Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Depleting adult dentate gyrus neurogenesis increases cocaine-seeking behavior

Abstract

The hippocampus is the main locus for adult dentate gyrus (DG) neurogenesis. A number of studies have shown that aberrant DG neurogenesis correlates with many neuropsychiatric disorders, including drug addiction. Although clear causal relationships have been established between DG neurogenesis and memory dysfunction or mood-related disorders, evidence of the causal role of DG neurogenesis in drug-seeking behaviors has not been established. Here we assessed the role of new DG neurons in cocaine self-administration using an inducible transgenic approach that selectively depletes adult DG neurogenesis. Our results show that transgenic mice with decreased adult DG neurogenesis exhibit increased motivation to self-administer cocaine and a higher seeking response to cocaine-related cues. These results identify adult hippocampal neurogenesis as a key factor in vulnerability to cocaine addiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Piazza PV, Deroche-Gamonet V. A multistep general theory of transition to addiction. Psychopharmacol (Berl). 2013;229:387–413.

    Article  CAS  Google Scholar 

  2. Clelland CD, Choi M, Romberg C, Clemenson GD, Fragniere A, Tyers P, et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 2009;325:210–3.

    Article  CAS  Google Scholar 

  3. Dupret D, Revest J-M, Koehl M, Ichas F, De Giorgi F, Costet P, et al. Spatial relational memory requires hippocampal adult neurogenesis. PLoS ONE. 2008;3:e1959.

    Article  Google Scholar 

  4. Farioli-Vecchioli S, Saraulli D, Costanzi M, Pacioni S, Cinà I, Aceti M, et al. The timing of differentiation of adult hippocampal neurons is crucial for spatial memory. PLoS Biol. 2008;6:e246.

    Article  Google Scholar 

  5. Revest J-M, Dupret D, Koehl M, Funk-Reiter C, Grosjean N, Piazza P-V, et al. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol Psychiatry. 2009;14:959–67.

    Article  Google Scholar 

  6. Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011;472:466–70.

    Article  CAS  Google Scholar 

  7. Abrous DN, Adriani W, Montaron M-F, Aurousseau C, Rougon G, Le Moal M, et al. Nicotine self-administration impairs hippocampal plasticity. J Neurosci J Soc Neurosci. 2002;22:3656–62.

    Article  CAS  Google Scholar 

  8. Eisch AJ, Barrot M, Schad CA, Self DW, Nestler EJ. Opiates inhibit neurogenesis in the adult rat hippocampus. Proc Natl Acad Sci USA. 2000;97:7579–84.

    Article  CAS  Google Scholar 

  9. Andersen ML, Perry JC, Bignotto M, Perez-Mendes P, Cinini SM, Mello LEA, et al. Influence of chronic cocaine treatment and sleep deprivation on sexual behavior and neurogenesis of the male rat. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:1224–9.

    Article  CAS  Google Scholar 

  10. Domínguez-Escribà L, Hernández-Rabaza V, Soriano-Navarro M, Barcia JA, Romero FJ, García-Verdugo JM, et al. Chronic cocaine exposure impairs progenitor proliferation but spares survival and maturation of neural precursors in adult rat dentate gyrus. Eur J Neurosci. 2006;24:586–94.

    Article  Google Scholar 

  11. Noonan MA, Choi KH, Self DW, Eisch AJ. Withdrawal from cocaine self-administration normalizes deficits in proliferation and enhances maturity of adult-generated hippocampal neurons. J Neurosci J Soc Neurosci. 2008;28:2516–26.

    Article  CAS  Google Scholar 

  12. Yamaguchi M, Suzuki T, Seki T, Namba T, Juan R, Arai H, et al. Repetitive cocaine administration decreases neurogenesis in adult rat hippocampus. Ann N Y Acad Sci. 2004;1025:351–62.

    Article  CAS  Google Scholar 

  13. Mandyam CD, Wee S, Crawford EF, Eisch AJ, Richardson HN, Koob GF. Varied access to intravenous methamphetamine self-administration differentially alters adult hippocampal neurogenesis. Biol Psychiatry. 2008;64:958–65.

