Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neuron-specific deficits of bioenergetic processes in the dorsolateral prefrontal cortex in schizophrenia

Abstract

Schizophrenia is a devastating illness that affects over 2 million people in the United States and costs society billions of dollars annually. New insights into the pathophysiology of schizophrenia are needed to provide the conceptual framework to facilitate development of new treatment strategies. We examined bioenergetic pathways in the dorsolateral prefrontal cortex (DLPFC) of subjects with schizophrenia and control subjects using western blot analysis, quantitative real-time polymerase chain reaction, and enzyme/substrate assays. Laser-capture microdissection-quantitative polymerase chain reaction was used to examine these pathways at the cellular level. We found decreases in hexokinase (HXK) and phosphofructokinase (PFK) activity in the DLPFC, as well as decreased PFK1 mRNA expression. In pyramidal neurons, we found an increase in monocarboxylate transporter 1 mRNA expression, and decreases in HXK1, PFK1, glucose transporter 1 (GLUT1), and GLUT3 mRNA expression. These results suggest abnormal bioenergetic function, as well as a neuron-specific defect in glucose utilization, in the DLPFC in schizophrenia.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Bubber P, Hartounian V, Gibson GE, Blass JP. Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients. Eur Neuropsychopharmacol. 2011;21:254–60.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Kung L, Roberts RC. Mitochondrial pathology in human schizophrenic striatum: a postmortem ultrastructural study. Synapse. 1999;31:67–75.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Du F, Cooper AJ, Thida T, Sehovic S, Lukas SE, Cohen BM, et al. In vivo evidence for cerebral bioenergetic abnormalities in schizophrenia measured using 31P magnetization transfer spectroscopy. JAMA Psychiatry. 2014;71:19–27.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Zhou K, Yang Y, Gao L, He G, Li W, Tang K, et al. NMDA receptor hypofunction induces dysfunctions of energy metabolism and semaphorin signaling in rats: a synaptic proteome study. Schizophr Bull. 2012;38:579–91.

    PubMed  Article  Google Scholar 

  5. 5.

    Sun L, Li J, Zhou K, Zhang M, Yang J, Li Y, et al. Metabolomic analysis reveals metabolic disturbance in the cortex and hippocampus of subchronic MK-801 treated rats. PLoS ONE. 2013;8:e60598.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Regenold WT, Phatak P, Marano CM, Sassan A, Conley RR, Kling MA. Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol Psychiatry. 2009;65:489–94.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Martins-de-Souza D, Gattaz WF, Schmitt A, Novello JC, Marangoni S, Turck CW, et al. Proteome analysis of schizophrenia patients Wernicke’s area reveals an energy metabolism dysregulation. BMC Psychiatry. 2009;9:17.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry. 2004;9:684–97, 43.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM, et al. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry. 2008;13:1102–17.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D. Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics. 2006;6:3414–25.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Middleton FA, Mirnics K, Pierri JN, Lewis DA, Levitt P. Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci. 2002;22:2718–29.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Beasley CL, Dwork AJ, Rosoklija G, Mann JJ, Mancevski B, Jakovski Z, et al. Metabolic abnormalities in fronto-striatal-thalamic white matter tracts in schizophrenia. Schizophr Res. 2009;109:159–66.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Vawter MP, Barrett T, Cheadle C, Sokolov BP, Wood WH III, Donovan DM, et al. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res Bull. 2001;55:641–50.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Stone WS, Faraone SV, Su J, Tarbox SI, Van Eerdewegh P, Tsuang MT. Evidence for linkage between regulatory enzymes in glycolysis and schizophrenia in a multiplex sample. Am J Med Genet B. 2004;127B:5–10.

    Article  Google Scholar 

  15. 15.

    Maurer I, Zierz S, Möller H-J. Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res. 2001;48:125–36.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Cavelier L, Jazin EE, Eriksson I, Prince J, Bave U, Oreland L, et al. Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics. Genomics. 1995;29:217–24.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Saks VA, Ventura-Clapier R, Aliev MK. Metabolic control and metabolic capacity: two aspects of creatine kinase functioning in the cells. Biochim Biophys Acta. 1996;1274:81–8.

    PubMed  Article  Google Scholar 

  18. 18.

    Kemp GJ. Non-invasive methods for studying brain energy metabolism: what they show and what it means. Dev Neurosci. 2000;22:418–28.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Pettegrew JW, Keshavan MS, Panchalingam K, et al. Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics: A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Arch Gen Psychiatry. 1991;48:563–8.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Bertolino A, Callicott JH, Elman I, Mattay VS, Tedeschi G, Frank JA, et al. Regionally specific neuronal pathology in untreated patients with schizophrenia: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatry. 1998;43:641–8.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Cecil KM, Lenkinski RE, Gur RE, Gur RC. Proton magnetic resonance spectroscopy in the frontal and temporal lobes of neuroleptic naive patients with schizophrenia. Neuropsychopharmacology. 1999;20:131–40.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Shulman RG, Rothman DL, Behar KL, Hyder F. Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci. 2004;27:489–95.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol. 2003;206(Pt 12):2049–57.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, et al. Evidence supporting the existence of an activity-dependent astrocyte–neuron lactate shuttle. Dev Neurosci. 1998;20:291–9.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Chih CP, Roberts EL Jr. Energy substrates for neurons during neural activity: a critical review of the astrocyte–neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab. 2003;23:1263–81.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Buchsbaum MS, Shihabuddin L, Hazlett EA, Schroder J, Haznedar MM, Powchik P, et al. Kraepelinian and non-Kraepelinian schizophrenia subgroup differences in cerebral metabolic rate. Schizophr Res. 2002;55:25–40.

