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Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine (NE) carcinoma arising from integration of Merkel cell
polyomavirus (MCPyV) DNA into a host cell or from ultraviolet light-induced genetic damage (proportions vary geographically).
Tumors in the latter group include those with “pure” NE phenotype and those “combined” with other elements, most often
squamous cell carcinoma (SCC). We performed comprehensive genomic profiling (CGP) of MCPyV+ and MCPyV− (pure and
combined) tumors, to better understand their mutational profiles and shed light on their pathogenesis. Supplemental
immunohistochemistry for Rb expression was also undertaken. After eliminating low quality samples, 37 tumors were successfully
analyzed (14 MCPyV+, 8 pure MCPyV− and 15 combined MCPyV−). The SCC and NE components were sequenced separately
in 5 combined tumors. Tumor mutational burden was lower in MCPyV+ tumors (mean 1.66 vs. 29.9/Mb, P < 0.0001). MCPyV−
tumors featured frequent mutations in TP53 (95.6%), RB1 (87%), and NOTCH family genes (95.6%). No recurrently mutated genes
were identified in MCPyV+ tumors. Mutational overlap in the NE and SCC components of combined tumors was substantial
(‘similarity index’ >24% in 4/5 cases). Loss of Rb expression correlated with RB1 mutational (P < 0.0001) and MCPyV− status
(P < 0.0001) in MCCs and it was observed more frequently in the SCC component of combined MCC than in a control group of
conventional cutaneous SCC (P= 0.0002). Our results (i) support existing evidence that MCPyV+ and MCPyV− MCCs are
pathogenetically distinct entities (ii) concur with earlier studies linking the NE and SCC components of combined MCCs via shared
genetic profiles and (iii) lend credence to the proposal that an Rb-deficient subset of SCC’s is the source of phenotypically divergent
combined MCCs.
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INTRODUCTION
Advances in the molecular characterization of Merkel cell carcinoma
(MCC) have led to important insights on pathogenesis and possible
therapeutic targets. First described in 1972 by Toker1, MCC is an
uncommon cutaneous neuroendocrine carcinoma, frequently occur-
ring on sun-exposed regions of elderly, Caucasian patients, and
associated with a poor prognosis2–5. In 2008, the Merkel cell
polyomavirus (MCPyV) was implicated in the pathogenesis of MCC6,
and is estimated to drive development of most tumors (proportions
vary geographically)4. Since then, viral status (MCPyV+ vs. MCPyV−)
has served as a method to categorize MCC, leading to important
discoveries regarding the distinct molecular pathogenesis of each
subset of tumors. MCPyV− tumors, which are associated with a worse
prognosis7–11, exhibit a UV-light induced mutational signature12–14,
high tumor mutational burden (TMB)12,13,15–17, frequent mutations in
TP53 and RB17,8,12–18, and frequent copy number variations
(CNVs)18,19. In contrast, MCPyV+ tumors show few genetic abnorm-
alities, consistent with a pathogenesis involving interactions between
viral proteins and cell cycle regulatory pathways. The latter include
retinoblastoma (Rb) and p53 proteins7,20,21. The cell of origin, which
may differ between the two groups, has yet to be elucidated and is
the subject of active research22–25.

In addition to polyomavirus status, MCC may also be classified
morphologically into “pure” neuroendocrine and “combined”
tumors with added non-neuroendocrine elements. Combined
tumors, all of which are MCPyV−26,27, most commonly feature a
component of in situ or invasive squamous cell carcinoma
(SCC)28. These are estimated to comprise 5–20% of all
MCC18,27,29. From a clinical perspective, categorization of MCCs
on the basis of viral status has proven to be more important
(prognostically) than that based on morphology, but the latter
has value scientifically. In particular, it has the potential to shed
light on the enigmatic cell (or cells) of origin of these tumors.
Recent studies of combined MCCs have demonstrated a
molecular relationship between Merkel cell carcinoma and
associated SCC in situ, suggesting a pathogenetic relationship
between the two, and proposing a keratinocytic origin of these
tumors22,25. From a similar perspective, we have (i) characterized
the molecular profiles of three subsets of MCC (pure MCPyV+,
pure MCPyV− and combined MCPyV−) through comprehensive
genomic profiling (CGP), (ii) performed comparative sequencing
of segregated squamous and neuroendocrine elements of
combined tumors and (iii) examined Rb protein expression in
MCCs and related SCCs.
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MATERIALS AND METHODS
This study was approved by the Nova Scotia Health Authority Research
Ethics Board and performed in accordance with the Declaration of Helsinki.
The requirement for obtaining individual patient consent was waived in
accordance with institutional policies.
The study population represents a cohort of primary cutaneous Merkel cell

