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Correctly diagnosing a rare childhood cancer such as sarcoma can be critical to assigning the correct treatment regimen. With a
finite number of pathologists worldwide specializing in pediatric/young adult sarcoma histopathology, access to expert differential
diagnosis early in case assessment is limited for many global regions. The lack of highly-trained sarcoma pathologists is especially
pronounced in low to middle-income countries, where pathology expertise may be limited despite a similar rate of sarcoma
incidence. To address this issue in part, we developed a deep learning convolutional neural network (CNN)-based differential
diagnosis system to act as a pre-pathologist screening tool that quantifies diagnosis likelihood amongst trained soft-tissue sarcoma
subtypes based on whole histopathology tissue slides. The CNN model is trained on a cohort of 424 centrally-reviewed
histopathology tissue slides of alveolar rhabdomyosarcoma, embryonal rhabdomyosarcoma and clear-cell sarcoma tumors, all
initially diagnosed at the originating institution and subsequently validated by central review. This CNN model was able to
accurately classify the withheld testing cohort with resulting receiver operating characteristic (ROC) area under curve (AUC) values
above 0.889 for all tested sarcoma subtypes. We subsequently used the CNN model to classify an externally-sourced cohort of
human alveolar and embryonal rhabdomyosarcoma samples and a cohort of 318 histopathology tissue sections from genetically
engineered mouse models of rhabdomyosarcoma. Finally, we investigated the overall robustness of the trained CNN model with
respect to histopathological variations such as anaplasia, and classification outcomes on histopathology slides from untrained
disease models. Overall positive results from our validation studies coupled with the limited worldwide availability of sarcoma
pathology expertise suggests the potential of machine learning to assist local pathologists in quickly narrowing the differential
diagnosis of sarcoma subtype in children, adolescents, and young adults.
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INTRODUCTION
Soft-tissue sarcomas (STS) are rare tumor types representing
approximately 0.7% of all newly diagnosed cancers per year1.
Despite the low relative incidence in adults, STS are comparatively
overrepresented in childhood malignancies, accounting for 6–8%
of all childhood cancers in patients under 15 years of age1,2.
Pediatric sarcoma is generally subdivided into rhabdomyosarcoma
(RMS) and non-RMS STS1,2. The plurality of new sarcoma
diagnoses are RMS (approximately 350 per year)3 which has two

major subtypes, embryonal RMS (eRMS) and alveolar (aRMS), and
three rare but recognized subtypes, pleomorphic RMS (which is
recognized in adults but may occur in children as well), botryoid
RMS, and spindle cell/sclerosing RMS3. eRMS accounts for 70–80%
of childhood RMS cases, aRMS accounts for 20–30%, and
pleomorphic and spindle-cell account for a slim remaining
fraction3. The remaining STS diagnoses (500–550 annually in the
United States)1 are distributed amongst the 16+ NRSTS subtypes,
including epithelioid sarcoma (EPS) and clear cell sarcoma (CCS)4.
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Between 2001 and 2010, the worldwide incidence of soft-tissue
sarcoma in children aged 0–14 years was 18,323 cases (8.9
worldwide incidences per million person-years, age-standardized),
and 7,011 in young persons aged 15–19 years (12.9 worldwide
incidences per million person-years, age-standardized)5. Impor-
tantly, over 90% of potential childhood cancer patients each year
live in low-income or middle-income countries6.
Common amongst all childhood STS malignancies is the

importance of subtype and diagnosis on selecting chemothera-
peutic and radiotherapeutic treatment strategy1–3. Correspondingly,
correct diagnosis of sarcoma subtype is critical for clinical decision-
making. However, due to the individual rarity of the numerous
childhood STS tumors let alone the rarity in adult populations,
histopathological diagnosis of childhood STS has historically
demonstrated inconsistencies between individual pathologists
and between medical institutions7–9. Among a subset of pediatric
cancer classifications, STS cases demonstrate the highest misdiag-
nosis rate (72% incorrect diagnosis for STS, 52% incorrect diagnosis
across all surveyed pediatric malignancies)9. Time to diagnosis was
also elevated versus childhood leukemia (median 50.5 days to
diagnosis for STS versus 18.5 days for leukemia)9. Furthermore, RMS
misdiagnosis/disagreement in diagnosis rates can be as high as
40–50% for RMS7, highlighting the frequency of incorrect diagnosis
in childhood STS.
Advances in the fields of molecular profiling and artificial