    PubMed  Article  Google Scholar 

  27. 27.

    Prince JA, Harro J, Blennow K, Gottfries CG, Oreland L. Putamen mitochondrial energy metabolism is highly correlated to emotional and intellectual impairment in schizophrenics. Neuropsychopharmacology. 2000;22:284–92.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Roberts RC, Roche JK, Conley RR, Lahti AC. Dopaminergic synapses in the caudate of subjects with schizophrenia: relationship to treatment response. Synapse. 2009;63:520–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Sullivan CR, Funk AJ, Shan D, Haroutunian V, McCullumsmith RE. Decreased chloride channel expression in the dorsolateral prefrontal cortex in schizophrenia. PLoS ONE. 2015;10:e0123158.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Shan D, Mount D, Moore S, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Abnormal partitioning of hexokinase 1 suggests disruption of a glutamate transport protein complex in schizophrenia. Schizophr Res. 2014;154:1–13.

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Funk A, Rumbaugh G, Harotunian V, McCullumsmith R, Meador-Woodruff J. Decreased expression of NMDA receptor-associated proteins in frontal cortex of elderly patients with schizophrenia. Neuroreport. 2009;20:1019–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    O’Donovan SM, Hasselfeld K, Bauer D, Simmons M, Roussos P, Haroutunian V, et al. Glutamate transporter splice variant expression in an enriched pyramidal cell population in schizophrenia. Transl Psychiatry. 2015;5:e579.

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    McCullumsmith RE, O’Donovan SM, Drummond JB, Benesh FS, Simmons M, Roberts R, et al. Cell-specific abnormalities of glutamate transporters in schizophrenia: sick astrocytes and compensating relay neurons? Mol Psychiatry. 2016;6:823–30.

    Article  Google Scholar 

  34. 34.

    Sodhi MS, Simmons M, McCullumsmith R, Haroutunian V, Meador-Woodruff JH. Glutamatergic gene expression is specifically reduced in thalamocortical projecting relay neurons in schizophrenia. Biol Psychiatry. 2011;70:646–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    McCullumsmith RE, Hammond JH, Shan D, Meador-Woodruff JH. Postmortem brain: an underutilized substrate for studying severe mental illness. Neuropsychopharmacology. 2014;39:65–87.

    PubMed  Article  Google Scholar 

  36. 36.

    Hashimoto T, Hussien R, Cho H-S, Kaufer D, Brooks GA. Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles. PLoS ONE. 2008;3:e2915.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE. Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci USA. 1999;96:1129–34.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Altar CA, Jurata LW, Charles V, Lemire A, Liu P, Bukhman Y, et al. Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatry. 2005;58:85–96.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Arion D, Corradi JP, Tang S, Datta D, Boothe F, He A, et al. Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder. Mol Psychiatry. 2015;20:1397–405.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Arion D, Huo Z, Enwright JF, Corradi JP, Tseng G, Lewis DA. Transcriptome alterations in prefrontal pyramidal cells distinguish schizophrenia from bipolar and major depressive disorders. Biol Psychiatry. 2017;82:594–600.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Hegde AN, DiAntonio A. Ubiquitin and the synapse. Nat Rev Neurosci. 2002;3:854–61.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Murphey RK, Godenschwege TA. New roles for ubiquitin in the assembly and function of neuronal circuits. Neuron. 2002;36:5–8.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Pak DTS, Sheng M. Targeted protein degradation and synapse remodeling by an inducible protein kinase. Science. 2003;302:1368–73.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Ehlers M. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci. 2003;6:231–42.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Speese SD, Trotta N, Rodesch CK, Aravamudan B, Broadie K. The ubiquitin proteasome system acutely regulates presynaptic protein turnover and synaptic efficacy. Curr Biol. 2003;13:899–910.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry. 1998;65:446–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000;57:65–73.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol. 2004;490:13–24.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Liu Y, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX. Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett. 2008;582:359–64.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Hoyer S. Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: therapeutic implications. Adv Exp Med Biol. 2004;541:135–52.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition. 2011;27:3–20.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    McDermott E, de Silva P. Impaired neuronal glucose uptake in pathogenesis of schizophrenia—can GLUT1 and GLUT 3 deficits explain imaging, post-mortem and pharmacological findings? Med Hypotheses. 2005;65:1076–81.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Ryan MC, Collins P, Thakore JH. Impaired fasting glucose tolerance in first-episode, drug-naive patients with schizophrenia. Am J Psychiatry. 2003;160:284–9.

    PubMed  Article  Google Scholar 

  54. 54.

