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Oncogenetic landscape of T-cell lymphoblastic lymphomas
compared to T-cell acute lymphoblastic leukemia
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In the latest 2016 World Health Organization classification of hematological malignancies, T-cell lymphoblastic lymphoma (T-LBL)
and lymphoblastic leukemia (T-ALL) are grouped together into one entity called T-cell lymphoblastic leukemia/lymphoma (T-LBLL).
However, the question of whether these entities represent one or two diseases remains. Multiple studies on driver alterations in
T-ALL have led to a better understanding of the disease while, so far, little data on genetic profiles in T-LBL is available. We sought
to define recurrent genetic alterations in T-LBL and provide a comprehensive comparison with T-ALL. Targeted whole-exome next-
generation sequencing of 105 genes, multiplex ligation-dependent probe amplification, and quantitative PCR allowed
comprehensive genotype assessment in 818, consecutive, unselected, newly diagnosed patients (342 T-LBL vs. 476 T-ALL). The
median age at diagnosis was similar in T-LBL and T-ALL (17 vs. 15 years old, respectively; p = 0.2). Although we found commonly
altered signaling pathways and co-occurring mutations, we identified recurrent dissimilarities in actionable gene alterations in
T-LBL as compared to T-ALL. HOX abnormalities (TLXT and TLX3 overexpression) were more frequent in T-ALL (5% of T-LBL vs 13% of
T-ALL had TLX1 overexpression; p = 0.04 and 6% of T-LBL vs 17% of T-ALL had TLX3 overexpression; p = 0.006). The PI3K signaling
pathway was significantly more frequently altered in T-LBL as compared to T-ALL (33% vs 19%; p < 0.001), especially through PIK3CA
alterations (9% vs 2%; p < 0.001) with PIK3CA"'%% as the most common hotspot. Similarly, T-LBL genotypes were significantly
enriched in alterations in genes coding for the EZH2 epigenetic regulator and in TP53 mutations (respectively, 13% vs 8%; p = 0.016
and 7% vs 2%; p < 0.001). This genetic landscape of T-LBLL identifies differential involvement of recurrent alterations in T-LBL as
compared to T-ALL, thus contributing to better understanding and management of this rare disease.
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INTRODUCTION

Precursor T-cell malignancies are rare clonal hematopoietic stem
cell neoplasms of lymphoid precursors that are committed to the
T-cell lineage and mainly affect pediatric patients. By convention,
the designation of T-cell lymphoblastic lymphoma (T-LBL) is used
when the neoplasm is confined to a tissue lesion without or with
only minimal blood or bone marrow involvement while T-cell
lymphoblastic leukemia (T-ALL) is used when there is extensive
blood involvement and/or >25% bone marrow infiltration. The
World Health Organization denominated both T-ALL and T-LBL as
T-lymphoblastic leukemia/lymphoma (T-LBLL) in the 2016 Revised
World Health Organization classification of hematological malig-
nancies but without further specification'. Despite this, similarities
and differences in T-LBL and T-ALL regarding clinical course,

phenotypic and molecular features have raised the question of
whether these entities represent one disease or reflect two
different diseases®. Molecular aspects of T-ALL have been widely
explored and, although T-ALL and T-LBL share several common
aberrations, clinical and multiomic strategies suggested that the
two entities may have independent pathogenic requirements and
dependencies®. Evidence that leukemic conversion originating
from the T-LBL cell in lymphoid tissue can occur has been
reported*>. About 40% of relapsed T-LBL patients have bone
marrow (BM) involvement, whereas less than 20% of T-LBL
patients have histological evidence of BM involvement at
diagnosis®. Conversely, about 20% of ALL patients undergo
isolated extramedullary relapse (mainly central nervous system
or testis) that could be considered lymphoma®. Gene expression
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analysis of T-LBL and T-ALL patient samples also showed different
signatures for T-LBL and T-ALL in both children and adults,
implying specific requirements to invade lymphoid tissues (T-LBL)
or involve systemic compartments (T-ALL)"%. Genes involved in
angiogenesis, chemotactic response, and nodal metastases were
more highly expressed in T-LBL”. Genes coding for proteins
involved in cell-cell adhesion such as BCL2, S1P1, and ICAM1 have
also been shown to be differentially expressed in T-LBL, leading to
a blockade of tumor cell intravasation to blood®. This may explain
why T-LBL and stromal cells are embedded in close proximity to
lymphoid tissues. Phenotypically, it has been reported that T-LBL
more frequently involves mature thymic cells than T-ALL, with a
less frequent expression of myeloid antigens'®'% Finally, one
DNA methylation study identified an epigenetic signature of
differentially methylated CpG sites that segregates T-LBL from
T-ALL. Those sites were associated with increased expression of
membrane-associated protein domains'>.