intelligence have introduced new technologies to support
diagnosis and prognosis of new cancer patients10–13. A recent
approach focused on the use of hematoxylin and eosin (H&E)
stained histopathology slides to predict prognosis in lung cancer
patients10. This initial approach was subsequently expanded to
include merged multi-omics datasets with pathology images to
identify molecular mechanisms associated with pathological
findings, thereby offering additional insight into patient prog-
nosis11. A similar approach has been applied to a cohort of
skin lesion images to visually diagnose benign versus malignant
and low-risk versus high-risk melanoma through the use of
smartphone-embedded cameras12. Recent work has leveraged
existing convolutional neural network (CNN) deep-learning frame-
works and models to apply transfer learning to the classification of
lung cancer subtype and presence of a small set of biologically-
relevant mutations based solely on histopathology image13. These
efforts have demonstrated both the acute strength of machine
learning models to assist in pathological diagnosis, and the
focused application of novel image-based learning frameworks
toward adult malignancies. The prevalence of adult neoplasms
provides significantly larger histopathology cohorts which corre-
sponds to a comparatively deeper body of clinical experts able to
diagnose adult cancer patients.
Given the high rates of misdiagnosis in pediatric STS and the

limited availability of deep expertise both within and outside
economically-advanced nations, we applied the CNN-based
histopathology diagnosis framework13 to a cohort of pediatric
and young adult histopathology tissue slides originating from
aRMS, eRMS and CCS cancer patients. Here, we report the results
from CNN model generation, testing and validation for an
externally-sourced RMS histopathology slide cohort. We also
report robustness testing of the generated CNN model as well
as murine histopathology applications arising from the trained
CNN model and associated learning framework.

METHODS AND MATERIALS
Human digital pathology datasets
Digital histopathology tissue images from a total of 274 human subjects
were included in this study (Supplementary Table 1). Of these, 146 were
male, 98 were female, and 30 with unknown sex. Subjects ranged in age
from 0 to 56 years of age with an average age less than 11 years (median
of 6 years) for the subjects with age information available. These subjects

included 83 patients diagnosed with aRMS, 101 with eRMS, 43 with CCS,
one (1) with botryoid RMS, one (1) with CIC-rearranged sarcoma, 11 with
epithelioid sarcoma, 14 with mixed type RMS, 14 with RMS not otherwise
specified (NOS) and six (6) with spindle cell RMS (Supplementary Table 1).
Institutional Review Boards at all collaborating institutions (Children’s
Cancer Therapy Development Institute, University of California - Davis, The
Royal Marsden Hospital, University Hospitals Leuven/Leuven Cancer
Institute, Oregon Health & Science University (OHSU), Rhode Island
Hospital) approved the sharing and use of histopathology images for this
study. Children’s Oncology Group (COG) images were centrally reviewed.
Rhabdomyosarcoma TMA images were previously centrally reviewed14.
CCS images were from the European Organization for Research and
Treatment of Cancer (EORTC) 90101 CREATE Phase II trial15 (TRAC project
384), and were centrally reviewed. In total, 424 digital histology slides were
collected for use in this work. All histopathology images were provided
with hematoxylin & eosin (H&E) staining performed at the originating
institutions or were stained at the OHSU Histopathology Shared Resource
core facility. Clinical metadata and institution of origin are provided
in Supplementary Table 1 and experiment input sets are provided
in Supplementary Table 2. Sample classical and variant STS images are
provided in Fig. 1.

Murine digital pathology datasets
Mouse tumors from genetically engineered animals were developed and
processed as previously described16–18. A total of 318 murine histopathol-
ogy slides from 133 mice genetically engineered mouse models comprised
the murine pathology dataset used in this study. The murine histopathol-
ogy cohort consists of 206 aRMS tissue slides from 62 mice, 54 eRMS tissue
slides from 13 mice, and 58 normal muscle tissue slides from 58 mice. All
murine histopathology images were provided with hematoxylin & eosin
(H&E) staining performed at OHSU and Legacy Emmanuel (Randall)
Children’s hospital. Genotype data on the included murine cohort is
provided in Supplementary Table 3. Mouse histopathology was reviewed
by co-author Dr. Brian Rubin.

Cooperative group human tissue microarrays
Human rhabdomyosarcoma tissue arrays 3000_30_P8968_92, 3000_30_
P8968_143, 3000_30_P8967_115, 3000_30_P8967_140, 3000_31_p1542_25,
3000_31_p1542_75 and 3000_31_P1542_50 were obtained from the
Children’s Oncology Group.