    Henneman DH, Altschule MD, Goncz R. Carbohydrate metabolism in brain disease: Ii. glucose metabolism in schizophrenic, manic-depressive, and involutional psychoses. AMA. Arch Intern Med. 1954;94:402–16.

    CAS  Article  Google Scholar 

  55. 55.

    Hashimoto K, Engberg G, Shimizu E, Nordin C, Lindström LH, Iyo M. Elevated glutamine/glutamate ratio in cerebrospinal fluid of first episode and drug naive schizophrenic patients. BMC Psychiatry. 2005;5:6.

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Kenji H, Eiji S, Masaomi I. Dysfunction of glia–neuron communication in pathophysiology of schizophrenia. Curr Psychiatry Rev. 2005;1:151–63.

    Article  Google Scholar 

  57. 57.

    Abu-Hamad S, Zaid H, Israelson A, Nahon E, Shoshan-Barmatz V. Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. J Biol Chem. 2008;283:13482–90.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Regenold WT, Pratt M, Nekkalapu S, Shapiro PS, Kristian T, Fiskum G. Mitochondrial detachment of hexokinase 1 in mood and psychotic disorders: implications for brain energy metabolism and neurotrophic signaling. J Psychiatr Res. 2012;46:95–104.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    BeltrandelRio H, Wilson JE. Coordinated regulation of cerebral glycolytic and oxidative metabolism, mediated by mitochondrially bound hexokinase dependent on intramitochondrially generated ATP. Arch Biochem Biophys. 1992;296:667–77.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Newman LA, Korol DL, Gold PE. Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS ONE. 2011;6:e28427.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Steinman MQ, Gao V, Alberini CM. The role of lactate-mediated metabolic coupling between astrocytes and neurons in long-term memory formation. frontiers in integrative. Neuroscience. 2016;10:10.

    Google Scholar 

  62. 62.

    Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte–neuron lactate transport is required for long-term memory formation. Cell. 2011;144:810–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Harper DG, Jensen JE, Ravichandran C, Perlis RH, Fava M, Renshaw PF, et al. Tissue type-specific bioenergetic abnormalities in adults with major. Depression. 2017;42:876–85.

    CAS  Google Scholar 

  64. 64.

    McCasland JS, Hibbard LS. GABAergic neurons in barrel cortex show strong, whisker-dependent metabolic activation during normal behavior. J Neurosci. 1997;17:5509–27.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Duarte JMN, Gruetter R. Glutamatergic and GABAergic energy metabolism measured in the rat brain by 13C NMR spectroscopy at 14.1T. J Neurochem. 2013;126:579–90.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Ackermann RF, Finch DM, Babb TL, Engel J Jr. Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells. J Neurosci. 1984;4:251–64.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Smith U. Pioglitazone: mechanism of action. Int J Clin Pract Suppl. 2001;121:13–8.

    CAS  Google Scholar 

  68. 68.

    Dello Russo C, Gavrilyuk V, Weinberg G, Almeida A, Bolanos JP, Palmer J, et al. Peroxisome proliferator-activated receptor gamma thiazolidinedione agonists increase glucose metabolism in astrocytes. J Biol Chem. 2003;278:5828–36.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Sato T, Hanyu H, Hirao K, Kanetaka H, Sakurai H, Iwamoto T. Efficacy of PPAR-gamma agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging. 2011;32:1626–33.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Iranpour N, Zandifar A, Farokhnia M, Goguol A, Yekehtaz H, Khodaie-Ardakani MR, et al. The effects of pioglitazone adjuvant therapy on negative symptoms of patients with chronic schizophrenia: a double-blind and placebo-controlled trial. Hum Psychopharmacol. 2016;31:103–12.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Smith RC, Jin H, Li C, Bark N, Shekhar A, Dwivedi S, et al. Effects of pioglitazone on metabolic abnormalities, psychopathology, and cognitive function in schizophrenic patients treated with antipsychotic medication: a randomized double-blind study. Schizophr Res. 2013;143:18–24.

    PubMed  Article  Google Scholar 

  72. 72.

    Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression.Rothstein JD1, Nature. 2005;433:73–7.

    PubMed  Article  Google Scholar 

  73. 73.

    Stoessl AJ. Glucose utilization: still in the synapse. Nat Neurosci. 2017;20:382–4.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Zimmer ER, Parent MJ, Souza DG, Leuzy A, Lecrux C, Kim H-I, et al. [18F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci. 2017;20:393–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Bubber P, Tang J, Haroutunian V, Xu H, Davis KL, Blass JP, et al. Mitochondrial enzymes in schizophrenia. J Mol Neurosci. 2004;24:315–21.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank all those that have supported this research: MH107487, MH107916, MH09445, the L.I.F.E. Foundation, Lindsay Brinkmeyer Schizophrenia Research Fund, Alabama Brain Collection, and Maryland Brain Collection.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Courtney R. Sullivan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sullivan, C.R., Koene, R.H., Hasselfeld, K. et al. Neuron-specific deficits of bioenergetic processes in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry 24, 1319–1328 (2019). https://doi.org/10.1038/s41380-018-0035-3

Download citation

Further reading

Search

Quick links