Understanding the significance of gene mutations in the
diagnostic or prognosis of T-LBLL has already helped risk
stratification and the development of individualized treatment'”.
T-ALL and T-LBL, however, remain highly aggressive malignant
tumors, notably in adults. Despite event-free survival (EFS) rates of
up to 50-90%, the overall survival rate after relapse is only
~3-27%">"%°, A precise description of the genetic landscape of
T-LBLL and specifically T-LBL is therefore desirable, in order to
identify potential therapeutic targets and improve survival rates
while reducing acute and long-term toxicities.

In this study, we analyzed the genetic landscape of 818 T-LBLL
and identified significant differences in the incidence of PI3K/Akt,
EZH2, and TP53 gene alterations between T-LBL and T-ALL. These
alterations affect specific signaling pathways and may confer a
susceptibility to recently developed targeted therapies.

MATERIALS AND METHODS

Patients

Diagnostic peripheral blood, bone marrow, or lymphoid tissue samples
from 818 unselected adults and children with T-LBLL (476 patients with
T-ALL and 342 with T-LBL), newly diagnosed between 1999 and 2020, were
analyzed centrally in Necker-Enfants Malades Hospital (AP-HP, Paris France)
after informed consent was obtained at diagnosis according to the
Declaration of Helsinki. According to WHO criteria, if a patient presents
with a mass lesion and lymphoblasts in the marrow, a value of >25%
marrow blasts is used to define leukemia versus lymphoma’.

Gene mutation screening

A custom capture Nextera XT gene panel (Illumina, San Diego, CA) targeting
all coding exons and their adjacent splice junctions of 105 genes was
designed, based on available evidence in hematological neoplasms
(Supplementary Table 2). DNA Libraries were prepared using Nextera Rapid
Capture Enrichment protocol and underwent 2Xx150bp paired-end
sequencing on lllumina MiSeq sequencing system with MiSeq Reagent Kit
v2 (lllumina). Briefly, sequence reads were filtered and mapped to the human
genome (GRCh37/hg19) using in-house software (Polyweb, Institut Imagine,
Paris). Annotated variants were selected after filtering out calls according to
the following criteria: (1) coverage < 30x%, <10 alternative reads or variant
allelic fraction (VAF) < 7%; (2) polymorphisms described in dbSNP, 1000Gen-
omes, EVS, Gnomad and EXAC with a calculated mean population frequency
> 0.1%; (3) mutations with a frequency <2% in both T-LBL and T-ALL groups.
Non-filtered variants were annotated using the somatic database COSMIC
(version 78) and ProteinPaint (St Jude Children’s Research Hospital—Pediatric
Cancer data portal). Lollipop plots were generated with ProteinPaint (https://
pecan.stjude.org/#/ proteinpaint) and splice mutations were not depicted.

Molecular characterization of oncogenic drivers in T-LBLL
samples

Peripheral blood, bone marrow T-ALL samples, and lymphoid tissue T-LBL
samples when available were analyzed for fusion transcripts (SIL-TAL1,
CALM-AF10/PICALM-MLLT10), oncogenic transcripts (HOXA9, TLX1, and
TLX3) and NOTCH1/FBXW7/RAS/PTEN mutations, as previously described?"?2.
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Multiplex ligation-dependent probe amplification (MLPA)
analysis

MLPA analysis was performed using the MRC Holland (Amsterdam, The
Netherlands) SALSA MLPA probe mix P383-A1 TALL according to the
manufacturer's recommendations. Polymerase chain reaction products
were separated by capillary electrophoresis on an ABI-3130 device.
Coffalyser software, available at http://www.mlpa.com, was used for the
analysis.

