Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Biological annotation of genetic loci associated with intelligence in a meta-analysis of 87,740 individuals

Abstract

Variance in IQ is associated with a wide range of health outcomes, and 1% of the population are affected by intellectual disability. Despite a century of research, the fundamental neural underpinnings of intelligence remain unclear. We integrate results from genome-wide association studies (GWAS) of intelligence with brain tissue and single cell gene expression data to identify tissues and cell types associated with intelligence. GWAS data for IQ (N = 78,308) were meta-analyzed with a study comparing 1247 individuals with mean IQ ~170 to 8185 controls. Genes associated with intelligence implicate pyramidal neurons of the somatosensory cortex and CA1 region of the hippocampus, and midbrain embryonic GABAergic neurons. Tissue-specific analyses find the most significant enrichment for frontal cortex brain expressed genes. These results suggest specific neuronal cell types and genes may be involved in intelligence and provide new hypotheses for neuroscience experiments using model systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature. 2016;533:539–42.

    Article  CAS  Google Scholar 

  2. Lo M-T, Hinds DA, Tung JY, Franz C, Fan C-C, Wang Y, et al. Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders. Nat Genet. 2016;49:152–6. 10.1038/ng.3736.

    Article  Google Scholar 

  3. Sullivan PF, Agrawal A, Bulik C, Andreassen OA, Borglum A, Breen G, et al. Psychiatric genomics: an update and an agenda. 2017;115600. Preprint at http://biorxiv.org/content/early/2017/03/10/115600

  4. Sniekers S, Stringer S, Watanabe K, Jansen PR, Coleman JRI, Krapohl E, et al. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nat Genet. 2017;49:1558 10.1038/ng.3869.

    Article  CAS  Google Scholar 

  5. Davies G, Marioni RE, Liewald DC, Hill WD, Hagenaars SP, Harris SE, et al. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151). Mol Psychiatry. 2016;21:758–67.

    Article  CAS  Google Scholar 

  6. Benyamin B, Pourcain B, Davis OS, Davies G, Hansell NK, Brion M-J, et al. Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Mol Psychiatry. 2013;19:253–8.

    Article  Google Scholar 

  7. Deary IJ. Intelligence. Annu Rev Psychol. 2012;63:453–82.

    Article  Google Scholar 

  8. Wray NR, Allele frequencies and the r2 measure of linkage disequilibrium: impact on design and interpretation of association studies. Twin Res Hum Genet. 2005;8:87–94..

    Article  Google Scholar 

  9. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet. 2004;74:106–20.

    Article  CAS  Google Scholar 

  10. Hormozdiari F, Zhu A, Kichaev G, Ju CJ-T, Segrè AV, Joo JWJ, et al. Widespread allelic heterogeneity in complex traits. Am J Hum Genet. 2017;100:789–802.

    Article  CAS  Google Scholar 

  11. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48:481–7.

    Article  CAS  Google Scholar 

  12. Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–86.

    Article  CAS  Google Scholar 

  13. Shi H, Kichaev G, Pasaniuc B. Contrasting the genetic architecture of 30 complex traits from summary association data. Am J Hum Genet. 2016;99:139–53.

    Article  CAS  Google Scholar 

  14. Loh P-R, Bhatia G, Gusev A, Finucane HK, Bulik-Sullivan BK, Pollack SJ, et al. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat Genet. 2015;47:1385–92.

    Article  CAS  Google Scholar 

  15. Breen G, Li Q, Roth BL, O’Donnell P, Didriksen M, Dolmetsch R, et al. Translating genome-wide association findings into new therapeutics for psychiatry. Nat Neurosci. 2016;19:1392–6.

    Article  CAS  Google Scholar 

  16. Skene NG, Bryois J, Bakken TE, Breen G, Crowley JJ, Gaspar H, et al. Genetic identification of brain cell types underlying schizophrenia. 2017;145466. Preprint at http://biorxiv.org/content/early/2017/06/02/145466

  17. Zabaneh D, Krapohl E, Gaspar HA, Curtis C, Lee SH, Patel H, et al. A genome-wide association study for extremely high intelligence. Mol Psychiatry. 2017 doi: https://doi.org/10.1038/mp.2017.121.

    Article  Google Scholar 

  18. Consortium G. TEx. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–60.

    Article  Google Scholar 

  19. Deary IJ, Penke L, Johnson W. The neuroscience of human intelligence differences. Nat Rev Neurosci. 2010;11:201–11.

    Article  CAS  Google Scholar 

  20. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.