carcinomas derived from the Maritime region of Canada (1993-2020). This has
formed the basis of several prior publications18,26,28,30–34. The demographic,
clinical, and pathological characteristic of the group have been well
characterized. A total of 51 cases (21 MCPyV+ , 13 pure MCPyV− and 17
combined MCPyV−) were selected. These mainly included excisional speci-
mens and were chosen with a view to including adequate representation of
different tumor subsets. The viral status of the cases had previously been
determined by nuclear expression of viral large T antigen on immunohis-
tochemistry (CM2B4 antibody; Santa Cruz Biotechnology Inc., Dallas, TX).
Tumor samples from formalin-fixed paraffin-embedded tissue were

macrodissected from 2-5 unstained sections (10-20 µm) via scalpel blade,
using a paired Hematoxylin & Eosin-stained slide to denote the area for
dissection. In 12 combined tumors, an attempt was made to isolate the
neuroendocrine and squamous (either in situ or invasive) components
separately via selective macrodissection. Estimated tumor purity was a
minimum of 30% for all cases, and >80% for the majority of cases. For
combined tumors, only regions containing one histological component (NE
or SCC) were dissected in order to minimize the risk of cross-contamination.
DNA extraction was performed using a commercial QIAamp DNA FFPE

Tissue Kit (Qiagen; Hilden, Germany). Extracted DNA was quantified using a
Nanodrop One instrument (ThermoFisher Scientific; Waltham, MA) and,
subsequent to appropriate dilution as necessary, re-quantified using a Qubit
fluorometer (ThermoFisher Scientific; Waltham, MA). NGS of extracted DNA
was analyzed via the Illumina TSO500 hybrid capture DNA panel, performed
on an Illumina NextSeq550 instrument (San Diego, CA), in accordance with
themanufacturer’s instructions. The panel analyzes 523 cancer-related genes
for small mutations, a subset of genes for copy number gains, as well as
global parameters of tumor mutation burden (TMB) and microsatellite
instability (MSI)35,36. Data were first analyzed using Illumina’s TSO500
LocalApp workflow for alignment and variant calling of mutations, defined
for this study to include single nucleotide variants (SNVs), insertions/
deletions (“indels”) and copy number variants (CNVs) (version 2.0.1.4).
Additional copy number calling was performed using CNVKit37. SNVs and
small indels were annotated using snpEff38 and vcfanno39 to add transcript
and protein level annotations, population frequencies from gnomAD40, and
information from the Catologue of Somatic Mutations in Cancer (COSMIC)41

and ClinVar42. This was used to filter variants based on known pathogenicity

information, identify known COSMIC hotspots, and otherwise prioritize
based on the impact on the protein. SNVs and small indels were filtered to
remove variants with a population frequency >0.5%. We further selected for
variants that were predicted to have an impact at the protein-coding level or
that were present in ClinVar (pathogenic, likely-pathogenic, or unknown), or
that had at least one entry in COSMIC. Analysis of CNVs detected via CNVKit
included all copy number gains, as well as copy number losses in genes for
which biallelic inactivation is predicted to be clinically relevant by the
TARGET database version 3 (The Broad Institute)43. Mutational signatures
were estimated using the R package DeconstructSigs44 and profiled using
the COSMIC v2 signatures45–47. Details of phylogenetic analysis can be found
in Supplement S5.
Cases with median exon coverage <100x (unique reads employed for all

thresholds) were excluded from analysis. Intronic, synonymous, upstream
and downstream gene, and 3ʹ and 5ʹ untranslated region variants were
omitted, with the exception of upstream variants in TERT (i.e. TERT
promoter mutations). Individual variants included in analysis were
restricted to those with read depth ≥50x, with variant read count >10
for read depths 50–200x and variant allele frequency (VAF) > 5% for variant
read depths >200x.
Thirty-three cases (9 MCPyV+, 10 pure MCPyV− and 14 combined