Statistics

Comparisons for categorical variables between T-ALL and T-LBL subgroups
were performed with Fisher's exact test or Wilcoxon rank-sum test.
Statistical analyses were performed with STATA software (STATA 12.0
Corporation, College Station, TX, USA) and StatAid R package?>. All p-values
were two-sided, with p < 0.05 denoting statistical significance. Circos plots
and oncoplots were generated using R software. Strong correlations are
indicated by large ellipses, whereas weak correlations are indicated by
small ellipses. Co-occurrences and mutual exclusions in T-LBL and T-ALL
patients were computed with the DISCOVER algorithm (version 0.9.3).

RESULTS

Clinico-genomic comparison between T-ALL and T-LBL shows
common features

Eight hundred and eighteen adults and children with T-LBLL (342
with T-LBL and 476 patients with T-ALL) were included in the
study. Among the 476 T-ALL analyzed, 215 were adult patients
(=19 years old) and 261 were pediatric patients (<19 years old).
Among the 342 T-LBL analyzed, 156 were adult patients (=19 years
old) and 186 were pediatric patients (<19 years old) (Supplemen-
tary Table 1). The median age at diagnosis was similar in T-LBL and
T-ALL (17[1-72] vs 15[1-59] years old, respectively, (p =0.2). 74%
(249/335) of T-LBL vs 75% (357/476) of T-ALL were male (p > 0.9).
CNS involvement occurred in 6% of T-LBL vs 11% of T-ALL (p =
0.11). Regarding oncogenetic classification, CALM-AF10 (PICALM-
MLLT10) rearrangements were found in 4% of T-LBL vs 3% of T-ALL
(p=0.8). SIL-TAL1 rearrangements were also comparable in both
groups (13% of T-LBL vs 14% of T-ALL; p > 0.9). Clinico-biological
features of the cohort are summarized in Table 1.

Of the 818 T-LBLL samples, 804 harbored at least one
pathogenic mutation or MLPA alteration (330/96.5% T-LBL and
474/99.6% T-ALL). The global representation of the mutation
landscape in T-LBL and T-ALL is displayed as an oncoplot (Fig. 1A).
Circos plots depicting co-occurring mutations in T-LBL and T-ALL
are shown in Fig. 1B.

Most alterations in T-LBLL affected NOTCH1/FBXW7 pathway
genes (68% of cases), which was the most frequently involved
pathway in both T-LBL and T-ALL. The second most frequently
altered pathway was the cell cycle, with CDKN2A being deleted in
50% of T-LBL vs. 70% of T-ALL. Epigenetic regulating factors were
commonly altered in both categories (53% overall). Other signaling
pathways, including PI3K, JAK/STAT, and RAS (including KRAS, NRAS,
NF1, and PTPN11), were also commonly altered in T-LBL and T-ALL.
Genes coding for transcription factors were similarly mutated in
T-LBL (40% of cases) and in T-ALL (44% of cases); p = 0.277 (Fig. 1A
and supplementary Table 3).

Co-occurring gene alterations were also comparable between
T-LBL and T-ALL (Fig. 1B). NOTCH1 mutations frequently co-occurred
with CDKN2A deletions, FBXW7, PHF6, and BCL11B mutations and are
significantly less associated with PTEN alterations.

A thorough, comprehensive genetic landscape analysis of T-LBL,
however, identified recurrent dissimilarities in oncogene altera-
tions as compared to T-ALL

Molecular dissimilarities in T-LBL vs T-ALL

Several oncogenes were significantly differentially distributed and
are described below. Gene and pathway alterations in T-LBL and
T-LBL are depicted and detailed in Fig. 2 and supplementary
Table 3. Regarding oncogenic drivers, NKL homeotic abnormalities
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Table 1. Characteristics of the cohort.
Variable Overall® (n=818)
Age (y)
Median [range] 16 (1-72)
Adult 371 (45)
Ped 447 (55)
Sex
Female 208 (25)
Male 610 (75)
CNS involvement
No 525/582 (90)
Yes 57/582 (10)

Oncogenic drivers

CALM-AF10 (PICALM-MLLT10) 17/529 (3)

TLX1 60/529 (11)
TLX3 79/529 (15)
SIL-TAL1 73/529 (14)
P-values in italic are <0.05.
n /N (%).