    Article  CAS  Google Scholar 

  21. Purcell S, Cherny SS, Sham PC. Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics. 2003;19:149–50.

    Article  CAS  Google Scholar 

  22. Peloso GM, Rader DJ, Gabriel S, Kathiresan S, Daly MJ, Neale BM. Phenotypic extremes in rare variant study designs. Eur J Hum Genet. 2016;24:924–30.

    Article  Google Scholar 

  23. de Bakker PIW, Ferreira MAR, Jia X, Neale BM, Raychaudhuri S, Voight BF. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet. 2008;17:R122–R128.

    Article  Google Scholar 

  24. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

    Article  Google Scholar 

  25. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. FUMA: Functional mapping and annotation of genetic associations. 2017;110023. Preprint at http://biorxiv.org/content/early/2017/02/20/110023.abstract

  26. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J. Schizophrenia Working Group of the Psychiatric Genomics Consortium. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.

    Article  CAS  Google Scholar 

  27. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P-R, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet. 2015;47:1228–35.

    Article  CAS  Google Scholar 

  28. Bryois J, Garrett ME, Song L, Safi A, Giusti-Rodriguez P, Johnson GD, et al. Evaluation of chromatin accessibility in prefrontal cortex of schizophrenia cases and controls. 2017;141986. Preprint at http://biorxiv.org/content/early/2017/05/25/141986

  29. Vernot B, Tucci S, Kelso J, Schraiber JG, Wolf AB, Gittelman RM, et al. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science. 2016;352:235–9.

    Article  CAS  Google Scholar 

  30. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10:1213–8.

    Article  CAS  Google Scholar 

  31. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2504 human genomes. Nature. 2015;526:75–81.

    Article  CAS  Google Scholar 

  32. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11:e1004219.

    Article  Google Scholar 

  33. de Leeuw CA, Neale BM, Heskes T, Posthuma D. The statistical properties of gene-set analysis. Nat Rev Genet. 2016;17:353–64.

    Article  Google Scholar 

  34. Team RC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. http://www r-project org.

  35. Barbeira A, Shah KP, Torres JM, Wheeler HE, Torstenson ES, Edwards T, et al. MetaXcan: Summary Statistics Based Gene-Level Association Method Infers Accurate PrediXcan Results. 2016;045260. Preprint at http://biorxiv.org/content/early/2016/03/23/045260.fulltext.pdf+html.

  36. Koscielny G, An P, Carvalho-Silva D, Cham JA, Fumis L, Gasparyan R, et al. Open targets: a platform for therapeutic target identification and validation. Nucleic Acids Res. 2016;45:D985–D994. https://doi.org/10.1093/nar/gkw1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25.

    Article  CAS  Google Scholar 

  38. Bayés A, van de Lagemaat LN, Collins MO, Croning MDR, Whittle IR, Choudhary JS, et al. Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci. 2011;14:19–21.

    Article  Google Scholar 

  39. Wagnon JL, Briese M, Sun W, Mahaffey CL, Curk T, Rot G, et al. CELF4 regulates translation and local abundance of a vast set of mRNAs, including genes associated with regulation of synaptic function. PLoS Genet. 2012;8:e1003067.

    Article  CAS  Google Scholar 

  40. Lee JA, Damianov A, Lin CH, Fontes M, Parikshak NN, Anderson ES, et al. Cytoplasmic Rbfox1 regulates the expression of synaptic and autism-related genes. Neuron. 2016;89:113–28.

    Article  CAS  Google Scholar 

  41. Hill WD, Davies G, Harris SE, Hagenaars SP, Liewald DC, neuroCHARGE Cognitive Working group. et al. Molecular genetic aetiology of general cognitive function is enriched in evolutionarily conserved regions. Transl Psychiatry. 2016;6:e980.

    Article  CAS  Google Scholar 

  42. Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347:1138–42.

    Article  CAS  Google Scholar 

  43. Pardiñas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and maintained by background selection. 2016;068593. Preprint at http://biorxiv.org/content/early/2016/08/09/068593

  44. Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G, Harrigan P, et al. The evolution of gene expression levels in mammalian organs. Nature. 2011;478:343–8.

    Article  CAS  Google Scholar 

  45. La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell. 2016;167:566. e19

    Article  Google Scholar 

  46. Zeng H, Shen EH, Hohmann JG, Oh SW, Bernard A, Royall JJ, et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell. 2012;149:483–96.