    Article  CAS  Google Scholar 

  14. Deschaux O, Vendruscolo LF, Schlosburg JE, Diaz-Aguilar L, Yuan CJ, Sobieraj JC, et al. Hippocampal neurogenesis protects against cocaine-primed relapse. Addict Biol. 2014;19:562–74.

    Article  CAS  Google Scholar 

  15. Lemaire V, Aurousseau C, Le Moal M, Abrous DN. Behavioural trait of reactivity to novelty is related to hippocampal neurogenesis. Eur J Neurosci. 1999;11:4006–14.

    Article  CAS  Google Scholar 

  16. Lemaire V, Koehl M, Le Moal M, Abrous DN. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA. 2000;97:11032–7.

    Article  CAS  Google Scholar 

  17. Deminière JM, Piazza PV, Guegan G, Abrous N, Maccari S, Le Moal M, et al. Increased locomotor response to novelty and propensity to intravenous amphetamine self-administration in adult offspring of stressed mothers. Brain Res. 1992;586:135–9.

    Article  Google Scholar 

  18. Piazza PV, Deminière JM, Le Moal M, Simon H. Factors that predict individual vulnerability to amphetamine self-administration. Science. 1989;245:1511–3.

    Article  CAS  Google Scholar 

  19. Castilla-Ortega E, Serrano A, Blanco E, Araos P, Suárez J, Pavón FJ, et al. A place for the hippocampus in the cocaine addiction circuit: Potential roles for adult hippocampal neurogenesis. Neurosci Biobehav Rev. 2016;66:15–32.

    Article  CAS  Google Scholar 

  20. Noonan MA, Bulin SE, Fuller DC, Eisch AJ. Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction. J Neurosci J Soc Neurosci. 2010;30:304–15.

    Article  CAS  Google Scholar 

  21. Tang FR, Loke WK, Khoo BC. Postnatal irradiation-induced hippocampal neuropathology, cognitive impairment and aging. Brain Dev. 2017;39:277–93.

    Article  Google Scholar 

  22. Belka C, Budach W, Kortmann RD, Bamberg M. Radiation induced CNS toxicity--molecular and cellular mechanisms. Br J Cancer. 2001;85:1233–9.

    Article  CAS  Google Scholar 

  23. Massa F, Koehl M, Koelh M, Wiesner T, Grosjean N, Revest J-M, et al. Conditional reduction of adult neurogenesis impairs bidirectional hippocampal synaptic plasticity. Proc Natl Acad Sci USA. 2011;108:6644–9.

    Article  CAS  Google Scholar 

  24. Tronel S, Belnoue L, Grosjean N, Revest J-M, Piazza P-V, Koehl M, et al. Adult-born neurons are necessary for extended contextual discrimination. Hippocampus. 2012;22:292–8.

    Article  Google Scholar 

  25. Martín-García E, Bourgoin L, Cathala A, Kasanetz F, Mondesir M, Gutiérrez-Rodriguez A, et al. Differential control of cocaine self-administration by GABAergic and glutamatergic CB1 cannabinoid receptors. Neuropsychopharmacology. 2016;41:2192–205.

    Article  Google Scholar 

  26. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162:1403–13.

    Article  Google Scholar 

  27. Robbins TW, Ersche KD, Everitt BJ. Drug addiction and the memory systems of the brain. Ann N Y Acad Sci. 2008;1141:1–21.

    Article  CAS  Google Scholar 

  28. Robinson TE, Flagel SB. Dissociating the predictive and incentive motivational properties of reward-related cues through the study of individual differences. Biol Psychiatry. 2009;65:869–73.

    Article  Google Scholar 

  29. Marlatt GA. Cue exposure and relapse prevention in the treatment of addictive behaviors. Addict Behav. 1990;15:395–9.

    Article  CAS  Google Scholar 

  30. Robinson TE, Berridge KC. Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci. 2008;363:3137–46.

    Article  Google Scholar 

  31. Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8:1445–9.

    Article  CAS  Google Scholar 

  32. Pierce RC, Kumaresan V. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev. 2006;30:215–38.

    Article  CAS  Google Scholar 

  33. Snyder JS, Kee N, Wojtowicz JM. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol. 2001;85:2423–31.

    Article  CAS  Google Scholar 

  34. Ikrar T, Guo N, He K, Besnard A, Levinson S, Hill A, et al. Adult neurogenesis modifies excitability of the dentate gyrus. Front Neural Circuits. 2013;7:204.