MCPyV−) were sent to Mayo Clinic Laboratories (Rochester, MN) for Rb
immunohistochemical (IHC) staining, which was performed in accordance
with their institutional protocols. Appropriate staining of external control
tissue was assessed at the referral laboratory and confirmed before
interpretation. Tumor staining was also compared to internal control tissue
to confirm intact expression in each case. Nuclear expression of Rb was
assessed in MCC and SCC tumor cells, and qualitatively assessed as
preserved vs. greatly reduced or absent (i.e. loss of Rb expression). For
comparison, staining was also performed on a group of 13 cutaneous SCC
(in situ and invasive, from various anatomical locations).
Data were summarized using descriptive statistics. Comparisons, where

appropriate, were performed via two-tailed unpaired t test for continuous
variables, and Fisher’s exact test for categorical variables. A threshold of
P < 0.05 was employed for determining statistical significance.

RESULTS
Following exclusion of cases with poor quality NGS metrics, 37 of
51 tumors remained for analysis (14 MCPyV+ , 8 pure MCPyV−
and 15 combined MCPyV−). Examples of MCC with pure and
combined morphology are displayed in Fig. 1. Clinical

Fig. 1 Morphological subtypes of Merkel cell carcinoma. PureMerkel cell carcinoma exhibits small cell-like neuroendocrinemorphology (A. H&E,
×50; C. H&E, ×200). Combined Merkel cell carcinoma features areas of neuroendocrine and squamous cell carcinoma (B. H&E, ×50; D. H&E, ×200).
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characteristics of these cases are displayed in Table 1, segregated
by MCPyV status. There was no significant difference in mean age
at presentation or in sex distribution between MCPyV+ and
MCPyV− tumors. A higher proportion of MCPyV+ cases occurred
on an extremity (P= 0.01) but, unlike in some other studies7,10,11,
MCPyV− cases were not significantly more likely to occur on the
head and neck in our cohort (P= 0.10). All 4 tumors on the trunk
were MCPyV− (P= 0.28).
NGS analysis yielded a mean median exon coverage depth of

285 (standard deviation 98; minimum 102, maximum 796) (See
Supplementary Table S1 for additional NGS quality metrics).
Global parameters assessed via NGS analysis included TMB (Fig. 2),
which was higher in MCPyV− tumors when compared to MCPyV+
cases (mean 29.9/Mb vs. 1.7/Mb; P < 0.0001). Additionally, MCPyV
− tumors with combined morphology showed a higher TMB than
those with pure morphology (mean 35.2/Mb vs. 20.0/Mb;
P= 0.03). None of the tumors analyzed were MSI high.
MCPyV+ tumors did not show a consistent pattern of mutations

(Figs. 3 and 4). Genes with the highest frequency of mutations in
this group included MET (3/14 cases), as well as ERCC family (4/14
cases) and NOTCH family (4/14 cases) genes. In contrast, MCPyV−
tumors of pure and combined morphology demonstrated a similar
complement of recurrent mutations. Genes most frequently
demonstrating ≥1 mutation in MCPyV− tumors included TP53
(22/23; 95.6%), RB1 (20/23, 87.0%), and NOTCH family genes
(NOTCH1-4) (22/23; 95.6%). Recurrent alterations were also
observed in a number of other well-characterized tumor

suppressor genes (TSGs, Figs. 3 and 4). Twenty of 23 MCPyV−
tumors showed some evidence of UV mutational signature
(COSMIC signature 7), versus 1/14 MCPyV+ tumors (P < 0.0001).
A dominant UV signature, defined as >40% fit to that signature48,
was present in 10/23 MCPyV− tumors, and absent in all MCPyV+
MCCs (P= 0.0056). There was no significant difference in the
proportion of dominant UV signatures in pure (3/8) vs. combined
(7/15) MCPyV− tumors (P= 0.48).
In five combined tumors, the neuroendocrine and squamous