    Article  CAS  Google Scholar 

  47. Flinn MV, Geary DC, Ward CV. Ecological dominance, social competition, and coalitionary arms races. Evol Hum Behav. 2005;26:10–46.

    Article  Google Scholar 

  48. Carss KJ, Stevens E, Foley AR, Cirak S, Riemersma M, Torelli S, et al. Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Am J Hum Genet. 2013;93:29–41.

    Article  CAS  Google Scholar 

  49. Jensen BS, Willer T, Saade DN, Cox MO, Mozaffar T, Scavina M, et al. GMPPB-Associated dystroglycanopathy: emerging common variants with phenotype correlation. Hum Mutat. 2015;36:1159–63.

    Article  CAS  Google Scholar 

  50. Rodríguez Cruz PM, Belaya K, Basiri K, Sedghi M, Farrugia ME, Holton JL, et al. Clinical features of the myasthenic syndrome arising from mutations in GMPPB. J Neurol Neurosurg Psychiatry. 2016;87:802–9.

    Article  Google Scholar 

  51. Belaya K, Rodríguez Cruz PM, Liu WW, Maxwell S, McGowan S, Farrugia ME, et al. Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain. 2015;138:2493–504.

    Article  Google Scholar 

  52. Cabrera-Serrano M, Ghaoui R, Ravenscroft G, Johnsen RD, Davis MR, Corbett A, et al. Expanding the phenotype of GMPPB mutations. Brain. 2015;138:836–44.

    Article  Google Scholar 

  53. Wright KM, Lyon KA, Leung H, Leahy DJ, Ma L, Ginty DD. Dystroglycan organizes axon guidance cue localization and axonal pathfinding. Neuron. 2012;76:931–44.

    Article  CAS  Google Scholar 

  54. Roberts JA. The genetics of mental deficiency. Eugen Rev. 1952;44:71–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. McGue M, Gottesman II. Classical and molecular genetic research on general cognitive ability. Hastings Cent Rep. 2015;45:S25–S31.

    Article  Google Scholar 

  56. LELM Vissers, Gilissen C, Veltman JA. Genetic studies in intellectual disability and related disorders. Nat Rev Genet. 2016;17:9–18.

    Google Scholar 

  57. Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci. 2015;18:199–209.

    Article  Google Scholar 

  58. Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome. Annu Rev Genom Hum Genet. 2006;7:29–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contribution of all of the researchers and participants involved in the collection and analysis of the data included. This study includes data from Sniekers et al. (2017), which made use of the UK Biobank resource under application number 16,406 (as previously acknowledged). Analysis in this paper represents independent research funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Analyses were performed using high performance computing facilities funded with capital equipment grants from the GSTT Charity (TR130505) and Maudsley Charity (980). Analysis from Sniekers et al. (2017) was funded by the Netherlands Organization for Scientific Research (NWO VICI 453-14-005), and carried out on the Genetic Cluster Computer, which is financed by the Netherlands Scientific Organization (NWO:480-05-003), by VU University, Amsterdam, the Netherlands, and by the Dutch Brain Foundation and is hosted by the Dutch National Computing and Networking Services SurfSARA. PRJ is supported by the ‘Stichting Vrienden van Sophia’ (grant nr: 14-27) awarded to DP. Research on the HiQ cohort was supported by a European Research Council Advanced Investigator award (295366) to RP. Collecting DNA from the highest-scoring TIP individuals was supported by an award from the John Templeton Foundation (13575) to RP. JB was supported by the Swiss National Science Foundation. Summary statistics from this analysis have been made available at the NHGRI-EBI GWAS Catalog (http://www.ebi.ac.uk/gwas/).

Author contributions

GB, DP, and PFS conceived the study. JRIC, JB, HAG, PRJ, JS, and NS performed statistical analyses. RP, ABM, SL, GC, and JH acquired data. JRIC and GB wrote the manuscript. All authors reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danielle Posthuma or Gerome Breen.

Ethics declarations

Conflict of interest

PFS reports the following potentially competing financial interests: Lundbeck (advisory committee), Pfizer (Scientific Advisory Board member), and Roche (grant recipient, speaker reimbursement). GB reports consultancy and speaker fees from Eli Lilly and Illumina and grant funding from Eli Lilly. All remaining authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coleman, J.R.I., Bryois, J., Gaspar, H.A. et al. Biological annotation of genetic loci associated with intelligence in a meta-analysis of 87,740 individuals. Mol Psychiatry 24, 182–197 (2019). https://doi.org/10.1038/s41380-018-0040-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0040-6

This article is cited by

Search

Quick links