototypic redox-based signaling mechanism. Cell . 2001;106:675–83.

    CAS  PubMed  Google Scholar 

  49. Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA. 1992;89:444–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Qu J, Nakamura T, Cao G, Holland EA, McKercher SR, Lipton SA. S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by β-amyloid peptide. Proc Natl Acad Sci USA. 2011;108:14330–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Uehara T, Nakamura T, Yao D, Shi Z-Q, Gu Z, Ma Y, et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature. 2006;441:513–7.

    CAS  PubMed  Google Scholar 

  52. Shi Z-Q, Sunico CR, McKercher SR, Cui J, Feng G-S, Nakamura T, et al. S-nitrosylated SHP-2 contributes to NMDA receptor-mediated excitotoxicity in acute ischemic stroke. Proc Natl Acad Sci USA. 2013;110:3137–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Seneviratne U, Nott A, Bhat VB, Ravindra KC, Wishnok JS, Tsai L-H, et al. S-nitrosation of proteins relevant to Alzheimer’s disease during early stages of neurodegeneration. Proc Natl Acad Sci USA. 2016;113:4152–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Haun F, Nakamura T, Shiu AD, Cho D-H, Tsunemi T, Holland EA, et al. S-nitrosylation of dynamin-related protein 1 mediates mutant huntingtin-induced mitochondrial fragmentation and neuronal injury in Huntington’s disease. Antioxid Redox Signal. 2013;19:1173–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chung KK, Dawson VL, Dawson TM. S‐Nitrosylation in Parkinson’s disease and related neurodegenerative disorders. Methods Enzymol. 2005;396:139–50.

    CAS  PubMed  Google Scholar 

  56. Sun N, Hao J-R, Li X-Y, Yin X, Zong Y-Y, Zhang G, et al. GluR6-FasL-Trx2 mediates denitrosylation and activation of procaspase-3 in cerebral ischemia/reperfusion in rats. Cell Death Dis. 2013;4:e771.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Benhar M, Forrester MT, Stamler JS. Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol. 2009;10:721–32.

    CAS  PubMed  Google Scholar 

  58. Anand P, Stamler JS. Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease. J Mol Med. 2012;90:233–44.

    CAS  PubMed  Google Scholar 

  59. Barglow KT, Knutson CG, Wishnok JS, Tannenbaum SR, Marletta MA. Site-specific and redox-controlled S-nitrosation of thioredoxin. Proc Natl Acad Sci USA. 2011;108:E600–E6.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Broek JA, Guest PC, Rahmoune H, Bahn S. Proteomic analysis of post mortem brain tissue from autism patients: evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity-related proteins. Mol Autism. 2014;5:41.

    PubMed  PubMed Central  Google Scholar 

  61. Wesseling H, Xu B, Want E, Holmes E, Guest P, Karayiorgou M, et al. System-based proteomic and metabonomic analysis of the Df (16) A + /− mouse identifies potential miR-185 targets and molecular pathway alterations. Mol Psychiatry. 2017;22:384–95.

    CAS  PubMed  Google Scholar 

  62. Reim D, Distler U, Halbedl S, Verpelli C, Sala C, Bockmann J, et al. Proteomic analysis of post-synaptic density fractions from Shank3 mutant mice reveals brain region specific changes relevant to autism spectrum disorder. Front Mol Neurosci. 2017;10:26.

    PubMed  PubMed Central  Google Scholar 

  63. Raju K, Doulias P-T, Evans P, Krizman EN, Jackson JG, Horyn O, et al. Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation. Sci Signal. 2015;8:ra68.

    PubMed  PubMed Central  Google Scholar 

  64. Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA. 1990;87:682–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tannenbaum SR,White FM, Regulation and specificity of S-nitrosylation and denitrosylation. ACS Chem Biol. 2006;1:615–8.

    CAS  PubMed  Google Scholar 

  66. Seneviratne U, Godoy LC, Wishnok JS, Wogan GN, Tannenbaum SR. Mechanism-based triarylphosphine-ester probes for capture of endogenous RSNOs. J Am Chem Soc. 2013;135:7693–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wen Y, Alshikho MJ, Herbert MR. Pathway network analyses for autism reveal multisystem involvement, major overlaps with other diseases and convergence upon MAPK and calcium signaling. PLoS ONE. 2016;11:e0153329.

    PubMed  PubMed Central  Google Scholar 

  68. Miraldi ER, Sharfi H, Friedline RH, Johnson H, Zhang T, Lau KS, et al. Molecular network analysis of phosphotyrosine and lipid metabolism in hepatic PTP1b deletion mice. Integrative. Biology. 2013;5:940–63.

    CAS  Google Scholar 

  69. Botstein D, Cherry JM, Ashburner M, Ball C, Blake J, Butler H, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.

    PubMed  PubMed Central  Google Scholar 

  70. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2016;45:D353–D61.

    PubMed  PubMed Central  Google Scholar 

  71. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRINGv10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2014;43:D447–D52.