components were successfully sequenced separately (Fig. 3C). The
clinicopathological features of these cases are documented in
Table 2. All cases featured a component of SCCIS, and 3 cases also
had elements of distinct invasive SCC and the presence of hybrid
nests of neuroendocrine and squamous cells. Guided by
feasibility/technical considerations, SCCIS components were selec-
tively dissected for sequencing in four tumors (cases 33–36), and
invasive SCC was differentially sequenced in one tumor (case 26).
The frequency of overlapping mutations, or “similarity index”25,
between the two components varied widely, from 3.1% (5/159
mutations; case 36) to 96.8% (90/93 mutations; case 33). The
remaining tumors showed overlap in 24.3% (17/70), 66.7% (18/27),
and 93.6% (59/63) of genetic variants, for median and mean
similarity indices of 66.7 and 56.9%, respectively (Fig. 3C). Of note,
in case 36, SCCIS and MCC were not observed in direct continuity
and the possibility of a collision tumor was considered. Exclusion
of case 36 from the analysis, given the likelihood of it representing
two distinct tumors (see “Discussion”), results in median and mean
similarity indices of 80.2 and 70.0%. Complete sequencing data is
available in Supplementary S2, and VAF ranges for shared variants
in each paired case are available in Supplementary S3. Phyloge-
netic analyses, performed for each tumor, can be viewed in
Supplementary S4.
Results for immunohistochemical studies examining Rb protein

expression in MCC are displayed in Table 3. Compared to MCPyV+
tumors, virus-negative MCC showed a significantly higher
frequency of Rb loss (23/24 vs. 1/9, P < 0.0001). There was no
significant difference in Rb expression between MCPyV− tumors
with pure (loss in 9/10) vs. combined morphology (loss in 14/14).
When compared to a control cohort of conventional cutaneous
squamous cell carcinomas, the squamous elements of combined
MCC were remarkable for significant Rb loss (9/9 vs. 2/13,
P= 0.0002). In all MCCs, the presence of RB1 mutation correlated
strongly with loss of Rb expression (P < 0.0001). Examples of Rb
expression patterns in MCPyV+ MCC, combined MCPyV−MCC and
conventional cutaneous SCC are presented in Fig. 4.

DISCUSSION
The dichotomous nature of MCC, stratified by viral status, is well
established. Studies have shown improved prognosis in MCPyV+
tumors7–11 and distinct patterns of molecular alterations that

Table 1. Cohort characteristics, with comparison between MCPyV+ and MCPYV− cases.

Characteristic All cases (N= 37) MCPyV+ Cases (N= 14) MCPyV− Cases (N= 23) P

Age (y), mean (range) 76.8 (46–99) 76.9 (58–97) 76.8 (46–99) 0.99

Sex

Male, N (%) 21 (56.8) 9 (64.3) 12 (52.2) 0.52

Female, N (%) 16 (43.2) 5 (35.7) 11 (47.8)

Anatomical site

Head & Neck, N (%) 20 (54.1) 5 (35.7) 15 (65.2) 0.10

Extremity, N (%) 13 (35.1) 9 (64.3) 4 (17.4) 0.01

Trunk, N (%) 4 (10.8) 0 (0) 4 (17.4) 0.28

MCPyV Merkel Cell Polyomavirus, y years.

Fig. 2 Tumor mutation burden in Merkel cell carcinoma. Tumor
mutation burden (TMB) observed in different subgroups of Merkel
cell carcinoma, displayed as box-and-whisker plots with mean TMB
denoted by an “x”: MCPyV+ (mean: 1.7/Mb, median: 1.6/Mb, range:
0–4.8/Mb, interquartile range (IQR): 0.8–2.6/Mb), all MCPyV− (mean:
29.9/Mb, median: 28.5/Mb, range: 0.8–71.2/Mb, IQR: 15.8–40.3/Mb),
pure MCPyV− (mean: 20.0/Mb, median: 15.4/Mb, range: 0.8–40.9/
Mb, IQR: 12.8–35.1/Mb), combined MCPyV− (mean: 35.2/Mb,
median: 29.9/Mb, range: 10.2–71.2/Mb, IQR 27.5–48.2/Mb).
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characterize MCPyV+ and MCPyV− tumors. While MCPyV+MCC is
associated with viral protein-mediated alteration of cell cycle
regulation without a consistent mutational pattern7,20,21, MCPyV−
tumors tend to exhibit a UV light-associated mutational signa-
ture12–14, high TMB12,13,15–17, TP53 and RB1 mutation7,8,12–18, and
more frequent CNVs18,19. In each of these categories, our study
results concur with demonstrated distinctions between MCPyV−
and MCPyV+ MCCs.
Combined MCPyV− tumors (MCC intimately associated with

