Subthalamic nucleus high frequency stimulation prevents and reverses escalated cocaine use

Abstract

One of the key features of addiction is the escalated drug intake. The neural mechanisms involved in the transition to addiction remain to be elucidated. Since abnormal neuronal activity within the subthalamic nucleus (STN) stands as potential general neuromarker common to impulse control spectrum deficits, as observed in obsessive–compulsive disorders, the present study recorded and manipulated STN neuronal activity during the initial transition to addiction (i.e., escalation) and post-abstinence relapse (i.e., re-escalation) in rats with extended drug access. We found that low-frequency (theta and beta bands) neuronal oscillations in the STN increase with escalation of cocaine intake and that either lesion or high-frequency stimulation prevents the escalation of cocaine intake. STN–HFS also reduces re-escalation after prolonged, but not short, protracted abstinence, suggesting that STN–HFS is an effective prevention for relapse when baseline rates of self-administration have been re-established. Thus, STN dysfunctions may represent an underlying mechanism for cocaine addiction and therefore a promising target for the treatment of addiction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Lazzaro VD. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci. 2001;21:1033–8.

    CAS  Article  Google Scholar 

  2. 2.

    Limousin P, Pollak P, Benazzouz A, Hoffmann D, Broussolle E, Perret JE, et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 1995;345:91–95.

    CAS  Article  Google Scholar 

  3. 3.

    Eusebio A, Cagnan H, Brown P. Does suppression of oscillatory synchronisation mediate some of the therapeutic effects of DBS in patients with Parkinson’s disease? Front Integr Neurosci. 2012;6:47.

    Article  Google Scholar 

  4. 4.

    Baunez C, Lardeux S. Frontal cortex-like functions of the subthalamic nucleus. Front Syst Neurosci. 2011;5.

  5. 5.

    Eagle DM, Baunez C. Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neurosci Biobehav Rev. 2010;34:50–72.

    Article  Google Scholar 

  6. 6.

    Welter M-L, Burbaud P, Fernandez-Vidal S, Bardinet E, Coste J, Piallat B, et al. Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy. Transl Psychiatry. 2011;1:e5.

    Article  Google Scholar 

  7. 7.

    Darbaky Y, Baunez C, Arecchi P, Legallet E, Apicella P. Reward-related neuronal activity in the subthalamic nucleus of the monkey. Neuroreport. 2005;16:1241–4.

    Article  Google Scholar 

  8. 8.

    Lardeux S, Pernaud R, Paleressompoulle D, Baunez C. Beyond the reward pathway: coding reward magnitude and error in the rat subthalamic nucleus. J Neurophysiol. 2009;102:2526–37.

    Article  Google Scholar 

  9. 9.

    Lardeux S, Paleressompoulle D, Pernaud R, Cador M, Baunez C. Different populations of subthalamic neurons encode cocaine vs. sucrose reward and predict future error. J Neurophysiol. 2013;110:1497–510.

    CAS  Article  Google Scholar 

  10. 10.

    Breysse E, Pelloux Y, Baunez C. The good and bad differentially encoded within the subthalamic nucleus in rats. eNeuro. 2015;2:e0014–15.

    Article  Google Scholar 

  11. 11.

    Zénon A, Duclos Y, Carron R, Witjas T, Baunez C, Régis J, et al. The human subthalamic nucleus encodes the subjective value of reward and the cost of effort during decision-making. Brain J Neurol. 2016;139:1830–43.

    Article  Google Scholar 

  12. 12.

    Ahmed SH, Koob GF. Transition from moderate to excessive drug intake: change in hedonic set point. Science. 1998;282:298–300.

    CAS  Article  Google Scholar 

  13. 13.

    Ahmed SH. The science of making drug-addicted animals. Neuroscience. 2012;211:107–25.

    CAS  Article  Google Scholar 

  14. 14.

    Baunez C, Dias C, Cador M, Amalric M. The subthalamic nucleus exerts opposite control on cocaine and ‘natural’ rewards. Nat Neurosci. 2005;8:484–9.

    CAS  Article  Google Scholar 

  15. 15.

    Rouaud T, Lardeux S, Panayotis N, Paleressompoulle D, Cador M, Baunez C. Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc Natl Acad Sci USA. 2010;107:1196–1200.

    CAS  Article  Google Scholar 

  16. 16.

    Pelloux Y, Baunez C. Deep brain stimulation for addiction: why the subthalamic nucleus should be favored. Curr Opin Neurobiol. 2013;23:713–20.

    CAS  Article  Google Scholar 

  17. 17.

    Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 2013. 7th edn. Academic Press, Cambridge.

  18. 18.