    PubMed  PubMed Central  Google Scholar 

  72. Wang X, Garcia TC, Gong G, Wishnok SJ, Tannenbaum RS. Automated online solid phase derivatization for sensitive quantification of endogenous S-nitrosoglutathione and rapid capture of other low-molecular-mass S-nitrosothiols. Anal Chem. 2017;90:1967–75.

    Google Scholar 

  73. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4:44.

    Google Scholar 

  74. Dedon PC, Tannenbaum SR. Reactive nitrogen species in the chemical biology of inflammation. Arch Biochem Biophys. 2004;423:12–22.

    CAS  PubMed  Google Scholar 

  75. Sommer D, Coleman S, Swanson SA, Stemmer PM. Differential susceptibilities of serine/threonine phosphatases to oxidative and nitrosative stress. Arch Biochem Biophys. 2002;404:271–8.

    CAS  PubMed  Google Scholar 

  76. Chi P, Greengard P, Ryan TA. Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron. 2003;38:69–78.

    CAS  PubMed  Google Scholar 

  77. Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002;35:605–23.

    CAS  PubMed  Google Scholar 

  78. Bidinosti M, Botta P, Krüttner S, Proenca CC, Stoehr N, Bernhard M, et al. CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science. 2016;351:1199–203.

    CAS  PubMed  Google Scholar 

  79. Bourgeron T. A synaptic trek to autism. Curr Opin Neurobiol. 2009;19:231–4.

    CAS  PubMed  Google Scholar 

  80. Lee J, Chung C, Ha S, Lee D, Kim D-Y, Kim H, et al. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit. Front Cell Neurosci. 2015;9:94.

    PubMed  PubMed Central  Google Scholar 

  81. Baumgärtel K, Mansuy IM. Neural functions of calcineurin in synaptic plasticity and memory. Learn Mem. 2012;19:375–84.

    PubMed  Google Scholar 

  82. Mansuy IM. Calcineurin in memory and bidirectional plasticity. Biochem Biophys Res Commun. 2003;311:1195–208.

    CAS  PubMed  Google Scholar 

  83. Dineley KT, Kayed R, Neugebauer V, Fu Y, Zhang W, Reese LC, et al. Amyloid‐β oligomers impair fear conditioned memory in a calcineurin‐dependent fashion in mice. J Neurosci Res. 2010;88:2923–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Rachidi M, Lopes C. Molecular and cellular mechanisms elucidating neurocognitive basis of functional impairments associated with intellectual disability in Down syndrome. Am J Intellect Dev Disabil. 2010;115:83–112.

    PubMed  Google Scholar 

  85. Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, Zeng H, et al. Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc Natl Acad Sci USA. 2003;100:8987–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Jovanovic JN, Sihra TS, Nairn AC, Hemmings HC, Greengard P, Czernik AJ. Opposing changes in phosphorylation of specific sites in synapsin I during Ca2+-dependent glutamate release in isolated nerve terminals. J Neurosci. 2001;21:7944–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ceccaldi P-E, Grohovaz F, Benfenati F, Chieregatti E, Greengard P, Valtorta F. Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by videomicroscopy. J Cell Biol. 1995;128:905–12.

    CAS  PubMed  Google Scholar 

  88. Greengard P, Valtorta F, Czernik AJ, Benfenati F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Sci-New Y Then Wash. 1993;259:780–5.

    CAS  Google Scholar 

  89. Bito H, Deisseroth K, Tsien RW. CREB phosphorylation and dephosphorylation: a Ca2+and stimulus duration–dependent switch for hippocampal gene expression. Cell. 1996;87:1203–14.

    CAS  PubMed  Google Scholar 

  90. Siemann G, Blume R, Grapentin D, Oetjen E, Schwaninger M, Knepel W. Inhibition of cyclic AMP response element-binding protein/cyclic AMP response element-mediated transcription by the immunosuppressive drugs cyclosporin A and FK506 depends on the promoter context. Mol Pharmacol. 1999;55:1094–100.

    CAS  PubMed  Google Scholar 

  91. Chang KT, Berg DK. Voltage-gated channels block nicotinic regulation of CREB phosphorylation and gene expression in neurons. Neuron. 2001;32:855–65.

    CAS  PubMed  Google Scholar 

  92. He X, Thacker S, Romigh T, Yu Q, Frazier TW, Eng C. Cytoplasm-predominant Pten associates with increased region-specific brain tyrosine hydroxylase and dopamine D2 receptors in mouse model with autistic traits. Mol Autism. 2015;6:63.

    PubMed  PubMed Central  Google Scholar 

  93. Wang H, Morishita Y, Miura D, Naranjo JR, Kida S, Zhuo M. Roles of CREB in the regulation of FMRP by group I metabotropic glutamate receptors in cingulate cortex. Mol Brain. 2012;5:27.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Onore C, Yang H, Van de Water J, Ashwood P. Dynamic akt/mTOr signaling in children with autism spectrum Disorder. Front Pediatr. 2017;5:43.