SCCIS, invasive SCC or MCC with squamous differentiation) have
been shown to share molecular alterations with their “pure”
MCPyV− counterparts and are likely on the same spectrum of
disease18. Hence study of combined tumors may shed light on the
pathogenesis of virus-negative MCCs as a whole. In our investiga-
tions, MCPyV− MCC with combined morphology showed similar

patterns of recurrent mutations to those in pure MCPyV− MCC,
including frequent inactivating mutations in TP53 and RB1. While
MCPyV− MCC also had much higher mean TMB than MCPyV+
MCC, as reported previously12,13,15–17,49 we now show that, within
the MCPyV− family, combined tumors have higher TMB than
those with pure NE morphology. Though speculative, this could
signify an increased tendency for highly mutated combined
tumors to derive from more highly mutated precursor lesions (e.g.
in situ or invasive SCC), relative to pure MCPyV− MCC.
Of particular interest is the separate analysis of distinct

morphological components in combined tumors. A study from
our cohort in 2018 demonstrated overlapping mutational and CNV
profiles in two paired samples from combined MCCs18. Two recent
studies, examining four and seven paired samples (respectively)
also revealed a molecular relationship between in situ squamous

Fig. 3 Genomic abnormalities in Merkel cell carcinoma. Genes frequently mutated in MCPyV+ MCC (A) and MCPyV− MCC (B). Mutational
profiles of different subsets of MCC (C; P+= Pure MCPyV+ , P−= Pure MCPyV−, C−= Combined MCPyV−). Combined cases with paired
neuroendocrine and in situ (IS) or invasive squamous cell carcinoma (SCC) specimens are highlighted in gray, with a superscript ‘a’ denoting
the squamous cell carcinoma component. Identical variants are present in both NE and SCC components in instances where shared variant
types are reported, except where denoted by an “x”. Cases with dominant UV mutational signature (>40% COSMIC Signature 7) are
highlighted in orange. *Indels restricted to in-frame insertions/deletions. **Truncation mutations include nonsense point mutations and
frameshift insertions/deletions.
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neoplasia and subjacent MCC22,25. The current study contributes
to the limited data in this realm and includes evaluation of a
second combined MCC with invasive, rather than in situ, SCC.
The squamous and NE elements of combined tumors were

found to have a high degree of overlapping genetic alterations,

with similarity indices greater than 24% in 4 of 5 cases. In the fifth
case (36, Fig. 3C), SCCIS and MCC were not contiguous, and there
was overlap of only 5 of 159 detected variants (all of uncertain
significance) without shared mutations of RB1 or TP53. All 5 of the
variants have been reported as single nucleotide polymorphisms
(SNPs) with population allele frequencies of 0.01–0.1%40, and all
had VAFs close to 0.5 in both the NE and SCCIS components
(range 0.36–0.62). Hence, the histological and genomic findings
together suggest that this is a case of SCCIS “colliding” with an
unrelated MCC, the 5 overlapping variants representing (germline)
SNPs. In the remaining paired cases, there was significant overlap
of identical mutations (24.3–96.8%) with a minimum 17 over-
lapping variants. Each paired case had a shared variant in RB1,
TP53, or both. These findings suggest a genuine ontogenetic
relationship between the elements. The variation in overlap may

Fig. 4 Retinoblastoma (Rb) expression in Merkel cell carcinoma and cutaneous squamous cell carcinoma. MCPyV+ Merkel cell carcinoma,
which exhibits pure neuroendocrine morphology (A. H&E, ×50), was found to have retained expression of Rb in 8/9 cases evaluated (D. Rb IHC,
×50). Conversely, MCPyV− Merkel cell carcinoma combined with squamous cell carcinoma (B. H&E, ×100) demonstrated absence of Rb
expression in both neuroendocrine and squamous elements in all 9 cases evaluated (E. Rb IHC, ×100). Conventional cutaneous invasive
squamous cell carcinoma (C. H&E, ×100) exhibited retained expression of Rb in 11/13 cases (F. Rb IHC, ×100).