PFisher’s exact test; Wilcoxon rank-sum test.

(TLXT and TLX3) were more frequent in T-ALL as compared to
T-LBL. TLX7 overexpression was found in 6% of T-LBL vs. 13% of
T-ALL (p = 0.04) and TLX3 overexpression in 7% of T-LBL vs. 17% of
T-ALL (p = 0.006).

NOTCH1/FBXW7 pathway. NOTCH1 alterations were identified in
52% (170/330) of T-LBL patients versus 72% (342/474) of T-ALL (p
<0.001). Mutations mainly clustered in the NOTCHT HD domain
(56% of NOTCH1 mutations in T-LBL vs 42% of T-ALL; p = 0.086)
(Supplementary Table 4). FBXW7 mutations were found in 24% of
T-LBL vs 20% of T-ALL (p =0.226). However, the co-occurrence
mutational profile of FBXW7 differs between T-LBL and T-ALL.
FBXW7 mutations were significantly more commonly associated
with PTEN and STAT5B alterations in T-LBL while FBXW7 mutations
were more commonly associated with JAKT and RUNXT mutations
in T-ALL (Fig. 3).

Cell cycle. We observed significantly fewer CDKN2A alterations in
T-LBL (50% of T-LBL vs 70% of T-ALL; p < 0.001). Conversely, T-LBL
were enriched in TP53 mutations (7% of T-LBL vs 2% of T-ALL; p <
0.001). TP53 mutations had no significant co-occurrence with
other gene alterations in T-ALL whereas they were less
significantly associated with CDKN2A deletions in T-ALL (Fig. 3).
TP53 mutations mainly affected the p53 DNA-binding domain of
the protein (exon 5-8) in both T-LBL and T-ALL (Fig. 4A). No
differential incidence of mutations between adult and pediatric
T-LBL regarding TP53 was found (Supplementary Table 5).

Epigenetic deregulation. Epigenetic regulating factors were more
frequently altered in T-ALL (52% of T-LBL vs 60% of T-ALL cases; p =
0.02). PHF6 was the most frequently altered gene in this category,
with mutations detected in 29% (232/804) of patients (71/330, 22%
of T-LBL vs 161/474, 34% of T-ALL; p <0.001). T-ALL patients were
significantly enriched in CTCF and EED mutations as compared to
T-LBL (respectively, 1% of T-LBL vs 5% of T-ALL; p =0.001 and 1% of
T-LBL vs 4% of T-ALL; p=0.002). In addition, T-LBL patients were
enriched in EZH2 alterations (43/330, 13% of T-LBL vs 36/474, 8% of
T-ALL; p =0.016).

The main alterations were deletions (28% of EZH2 alteration in
T-LBL vs 31% in T-ALL) and missense mutations (42% in T-LBL vs 25%
in T-ALL) (Supplementary Table 4). Of note, EZH2 alterations were
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LBLT? (n = 342) TALL? (n = 476) p-value®
0.2
17 (1-72) 15 (1-59)
156 (46) 215 (45)
186 (54) 261 (55)
>0.9
89 (26) 119 (25)
253 (74) 357 (75)
0.11
102/108 (94) 423/474 (89)
6/108 (6) 51/474 (11)
4/106 (4) 13/415 (3) 0.8
6/106 (6) 54/415 (13) 0.04
7/106 (7) 72/415 (17) 0.006
16/106 (15) 57/415 (14) >0.9

significantly less commonly associated with NOTCH? and FBXW7
mutations in T-LBL (Fig. 3A). Mutations were mainly located in exons
16 to 20 in T-ALL and in T-LBL, affecting the SET domain of the
protein (Fig. 4B).

Finally, KMT2D was mutated in 14% of T-LBL vs 8% of T-ALL (p =
0.001). The distribution of KMT2D variants in adult and pediatric
patients is pictured in Supplementary Fig. 1. No differential incidence
of alterations between adult and pediatric T-LBL regarding EZH2 or
KMT2D was found (Supplementary Table 5).