Slide scanning
We used the ScanScope XT histopathology slide scanning platform (Leica,
Wetzlar, Germany) running the manufacturer’s software (version 102.0.0.33)
to digitize pathology images. We digitized images at 40x magnification to
enable use of 5x and 20x resolution images.

Custom mouse-human tissue microarrays
Four samples of formalin-fixed paraffin embedded (FFPE) human RMS (1 x
aRMS, 3 x eRMS) and forty-six (46) murine model sarcomas were used to
construct a custom tissue microarray (TMA). The murine RMS cohort
comprised representative developmental stages and genotypes, including
early myoblast (origin), postnatal stem cell (origin), maturing myofiber
(origin), Pax3:Foxo1-expressing, Trp53 wild type or mutated and Rb1
wildtype or mutated16,18,19. The TMA was stained with a standard
hematoxylin & eosin (H&E) stain for histological verification. Co-author
AM verified each tumor as non-rhabdomyosarcoma and rhabdomyosar-
coma. The latter was further divided into aRMS, eRMS, pleomorphic RMS,
and RMS NOS.
Clinical data and genotype information on TMA resources are provided

in Supplementary Table 4.

Pre-processing of digital histopathology slide images
Machine Learning is a computational tool used to identify patterns in data.
In the context of image pattern processing, convolutional neural network
(CNN) models are among the most popular deep learning neural network
architectures due to development of high-accuracy models across
numerous image types and problem spaces. CNN uses a grid-like topology
to classify images through multiple decision-making layers, and are
frequently applied to both static and dynamic visual image data.
We used the open source DeepPATH software13 to create our CNN

models. This software is written in the Python language and has a collection
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of software modules that enable all aspects of CNN model development,
beginning with image pre-processing and including training, validation,
and testing of CNN models for histopathology image classification. The
adapted pre-processing consists of color normalization using the Vahadane
methodology20 to adjust for color inconsistencies between immunohisto-
chemical staining operations or slide scanning platforms12, segmenting the
image into non-overlapping image sub-regions (termed tiles) of size 512 ×
512 pixels at different image magnification (5x and 20x magnification),
removing extraneous blank tiles generated during digitization and
segmenting, and oversampling the resulting tile cohort data by rotating
the tiles by 90-degree rotations and image mirroring.
We preprocessed the histopathology images by performing image

segmentation, adjusting the magnification to 5x or 20x, performing color
normalization, and eliminating blank tiles within the histopathology
images. The complete pre-processing stage results in histopathology
images color-normalized, magnified to proper resolution, segmented, and
cleared of blank tiles.

Cross-validation, training, and testing of STS CNN model using
digital histopathology slide images
We adapted the DeepPATH CNN software suite13 to create the human-
trained CNN model for histopathological analysis. The adapted training/
testing/validation model creation schematic is presented in Fig. 2A.
First, to address disparities in the size of the aRMS, eRMS, and CCS

training tile set, we used image rotation and reflection of base images to
generate new aRMS, eRMS, and CCS images until the resulting “over-
sampled” tile sets were approximately equivalent in size between all
groups (Fig. 3A).
Next, to determine if the DeepPATH CNN software suite was appropriate

for the task of STS diagnosis, we performed 5-fold cross validation testing,
a process often used to determine if a computational model is appropriate
for specific datasets or specific problems. We split the aRMS, eRMS, and
CCS slide cohorts into five distinct sets and then trained five independent
CNN models, where each model was trained on four of the five sets and
the withheld fifth set was used to quantify model performance.
Having confirmed the applicability of the CNN framework to STS

diagnostic applications, we created a new singular CNN model using the
complete aRMS, eRMS and CCS image set. The singular CNN model was
trained using a slide cohort comprising approximately 70% of the overall
tile set for each disease type, validated for overall performance using a

slide set consisting of 15% of the overall tile set to select the best
performing CNN model, and subsequently tested using a slide set
consisting of 15% of the overall tile set. Class likelihood scores were
determined using a softmax output layer, with final CNN diagnosis class
assigned by the maximum softmax score, i.e., the diagnosis class with the
highest overall softmax score.
Training, testing, validation, and all subsequent experiments were

performed in a Linux CentOS 7 environment run on a high-performance
compute system using Broadwell Xeon processors and two NVIDIA
QUADRO P6000 graphics processing units (GPUs). GPUs are often used
in image processing due to the computational complexity required.