    Darbaky Y, Forni C, Amalric M, Baunez C. High frequency stimulation of the subthalamic nucleus has beneficial antiparkinsonian effects on motor functions in rats, but less efficiency in a choice reaction time task. Eur J Neurosci. 2003;18:951–6.

    Article  Google Scholar 

  19. 19.

    Guillem K, Ahmed SH, Peoples LL. Escalation of cocaine intake and incubation of cocaine seeking are correlated with dissociable neuronal processes in different accumbens subregions. Biol Psychiatry. 2014;76:31–9.

    CAS  Article  Google Scholar 

  20. 20.

    Wade CL, Kallupi M, Hernandez DO, Breysse E, de Guglielmo G, Crawford E, et al. High-frequency stimulation of the subthalamic nucleus blocks compulsive-like re-escalation of heroin taking in rats. Neuropsychopharmacol. 2017;42:1850–9.

    Article  Google Scholar 

  21. 21.

    Roth ME, Carroll ME. Sex differences in the escalation of intravenous cocaine intake following long- or short-access to cocaine self-administration. Pharmacol Biochem Behav. 2004;78:199–207.

    CAS  Article  Google Scholar 

  22. 22.

    Wee S, Mandyam CD, Lekic DM, Koob GF. Alpha 1-noradrenergic system role in increased motivation for cocaine intake in rats with prolonged access. Eur Neuropsychopharmacol. 2008;18:303–11.

    CAS  Article  Google Scholar 

  23. 23.

    Mantsch JR, Yuferov V, Mathieu-Kia A-M, Ho A, Kreek MJ. Effects of extended access to high versus low cocaine doses on self-administration, cocaine-induced reinstatement and brain mRNA levels in rats. Psychopharmacology. 2004;175:26–36.

    CAS  Article  Google Scholar 

  24. 24.

    Vanderschuren LJMJ, Everitt BJ. Drug seeking becomes compulsive after prolonged cocaine self-administration. Science. 2004;305:1017–9.

    CAS  Article  Google Scholar 

  25. 25.

    Meissner W, Leblois A, Hansel D, Bioulac B, Gross CE, Benazzouz A, et al. Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain. 2005;128:2372–82.

    Article  Google Scholar 

  26. 26.

    Mallet N, Pogosyan A, Sharott A, Csicsvari J, Bolam JP, Brown P, et al. Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J Neurosci 2008;28:4795–806.

    CAS  Article  Google Scholar 

  27. 27.

    Ahmed SH, Kenny PJ, Koob GF, Markou A. Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nat Neurosci. 2002;5:625–6.

    CAS  Article  Google Scholar 

  28. 28.

    Alcaro A, Panksepp J. The SEEKING mind: primal neuro-affective substrates for appetitive incentive states and their pathological dynamics in addictions and depression. Neurosci Biobehav Rev. 2011;35:1805–20.

    Article  Google Scholar 

  29. 29.

    Magill PJ, Bolam JP, Bevan MD. Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience. 2001;106:313–30.

    CAS  Article  Google Scholar 

  30. 30.

    Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO. Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain J Neurol. 2002;125:1196–209.

    Article  Google Scholar 

  31. 31.

    Hamani C, Florence G, Heinsen H, Plantinga BR, Temel Y, Uludag K, et al. Subthalamic nucleus deep brain stimulation: basic concepts and novel perspectives. eNeuro. 2017;4:140–17.

    Article  Google Scholar 

  32. 32.

    Deffains M, Iskhakova L, Katabi S, Haber SN, Israel Z, Bergman H. Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys. eLife. 2016;5:e16443.

    Article  Google Scholar 

  33. 33.

    Bergman H, Wichmann T, Karmon B, DeLong MR. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol. 1994;72:507–20.

    CAS  Article  Google Scholar 

  34. 34.

    Degos B, Deniau J-M, Thierry A-M, Glowinski J, Pezard L, Maurice N. Neuroleptic-induced catalepsy: electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus. J Neurosci. 2005;25:7687–96.

    CAS  Article  Google Scholar 

  35. 35.

    Delaville C, McCoy AJ, Gerber CM, Cruz AV, Walters JR. Subthalamic nucleus activity in the awake hemiparkinsonian rat: relationships with motor and cognitive networks. J Neurosci. 2015;35:6918–30.

    CAS  Article  Google Scholar 

  36. 36.

    Huebl J, Spitzer B, Brücke C, Schönecker T, Kupsch A, Alesch F, et al. Oscillatory subthalamic nucleus activity is modulated by dopamine during emotional processing in Parkinson’s disease. Cortex. 2014;60:69–81.