JAK/STAT signaling pathways. The JAK/STAT signaling pathway
was significantly more affected in T-ALL vs T-LBL (207/474, 43% vs
110/330, 33%, respectively; p =0.004), partly due to the higher
incidence of DNM2 mutations in T-ALL (70/474, 15% of T-ALL vs
23/330, 7% of T-LBL; p <0.001). Regarding other major genes
involved in JAK/STAT signaling, IL7R, JAK1, JAK3, and STAT5B were
mutated in 10%, 6%, 14%, and 6% in T-LBLL, respectively, with no
incidence difference between T-LBL and T-ALL (Fig. 1A and
Supplementary Table 3).

PI3K signaling pathway. Evaluation of PI3K signaling pathway
gene mutations in T-LBL highlights important dissimilarities with
T-ALL. Overall, 5% (38/804) of patients had PIK3CA mutations (30/
330, with 9% in T-LBL vs 8/474, 2% in T-ALL; p < 0.001), comprising
39 mutations (31 in T-LBL and 8 in T-ALL). Of these, 38 were
missense mutations and one was a nonsense mutation. Interest-
ingly, the most frequent mutation of PIK3CA in T-LBL was missense
mutation at H1047 in exon 21 (kinase domain) (11/31 mutations,
35%) while T-ALL featured scattered mutations without preferential
location. PIK3CA mutations are depicted in Fig. 4C and detailed in
Supplementary Table 6. While no significant co-occurrence between
PIK3CA and other gene alterations was reported in T-ALL, PIK3CA
mutations were significantly less associated with NOTCH1, PHF6,
PTEN, and JAK3 alterations in T-LBL (Fig. 3).

PIK3R1 mutations were observed in 5% (42/804) of patients (24/
330, 7% of T-LBL vs 18/474, 4% of T-ALL; p=0.036) with 43
mutations reported (25 in T-LBL and 18 in T-ALL) featuring 25
missense, 11 indels, 3 frameshifts, and 4 splicing mutation. Most of
the mutations observed were in the Inter-Src homology 2 (iSH2)
helical domain of the protein, especially in exon 13. PIK3R1
mutations were significantly less associated with NOTCH1, PHF6,
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and PIK3CA alterations whilst no association or exclusion were
observed in T-ALL. Details of PIK3R1 mutations (splicing mutations
excluded) are depicted in Fig. 4D.

AKT1 were mutated in 1% (10/804) of patients overall, including
2% (8/330) of T-LBL vs 2/474, 0.4% of T-ALL; p = 0.019). 12 missense
mutations were reported (8 mutations in T-LBL and 4 mutations in
T-ALL). Eighty three percent (10/12) of mutations were E17K in exon
3 (kinase domain). Seven AKT1 E17K mutations were identified in
T-LBL and 2 in T-ALL (Fig. 4E).

The incidence of PTEN alterations was comparable (52/330, 16%
of T-LBL vs 69/474, 15% of T-ALL; p = 0.689) with PTEN deletions
identified in 27% of PTEN altered T-LBL cases and in 22% of T-ALL
cases (Supplementary Table 4).

No difference was seen in the incidence of mutations between
adult and pediatric T-LBL regarding PIK3CA, PIK3R1, and AKTI.
(Supplementary Table 5).

SPRINGER NATURE

DISCUSSION

This study provides a comprehensive genetic study of T-LBLL and
demonstrates that the T-LBL oncogenetic landscape differs from
T-ALL.

The incidence of specific driver oncogenic rearrangement was
significantly different in T-LBL and T-ALL regarding HOX abnorm-
alities, since T-ALL were relatively enriched in TLX7 and TLX3
overexpression. TLX1 overexpression, found in a “proliferative”
molecular cluster, is associated with a better outcome in T-ALL**
while the prognostic impact of TLX3 overexpression, found in a
“TLX" molecular cluster, remains contested®?°. So far, little is
known about oncogenic drivers in T-LBL patients. Few T-LBL
patients benefit from RT-gPCR or rearrangement screening, as is
systematically performed for T-ALL.