Diagnosis of external histopathology slide cohort
The process underlying disease specificity testing using non-trained
sarcoma histopathology slides is described in Fig. 2B. In brief, histopathol-
ogy images from institutions that did not provide images for model
training (denoted external images) were pre-processed using the
previously described pre-processing steps. No oversampling was per-
formed in this experiment. Following pre-processing, the slides were
classified by the human-trained CNN model.

Determining disease specificity in trained model
The process underlying disease specificity testing using non-trained
sarcoma histopathology slides is described in Fig. 2C. In brief, histopathol-
ogy images from multiple model-naïve STS subtypes (i.e., sarcoma
subtypes on which the CNN model was not trained) were pre-processed
using the previously described pre-processing steps. No oversampling was
performed in this experiment. Following pre-processing, the slides were
assigned random true classifications, and were then classified by the
human-trained CNN model.

Anaplastic tissue testing with trained model
The process underlying classification of histopathology slides determined
to have pathological hallmarks of anaplasia using the trained CNN model is
described in Fig. 2D. In brief, RMS images pathologically determined to
have present, diffuse, or focal anaplasia were pre-processed using the
previously described pre-processing steps. No oversampling was per-
formed in this experiment. Following pre-processing, the slides were
classified by the human-trained CNN model.

Fig. 1 Representative histology images of STS. Teaching photomicrographs from two pediatric sarcoma pathologists (Erin R. Rudzinski MD,
E.R.R, and Cheryl M. Coffin MD, C.M.C.) are presented to describe the range of pediatric sarcomas. A Histopathology images of classical STS.
B Histopathology images of STS variants.
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Mouse prediction using human-trained model
The process underlying application of the human-trained CNN
model to predict diagnosis in the murine RMS histopathology slide
cohort is described in (Fig. 2E). In brief, murine-origin histopathology

images were pre-processed using the previously described pre-
processing steps. No oversampling was performed in this experiment.
Following pre-processing, the slides were classified by the human-
trained CNN model.

Fig. 3 CNN model training and testing histopathology slide cohorts. A Histopathology slide count (left) and resulting tile set (right) for the
CNN model training, validation and testing. B Histopathology slide count and resulting tile set for the external validation aRMS, eRMS, and
CCS slide cohort. C Histopathology slide count and resulting tile set for model-naïve STS robustness test. D Histopathology slide count and
resulting tile set for anaplastic RMS robustness test. E Histopathology slide count and resulting tile set for the murine RMS cohort.

Fig. 2 Overview of soft-tissue sarcoma convolutional neural network experiments. A Schematic of training, validation, and testing steps of
CNN model construction using aRMS, eRMS, and CCS histopathology training set slides. B Testing using external aRMS, eRMS, and CCS
histopathology slides. C CNN robustness testing using a discrete model-naïve STS histopathology cohort. D Robustness testing using anaplasia-
presenting aRMS and eRMS histopathology slides. E Human-trained CNN model testing using murine-origin RMS histopathology images.
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Training and testing of murine-origin RMS CNN model using
digital histopathology slide images
To create the mouse-trained CNN model for histopathological analysis, we
adapted the DeepPATH CNN software suite13 built atop the Inception v3
platform. The adapted training/testing/validation model creation sche-
matic is identical to the schematic presented in Fig. 2A, using mouse-origin
aRMS, eRMS, and mSKM images in place of human-origin tissues.
First, to address disparities in the size of the aRMS, eRMS, and normal

muscle training tile set, we used image rotation and reflection to oversample
the base images as previously described, until the resulting oversampled tile
sets were approximately equivalent in size between all groups (Fig. 3E).
Then, two CNN models were trained using the same 70% training/15%
validation/15% testing method as described previously, with one model
trained on murine RMS and murine skeletal muscle (mSKM) tissues, and the
other model trained only on murine RMS tissues. Finally, CNN validation and
testing were performed on both mouse-trained CNN models.

Python modules and other software tools used in CNN
training/validation/testing
The following software packages were used for the described purposes.

● 0d_SortTiles.py (DeepPATH software suite): assignment of tiles or
images into training/validation/testing sets while maintaining the
balance of tiles or images within each group based on specified
distributions, generally 70% training, 15% testing, and 15% validation.

● nc_imagenet_eval.py (DeepPATH): image validation and testing/
classification using the trained CNN model.

● 0b_tileLoop_deepzoom4.py (DeepPATH): preprocessing of histo-
pathology images through image segmentation, magnification
adjustment, and elimination of blank tiles.

● Normalize_Vahadane.py (DeepPATH): color normalization of histo-
pathology images through the Vahadane method using a selected
baseline image.