    Article  Google Scholar 

  35. Lacefield CO, Itskov V, Reardon T, Hen R, Gordon JA. Effects of adult-generated granule cells on coordinated network activity in the dentate gyrus. Hippocampus. 2012;22:106–16.

    Article  Google Scholar 

  36. Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron. 2012;76:790–803.

    Article  CAS  Google Scholar 

  37. Pascoli V, Terrier J, Espallergues J, Valjent E, O’Connor EC, Lüscher C. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature. 2014;509:459–64.

    Article  CAS  Google Scholar 

  38. Voon V, Derbyshire K, Rück C, Irvine MA, Worbe Y, Enander J, et al. Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry. 2014;20:345–52. https://doi.org/10.1038/mp.2014.44

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moorman DE, James MH, McGlinchey EM, Aston-Jones G. Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res. 2015;1628:130–46.

    Article  CAS  Google Scholar 

  40. Rogers JL, See RE. Selective inactivation of the ventral hippocampus attenuates cue-induced and cocaine-primed reinstatement of drug-seeking in rats. Neurobiol Learn Mem. 2007;87:688–92.

    Article  CAS  Google Scholar 

  41. Piazza PV, Deroche V, Rougé-Pont F, Le Moal M. Behavioral and biological factors associated with individual vulnerability to psychostimulant abuse. NIDA Res Monogr. 1998;169:105–33.

    CAS  PubMed  Google Scholar 

  42. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476:458–61.

    Article  CAS  Google Scholar 

  43. Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, et al. Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry. 2011;16:1177–88.

    Article  CAS  Google Scholar 

  44. Anacker C, Pariante CM. Can adult neurogenesis buffer stress responses and depressive behaviour? Mol Psychiatry. 2012;17:9–10.

    Article  CAS  Google Scholar 

  45. Opendak M, Gould E. New neurons maintain efficient stress recovery. Cell Stem Cell. 2011;9:287–8.

    Article  CAS  Google Scholar 

  46. Lucassen PJ, Fitzsimons CP, Korosi A, Joels M, Belzung C, Abrous DN. Stressing new neurons into depression? Mol Psychiatry. 2013;18:396–7.

    Article  CAS  Google Scholar 

  47. Barden N. Implication of the hypothalamic-pituitary-adrenal axis in the physiopathology of depression. J Psychiatry Neurosci JPN. 2004;29:185–93.

    PubMed  Google Scholar 

  48. Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 2008;31:464–8.

    Article  CAS  Google Scholar 

  49. Deroche V, Marinelli M, Le Moal M, Piazza PV. Glucocorticoids and behavioral effects of psychostimulants. II: cocaine intravenous self-administration and reinstatement depend on glucocorticoid levels. J Pharmacol Exp Ther. 1997;281:1401–7.

    CAS  PubMed  Google Scholar 

  50. Piazza PV, Marinelli M, Rougé-Pont F, Deroche V, Maccari S, Simon H, et al. Stress, glucocorticoids, and mesencephalic dopaminergic neurons: a pathophysiological chain determining vulnerability to psychostimulant abuse. NIDA Res Monogr. 1996;163:277–99.

    CAS  PubMed  Google Scholar 

  51. Lejuez CW, Paulson A, Daughters SB, Bornovalova MA, Zvolensky MJ. The association between heroin use and anxiety sensitivity among inner-city individuals in residential drug use treatment. Behav Res Ther. 2006;44:667–77.

    Article  CAS  Google Scholar 

  52. Belin D, Deroche-Gamonet V. Responses to novelty and vulnerability to cocaine addiction: contribution of a multi-symptomatic animal model. Cold Spring Harb Perspect Med. 2012;2:a011940. https://doi.org/10.1101/cshperspect.a011940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Castilla-Ortega E, Ladrón de Guevara-Miranda D, Serrano A, Pavón FJ, Suárez J, Rodríguez de Fonseca F, et al. The impact of cocaine on adult hippocampal neurogenesis: Potential neurobiological mechanisms and contributions to maladaptive cognition in cocaine addiction disorder. Biochem Pharmacol. 2017;141:100–17.