T-LBL also demonstrated differences in recurrent gene alterations
affecting actionable signaling pathways as compared to T-ALL.

Modern Pathology (2022) 35:1227 - 1235
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Fig. 4 Representation and distribution of mutations observed in T-LBL confront to T-ALL for selected genes. Lollipop plots indicating the
observed mutations and their consequences for: A TP53. B EZH2. C PIK3CA. D PIK3R1. E AKT1.

Most importantly, NGS-based molecular screening reveals
recurrent PI3K signaling pathway alterations in T-LBL as compared
to T-ALL. Nine percent of T-LBL patients had PIK3CA mutations,
mainly involving exons 10 and 21. This is slightly higher than
previously reported in pediatric and adult T-LBL cohorts (7% and
6%, respectively),27’28. PIK3R1 mutations in our cohort were also
higher compared to previous observations (7% vs 4%)?’. Regarding
T-ALL, there were few PIK3CA (2%), PIK3R1 (4%), and AKT1 (0.4%)
mutations, which is consistent with the literature, although slightly
lower than previously reported, albeit limited, cohorts?>*°. A recent
NGS-based study of 87 adult T-LBL did not identify significant
PIK3CA, PIK3R1, or AKT1 mutations®'. PIK3CA mutations were
significantly less associated with NOTCH1, PHF6, and PTEN alteration
in T-LBL, suggesting a specific oncogenic role. The PI3K/Akt
signaling pathway plays an important role in the early stages of
thymocyte development, specifically for the transition of double-
negative to double-positive thymocytes. Whereas a loss of regular
PI3K/Akt signaling leads to defective thymocyte development, its
aberrant activation triggers uncontrolled cell survival, growth, and
proliferation that may lead to the formation of T-cell lymphomas®2.
The PI3K/Akt pathway also has a crucial role in cell-to-cell adhesion
and is implicated in tumor-induced extracellular matrix reorganiza-
tion and tumor dissemination®>73%, We hypothesize that activating
mutations in this pathway might affect thymocyte-stroma interac-
tion to promote tumor formation and dissemination preferentially
in T-LBL. Clinically, specific inhibition of PIK3CA in PIK3CA-related
overgrowth CLOVES syndrome patients induces spectacular disease
regression®’. Interestingly, the 19 T-LBL patients in this cohort
showed a spectrum of mutations very similar to those reported in
this study, with PIK3CA"7%% as the most frequent alteration (Fig. 4C).
PI3K/Akt pathway alterations and specifically PIK3CA alterations are
frequent targetable lesions in solid tumors. Promising clinical trials
have led to FDA approval for alpelisib in metastatic breast cancer’®,
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Our results show that mutations in the PI3K/Akt signaling pathway
are recurrent features and potentially actionable targets in T-LBL.

Additional genomic differences between T-LBL and T-ALL affect
NOTCHI1, CDKN2A genes, and epigenetic regulating factors.
NOTCH1 mutations affect the HD or TAD/PEST domain of the
protein, resulting in increased NOTCH1 signaling. These mutations
have been widely described in T-ALL, when they are found in up
to 70% of diagnostic samples®>*°, NOTCH pathway mutations in
T-ALL have been associated with a favorable outcome and
improved steroid responses®'*2, NOTCH1 mutations have been
reported in 55-60% of pediatric T-LBL??®** and 36-52% of adult
T-LBL3"*, while we now report NOTCH1 mutations in 52% of
T-LBL patients. These mutations were also associated with a
favorable prognostic effect®’**. Interestingly, T-ALL were signifi-
cantly enriched in NOTCH1 mutations as compared to T-LBL,
particularly those leading to single in-frame mutations, which
were absent in T-LBL, compared to 17% of T-LBL.