Table 2. Clinical & pathological characteristics of combined Merkel
cell carcinomas with individually sequenced components (N= 5).

Characteristic Cases (see Fig. 4)

Age (y), median (range) 79 (46–99) 26, 33, 34, 35, 36

Sex

Male, N (%) 2 (40%) 26, 36

Female, N (%) 3 (60%) 33, 34, 35

Anatomical site

Head & Neck, N (%) 4 (80%) 33, 34, 35, 36

Trunk, N (%) 1 (20%) 26

Morphological components of tumor

SCCIS, N (%) 5 (100%) 26, 33, 34, 35, 36

SCC-INV, N (%) 3 (60%) 26, 33, 34

MCCIS, N (%) 1 (20%) 35

MCC-INV, N (%) 5 (100%) 26, 33, 34, 35, 36

MCC-SCC hybrid invasive nests, N (%) 3 (60%) 26, 33, 34

Dominant component of tumor

MCC-INV 5 (100%) 26, 33, 34, 35, 36

MCPyV status

MCPyV negative 5 (100%) 26, 33, 35, 35, 36

Paired NGS samples

MCC+ SCCIS 4 (80%) 33, 34, 35, 36

MCC+ SCC-INV 1 (20%) 26

y years, MCPyV Merkel cell polyoma virus, SCCIS squamous cell carcimoma
in situ, SCC-INV invasive squamous cell carcinoma, MCCIS intraepidermal/
intra-adnexal Merkel cell carcinoma, MCC-INV invasive Merkel cell
carcinoma, MCC-SCC hybrid invasive nests = individual invasive nests of
tumor exhibiting mixed neuroendocrine and squamous differentiation,
NGS next generation sequencing.

Table 3. Patterns of retinoblastoma protein expression in different
subtypes of Merkel cell carcinoma and conventional cutaneous
squamous cell carcinoma.

Tumor characteristic Rb IHC status P

Retained Reduced/
absent

Viral status

MCPyV+ 8 1 <0.0001

All MCPyV− 1 23

MCPyV−, Pure 1 9 0.42

MCPyV−, Combined, NE
Component

0 14

MCPyV−, Combined, SCC
Component

0 9 0.0002

Conventional SCC 11 2

RB1 status

Variant(s) present 0 13 <0.0001

Variant absent 9 1

Rb retinoblastoma, IHC immunohistochemistry, MCPyV Merkel Cell
Polyomavirus.
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be the result of differences with respect to the molecular stage of
development at which the two components diverged (i.e. early
development of a NE component in an SCC precursor lesion with
subsequent accrual of abundant unique subclone/subtype-specific
variants, vs. late divergence, which would leave less time for this
phenomenon). This is supported by TMB data, with high similarity
indices found in cases with similar level of TMB in NE and SCC
components (cases 26 and 33, presumed late divergence). By
contrast, case 34 has low similarity index (24.3%) and widely
differing TMBs in the SCC (7.1/Mb) and NE (48.2/Mb) components
(presumed early divergence).
Rb protein expression was studied in 14 combined tumors,

including nine tumors in which SCC elements remained in the
paraffin block. In all nine cases, Rb expression was absent in both
the squamous and NE components of the tumor, in accordance
with some15,22, but not all previous studies25. Similar loss of
expression has been demonstrated in MCPyV− tumors with pure
morphology7,8. Loss of Rb expression was uncommon in a
comparison group of conventional cutaneous in situ and invasive
SCC (2/13, 15%). This is consistent with the low rate of RB1
mutations (typically 4–15%) reported in cutaneous and non-
cutaneous SCCs50. Although not considered a significant driver of
cutaneous SCC, RB1 mutations have recently been observed in a
distinct subset of SCC in situ (27%) and in a smaller group of
aggressive invasive SCC (8%)51. Our findings with regard to RB1
mutation and loss of Rb protein expression in combined MCCs,
concur with those recently described by Kervarrec et al.22. Those
authors invoked RB1 inactivation as an early step in development
of a Merkel cell phenotype mediated via induction of SOX222,52. In
contrast, Harms et al. showed decreased Rb expression in the MCC
components, but not in the squamous elements of combined
MCCs despite the presence of RB1 variants in the latter25.
Despite our attempts to identify potential mutational trigger(s)