    Article  CAS  Google Scholar 

  54. Akers KG, Martinez-Canabal A, Restivo L, Yiu AP, De Cristofaro A, Hsiang H-LL, et al. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science. 2014;344:598–602.

    Article  CAS  Google Scholar 

  55. Ladrón de Guevara-Miranda D, Millón C, Rosell-Valle C, Pérez-Fernández M, Missiroli M, Serrano A, et al. Long-lasting memory deficits in mice withdrawn from cocaine are concomitant with neuroadaptations in hippocampal basal activity, GABAergic interneurons and adult neurogenesis. Dis Model Mech. 2017;10:323–36.

    Article  Google Scholar 

  56. Chambers RA. Adult hippocampal neurogenesis in the pathogenesis of addiction and dual diagnosis disorders. Drug Alcohol Depend. 2013;130:1–12.

    Article  Google Scholar 

  57. Taffe MA, Kotzebue RW, Crean RD, Crawford EF, Edwards S, Mandyam CD. Long-lasting reduction in hippocampal neurogenesis by alcohol consumption in adolescent nonhuman primates. Proc Natl Acad Sci USA. 2010;107:11104–9.

    Article  CAS  Google Scholar 

  58. Bulin SE, Mendoza ML, Richardson DR, Song KH, Solberg TD, Yun S, et al. Dentate gyrus neurogenesis ablation via cranial irradiation enhances morphine self-administration and locomotor sensitization. Addict Biol. 2017. https://doi.org/10.1111/adb.12524

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chambers RA. Self DW. Motivational responses to natural and drug rewards in rats with neonatal ventral hippocampal lesions: an animal model of dual diagnosis schizophrenia. Neuropsychopharmacology. 2002;27:889–905.

    Article  Google Scholar 

  60. Brady AM, McCallum SE, Glick SD, O’Donnell P. Enhanced methamphetamine self-administration in a neurodevelopmental rat model of schizophrenia. Psychopharmacology. 2008;200:205–15.

    Article  CAS  Google Scholar 

  61. Berg SA, Czachowski CL, Chambers RA. Alcohol seeking and consumption in the NVHL neurodevelopmental rat model of schizophrenia. Behav Brain Res. 2011;218:346–9.

    Article  CAS  Google Scholar 

  62. Recinto P, Samant ARH, Chavez G, Kim A, Yuan CJ. Soleiman M, et al. Levels of neural progenitors in the hippocampus predict memory impairment and relapse to drug seeking as a function of excessive methamphetamine self-administration. Neuropsychopharmacology. 2012;37:1275–87..

    Article  Google Scholar 

  63. Galinato MH, Lockner JW, Fannon-Pavlich MJ, Sobieraj JC, Staples MC, Somkuwar SS, et al. A synthetic small-molecule Isoxazole-9 protects against methamphetamine relapse. Mol Psychiatry. 2017. https://doi.org/10.1038/mp.2017.46

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by INSERM, Agence Nationale pour la Recherche (to DNA: ANR n°06-NEURO-00 2-01), Aquitaine Regional Council and University of Bordeaux. This work benefited from the support of the Animal Housing and Genotyping facilities. The technical helps of Mr C Dupuy and Mrs V Roullot-Lacarrière, are gratefully acknowledged.

Author contributions:

Conception and design of experiments: PVP, DNA, VDG, JMR. Performed the experiments: JFF, EB, MK, NG, JMR. Acquisition of the data, analysis and interpretation of the data: VDG, JMR, MK, DNA, PVP. Wrote the paper: VDG, JMR, MK, DNA, PVP.

Disclaimer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djoher Nora Abrous.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Véronique Deroche-Gamonet, Jean-Michel Revest, Djoher Nora Abrous, Pier-Vincenzo Piazza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deroche-Gamonet, V., Revest, JM., Fiancette, JF. et al. Depleting adult dentate gyrus neurogenesis increases cocaine-seeking behavior. Mol Psychiatry 24, 312–320 (2019). https://doi.org/10.1038/s41380-018-0038-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0038-0

This article is cited by

Search

Quick links