    PubMed  PubMed Central  Google Scholar 

  95. Gilbert J, Man H. Translational dysregulation in autism. Cell Dev Biol. 2014;3:e124.

    Google Scholar 

  96. Wu MN, Fergestad T, Lloyd TE, He Y, Broadie K, Bellen HJ. Syntaxin 1A interacts with multiple exocytic proteins to regulate neurotransmitter release in vivo. Neuron. 1999;23:593–605.

    CAS  PubMed  Google Scholar 

  97. Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993;362:318–24.

    PubMed  Google Scholar 

  98. Palmer ZJ, Duncan RR, Johnson JR, Lian L-Y, Mello LV, Booth D, et al. S-nitrosylation of syntaxin 1 at Cys145 is a regulatory switch controlling Munc18-1 binding. Biochem J. 2008;413:479–91.

    CAS  PubMed  Google Scholar 

  99. Meffert MK, Calakos NC, Scheller RH, Schulman H. Nitric oxide modulates synaptic vesicle docking/fusion reactions. Neuron. 1996;16:1229–36.

    CAS  PubMed  Google Scholar 

  100. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010;50:295–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Muto T, Tsuchiya D, Morikawa K, Jingami H. Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc Natl Acad Sci USA. 2007;104:3759–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Peixoto RT, Wang W, Croney DM, Kozorovitskiy Y, Sabatini BL. Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3B−/− mice. Nat Neurosci. 2016;19:716.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Peluffo H, Shacka JJ, Ricart K, Bisig CG, Martìnez‐Palma L, Pritsch O, et al. Induction of motor neuron apoptosis by free 3‐nitro‐l‐tyrosine. J Neurochem. 2004;89:602–12.

    CAS  PubMed  Google Scholar 

  104. Kuhn DM, Sakowski SA, Sadidi M, Geddes TJ. Nitrotyrosine as a marker for peroxynitrite‐induced neurotoxicity: The beginning or the end of the end of dopamine neurons? J Neurochem. 2004;89:529–36.

    CAS  PubMed  Google Scholar 

  105. Jia J, Arif A, Terenzi F, Willard B, Plow EF, Hazen SL, et al. Target-selective protein S-nitrosylation by sequence motif recognition. Cell . 2014;159:623–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tang C-H, Wei W, Hanes MA, Liu L. Hepatocarcinogenesis driven by GSNOR deficiency is prevented by iNOS inhibition. Cancer Res. 2013;73:2897–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sips PY, Irie T, Zou L, Shinozaki S, Sakai M, Shimizu N, et al. Reduction of cardiomyocyte S-nitrosylation by S-nitrosoglutathione reductase protects against sepsis-induced myocardial depression. Am J Physiol-Heart Circ Physiol. 2013;304:H1134–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wei W, Li B, Hanes MA, Kakar S, Chen X, Liu L. S-nitrosylation from GSNOR deficiency impairs DNA repair and promotes hepatocarcinogenesis. Sci Transl Med. 2010;2:19ra3.

    Google Scholar 

  109. Arons MH, Thynne CJ, Grabrucker AM, Li D, Schoen M, Cheyne JE, et al. Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin–neuroligin-mediated transsynaptic signaling. J Neurosci. 2012;32:14966–78.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the MIT Center for Environmental Health Sciences Grant ES002109 and a grant from the Simons Foundation to the Simons Center for the Social Brain at MIT (SRT). Dr. Haitham Amal was supported by the Satell Technion-MIT Post-Doctoral Program. Research related to this project in the Feng lab was supported by NIMH (MH097104), Stanley Center for Psychiatric Research at Broad Institute of MIT and Harvard, Nancy Lurie Marks Family Foundation and Simons Center for the Social Brain at MIT. Dr. Boaz Barak was supported by postdoctoral fellowships from the Simons Center for the Social Brain at MIT and the Autism Science Foundation. Brian Joughin was supported by Army Research Office Institute for Collaborative Biotechnologies grant W911NF-09-0001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haitham Amal or Steven R. Tannenbaum.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Information

Plots of the number of proteins identified for each subset of 6 replicates

SNO-protein interactomes of InsG3680(+/+) groups

SNO-protein interactomes of WT groups

41380_2018_113_MOESM5_ESM.tif

Lists of proteins in 6w-cor-KO and 4m-cor-KO that were clustered in String and are functioning in processes known to be correlated with ASD

Venn diagrams comparing 6w-old and 4m-old mice

Ntyr staining intensity of cortical and striatal regions in 6 week-old mice

Ntyr staining intensity of cortical and striatal regions in 4 month-old mice

Nitrotyrosine IHC staining

nNOS levels quantification

Lists of SNO-proteins of the tested groups and of the overlap between the WT and InsG3680(+/+) groups

Lists of GO and KEGG terms of the tested groups

41380_2018_113_MOESM13_ESM.xlsx

Lists of proteins that were enriched in important pathways and processes and are found in cor-KO groups, not in cor-WT groups

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amal, H., Barak, B., Bhat, V. et al. Shank3 mutation in a mouse model of autism leads to changes in the S-nitroso-proteome and affects key proteins involved in vesicle release and synaptic function. Mol Psychiatry 25, 1835–1848 (2020). https://doi.org/10.1038/s41380-018-0113-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0113-6

This article is cited by

Search

Quick links