With respect to epigenetic abnormalities, the EZH2 gene was
more frequently mutated in T-LBL. In previous studies, EZH2 was
mutated in 7% of T-ALL adult cases while EZH2 gain was observed
in 13% of T-LBL pediatric cases with SNP array®®?'. Loss-of-
function EZH2 mutations were found in T-ALL, along with
deletions and mutations of other Polycomb Repressive Complex
2 (PRC2) subunits®™™*. EZH2 is the functional enzymatic
component of PRC2 and is responsible for its methylation activity.
PRC2 loss-of-function alterations can profoundly reshape the
genetic and epigenetic landscape of T-ALL, leading to the
reactivation of stem cell programs that cooperate with Bromodo-
main and Extraterminal (BET) proteins to sustain T-ALL. We
recently identified a targetable vulnerability to BET inhibition in
PRC2-altered T-ALL patients”’. The present data suggest that
EZH2-altered T-LBL patients should also be considered for such
targeted therapy. On the other hand, other mutations in
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PRC2 subunits (i.e, SUZ12) and in epigenetic factor PHF6 were
enriched in T-ALL. Similar to what has been reported, SUZ12
inactivation and PHF6 alterations significantly co-occurred with
JAK3 mutations in our T-ALL patients as compared to T-LBL***°,
Based on our results, selective PRC2 subunits alterations seem to
be preferentially associated with leukemic or tumoral involvement
and should be further explored. In the same manner, PHF6 gene
does not seem to play a major role in lymphomagenesis as
compared to what has been reported in T-ALL*°. In contrast to
T-ALL cell lines, PHF6 mutations have been associated with a
favorable outcome in adult T-LBL patients®'. The role PHF6 plays in
leukemogenesis is still actively under investigation and further
study is therefore required to assess its true role and significance
in T-LBLL patients.

Intriguingly, we found a higher incidence of KMT2D mutation,
another epigenetic modifier, in T-LBL vs T-ALL. KMT2D have been
previously shown to be associated with poor prognosis in
pediatric T-LBL?®, We reported a similar KMT2D mutation incidence
(14% vs 13%) in T-LBL, but we did not observe a differential
incidence of KMT2D mutation in pediatric vs. adult patients. In
addition, we found that mutations in T-LBL were rather localized in
a region ranging from 2000 to 3000 amino acids, as previously
described, and, specifically to our cohort, in exon 11. For T-ALL, we
found 8% of patients with KMT2D mutation which is higher than
data previously reported, albeit in limited cohorts of purely
pediatric patients (2% and 3%)°'"2. Although KMT2D gene has
been very little studied in T-LBLL, it seems to have an important
role in leukemogenesis specifically in T-LBL. Because of a
heterogenous distribution of mutations, further studies are
needed for better characterization.

T-LBL were also highly enriched in TP53 missense mutations as
compared to T-ALL. TP53 is the most commonly mutated somatic
gene in human cancer and is often associated with a poor
outcome in hematological malignancies®®. The TP53 targeting
drug APR 246 (eprenetapopt) has recently shown promising
results in myeloid malignancies with mutant TP53°*>>, APR 246 is
a small molecule that restores wild-type p53 functions in TP53-
mutant cells and could be part of the future of care in T-LBL/T-ALL
harboring TP53 Mutation.

The JAK/STAT signaling pathway was frequently altered in T-LBLL
(39% of cases), particularly in T-ALL, with JAK3 as the main mutated
gene in both T-LBL (12%) and T-ALL (15%). The incidence of IL7R
was frequent and similar in T-LBL and T-ALL (about 10%). IL7R/JAK/
STAT pathway alterations are known to participate in leukemic
development and are associated with reduced steroid sensitivity
and poor clinical outcome®, although this may improve with
targeted use of JAK inhibitors (tofacitinib and ruxolitinib)®”~>°.

In conclusion, we provide the largest comparative study
exploring the oncogenic landscape of T-LBL vs T-ALL and reveal
for the first time significant preferential alterations in T-LBL vs
T-ALL (PI3K/Akt pathway, TP53, and PRC2/EZH?2 alterations) using a
pan-exon NGS-based approach. We identified recurrent mutations
in targetable oncogenic signaling pathways in T-LBL and suggest
that certain somatic abnormalities may affect the degree of tissue
dissemination to blood and or bone marrow. Nevertheless, further
prospective studies in T-LBL and T-ALL patients homogeneously
treated are needed to better characterize the impact of genomic
alterations in these rare diseases.
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