    Article  Google Scholar 

  37. 37.

    Pelloux Y, Meffre J, Giorla E, Baunez C. The subthalamic nucleus keeps you high on emotion: behavioral consequences of its inactivation. Front Behav Neurosci. 2014;8:414.

    Article  Google Scholar 

  38. 38.

    Priori A, Foffani G, Pesenti A, Tamma F, Bianchi AM, Pellegrini M, et al. Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp Neurol. 2004;189:369–79.

    CAS  Article  Google Scholar 

  39. 39.

    Baunez C, Nieoullon A, Amalric M. In a rat model of parkinsonism, lesions of the subthalamic nucleus reverse increases of reaction time but induce a dramatic premature responding deficit. J Neurosci. 1995;15:6531–41.

    CAS  Article  Google Scholar 

  40. 40.

    Baunez C, Robbins TW. Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attentional task in rats. Eur J Neurosci. 1997;9:2086–99.

    CAS  Article  Google Scholar 

  41. 41.

    Baunez C, Humby T, Eagle DM, Ryan LJ, Dunnett SB, Robbins TW. Effects of STN lesions on simple vs choice reaction time tasks in the rat: preserved motor readiness, but impaired response selection. Eur J Neurosci. 2001;13:1609–16.

    CAS  Article  Google Scholar 

  42. 42.

    Adams WK, Vonder Haar C, Tremblay M, Cocker PJ, Silveira MM, Kaur S, et al. Deep-brain stimulation of the subthalamic nucleus selectively decreases risky choice in risk-preferring rats. eNeuro. 2017;4:e94–17.

    Article  Google Scholar 

  43. 43.

    Mallet L, Polosan M, Jaafari N, Baup N, Welter M-L, Fontaine D, et al. Subthalamic nucleus stimulation in severe obsessive–compulsive disorder. N Engl J Med. 2008;359:2121–34.

    CAS  Article  Google Scholar 

  44. 44.

    de Hemptinne C, Swann NC, Ostrem JL, Ryapolova-Webb ES, San Luciano M, Galifianakis NB, et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci. 2015;18:779–86.

    Article  Google Scholar 

  45. 45.

    Hachem-Delaunay S, Fournier M-L, Cohen C, Bonneau N, Cador M, Baunez C, et al. Subthalamic nucleus high-frequency stimulation modulates neuronal reactivity to cocaine within the reward circuit. Neurobiol Dis. 2015;80:54–62.

    CAS  Article  Google Scholar 

  46. 46.

    Paul Krack, Marwan I. Hariz, Christelle Baunez, Jorge Guridi, Jose A. Obeso. Deep brain stimulation: from neurology to psychiatry? Trends in Neurosciences. 2010;33:474–84.

    CAS  Article  Google Scholar 

  47. 47.

    Luigjes J, van den Brink W, Feenstra M, van den Munckhof P, Schuurman PR, Schippers R, et al. Deep brain stimulation in addiction: a review of potential brain targets. Mol Psychiatry. 2012;17:572–83.

    CAS  Article  Google Scholar 

  48. 48.

    Vassoler FM, Schmidt HD, Gerard ME, Famous KR, Ciraulo DA, Kornetsky C, et al. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug seeking in rats. J Neurosci. 2008;28:8735–9.

    CAS  Article  Google Scholar 

  49. 49.

    Creed M, Pascoli VJ, Lüscher C. Addiction therapy. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science. 2015;347:659–64.

    CAS  Article  Google Scholar 

  50. 50.

    Eusebio A, Witjas T, Cohen J, Fluchère F, Jouve E, Régis J, et al. Subthalamic nucleus stimulation and compulsive use of dopaminergic medication in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2013;84:868–74.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. P Carrieri, C Bernard, P Belin, F Brocard, and G Masson for critical reading of the manuscript and the technical support from J. Baurberg and animal facilities personal. This research was funded by CNRS, Aix-Marseille Université (AMU), the “Agence Nationale pour la Recherche” (ANR_2010-NEUR-005-01 in the framework of the ERA-Net NEURON to CB and supporting to YP), the Fondation pour la Recherche Médicale (FRM DPA20140629789 to CB), National Institutes of Health grants DA (DA029821 to GFK) from the National Institute on Drug Abuse and the Fondation de l’Avenir (ET2-655 to CB).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christelle Baunez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pelloux, Y., Degoulet, M., Tiran-Cappello, A. et al. Subthalamic nucleus high frequency stimulation prevents and reverses escalated cocaine use. Mol Psychiatry 23, 2266–2276 (2018). https://doi.org/10.1038/s41380-018-0080-y

Download citation

Further reading

Search

Quick links