of conversion from an SCC to a NE phenotype, no pattern of
aberrations unique to the MCC component (as distinct from the
SCC component) of combined tumors was identified. The findings
of others have been similar in this regard22,25. Harms et al. did
observe FBXW7 and SMARCA4 variants restricted to the MCC
component in a subset of their cases25. In contrast, we observed
FBXW7 variants in three of our independently sequenced
combined MCC cases, in both the SCC and NE components of
each case. Moreover, SMARCA4 mutations occurred in two such
combined tumors, one featuring the variant in both tumor
components, and the other only in the SCC component. Further
studies on larger cohorts of combined tumors are required to
rigorously address this question, but available data suggests that,
in addition to a requisite group of mutations, epigenetic events
and gene expression patterns may be involved in the develop-
ment of a neuroendocrine phenotype25,53,54.
Evidence to date suggests that MCPyV− MCC arises from a

keratinocytic precursor lesion, or from a tumor stem cell capable
of squamous or neuroendocrine differentiation. The association of
neuroendocrine carcinomas with epithelial elements in other
organ systems (e.g. squamous cell or adenocarcinoma in Mixed
Neuroendocrine-Nonneuroendocrine Neoplasms (MiNEN) of the
gastro-entero-pancreatic tract) supports the concept of epithelial
to neuroendocrine transition55. It seems likely that RB1 inactiva-
tion plays a pathogenetic role in the development of combined
MCC. Hence, the subset of SCC in situ and aggressive invasive SCC
with RB1 mutation51 may serve as precursors, with a propensity to
transform to a neuroendocrine phenotype following acquisition of
additional molecular aberrations. Additional studies on larger
series of combined MCCs, including evaluation of gene expression
patterns and epigenetic alterations, may clarify the source of these
neoplasms.
Apart from the aforementioned genomic differences observed

in MCPyV+ and MCPyV− MCCs12,13,15–17,49, additional compar-
isons between our genomic findings and those of others

(e.g. relating to rates of mutation/hemizygous loss of commonly
implicated TSGs, or of mutation/amplification of commonly
implicated oncogenes between groups of MCCs) could be made,
but are outside the scope of the current manuscript.
Limitations of our study include the small size of a single-

center cohort of cases and resource restrictions. Prior studies
resulting in depletion of tissue in archived paraffin blocks
impaired our ability to sample dual components of many
combined tumors. Lack of access to laser capture microdissec-
tion deterred more targeted comparative sequencing in
combined MCCs with intimately admixed squamous and NE
components. Lastly, the lack of parallel germline sequencing was
an important limitation preventing subtraction of background
variants/SNPs, leading to overinclusion of presumed somatic
variants. These falsely implicate genes which are not involved in
tumorigenesis and, in combined tumors, inflate similarity
indices, as is believed to have happened for case 36 (“true”
similarity index would likely be 0%, not 3.1%, if SNPs were
identified and eliminated).
The strengths of this investigation include analysis of a well-

characterized cohort of MCCs enriched by a subset of combined
cases. The stratification of the tumors based on viral status and
morphology complements prior studies addressing only one
parameter or the other. Our comparative comprehensive profiling
of five combined tumors represents a significant contribution to
current limited knowledge of the relationship between the dual
elements of these lesions and suggests that occasional “collision
tumors” may be incorporated within the morphologically defined
group of combined MCCs. Given the known demographic and
geographic variability in the incidence and subtypes of MCC, our
study sheds light on the features of a North American (Atlantic
Canadian) subset of cases.
In conclusion, through CGP of a diverse cohort of MCCs we

provide support for the biological dichotomy between MCPyV+
and MCPyV− MCC. Of importance, our findings support the
concepts of (i) a pathogenetic relationship between MCPyV−
MCCs with pure and combined morphology (ii) an ontogenetic
relationship between neuroendocrine and squamous components
of combined MCCs and (iii) an epithelial origin for combined (and
possibly all) MCPyV− MCCs. A common molecular trigger, if one
exists, for the development of a neuroendocrine phenotype in
combined tumors has yet to be identified.
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