● 0h_ROC_MultiOutput_BootStrap.py (DeepPATH): generation of ROC
AUC scores and graphs.

● Python Imaging Library (Pillow): enables rotation and reflection of
image tiles for oversampling.

● nSplit function (DeepPATH): segments slide or image datasets into
distinct sets for cross-validation studies.

● Inception v3 Deep Learning Model: base deep learning model used to
develop new CNN models for STS differential diagnosis.

Python 3.6.8 was used for Python-based computational work.

Statistics
ROC AUC scores were performed in Python or by ROC analysis in GraphPad
Prism (version 8). Class likelihood scores were statistically compared using
the Kruskal–Wallis test with Dunnet’s multiple comparisons test in
GraphPad Prism. ROC curve comparison was performed in Excel using
the Hanley-McNeil method using the Kendall tau method for calculating
the underlying ROC curve correlation.

RESULTS
Training of clear cell sarcoma and rhabdomyosarcoma
histopathology CNN model
The primary goal of this study was to develop a CNN deep
learning model to serve as a differential diagnosis engine to
support histopathological classification of human-origin RMS and
CCS. The computational framework used to train, test and validate
the RMS/CCS CNN model is described in (Fig. 2), and the input
dataset for all experiments is provided in (Fig. 3). Note that the
main research objective addressed in this study is differential
diagnosis between the primary RMS subtypes, with CCS serving as
an outgroup largely based on availability of histopathology
images. The training/testing/validation set used to generate the
set of CNN models consists of 119 aRMS histopathology samples
(divided into 82 training, 19 validation, and 18 testing images), 103
eRMS histopathology samples (divided into 71 training, 17
validation, and 15 testing images), and 15 CCS samples (divided
into 10 training, 2 validation, and 3 testing images). The
set allotment was performed such that images and image sub-

regions (termed tiles) used for model training are distinct from
images and tiles used for model testing and validation. The cohort
of RMS histopathology slides was collected from the Cancer
Registry for Familial and Sporadic Tumors (CuRe-FAST) tumor bank
at the Children’s Cancer Therapy Development Institute, University
Hospitals Leuven/Leuven Cancer Institute (KU Leuven), Rhode
Island Hospital, the Children’s Oncology Group (COG) Bioreposi-
tory, the University of California at Davis, Oregon Health & Science
University (OHSU), and the Royal Marsden Hospital (Supplemen-
tary Table 1). The comparatively small number of CCS histopathol-
ogy slides used in this study is due to the paucity of available
resources. All cases were locally and centrally reviewed (Supple-
mentary Table 1) and then underwent secondary histology review
by co-author sarcoma pathologist Sonja Chen.
With the slide cohorts curated and secondarily reviewed, we

pre-processed each histopathology slide via color normalization20,
segmenting the image into non-overlapping image tiles of size
512 × 512 pixels at different image magnification (5x and 20x
magnification), removing extraneous blank tiles generated during
digitization and segmenting, and oversampling the resulting tile
cohort data by 90-degree increment tile rotations and image
mirroring.
Using the 20x magnification tile set, oversampling was deemed

necessary due to significant differences in tile count by disease type
(baseline 22,419 aRMS tiles, 64,519 eRMS tiles, 30,766 CCS tiles), which
would likely lead to training and validation biases. Oversampling
resulted in 557,505 total tiles (179,352 aRMS from 119 histopathology
slides from 61 patients, 177,183 eRMS from 103 histopathology slides
from 63 patients, and 190,737 CCS from 15 histopathology slides
from 13 patients, Fig. 3A, Supplementary Table 2).
With the tile cohort prepared, we next generated baseline CNN

models for 5x and 20x magnification tile sets and determined that
the 20x magnification dataset outperformed the 5x magnification
model in initial comparative studies (Supplementary Table 5) and
in 5-fold cross validation studies (Supplementary Fig. 1). Corre-
spondingly, the remaining analyses in this study are performed
exclusively with tiles generated from images at 20x magnification.
Next, to validate the applicability of CNN to the RMS/CCS

histopathology dataset, we performed 5-fold cross-validation of
the histopathology slide cohort as previously described (Fig. 3,
Supplementary Table 6). The 5-fold trained CNN models
performed well in one vs. all receiver operating characteristic
(ROC) area under the curve analysis, with average AUC scores
weighted by disease cohort size (Fig. 3A) and disease-level ROC
AUC scores for each tile set (Fig. 3B–F) above the true positive rate
(TPR)/true negative rate (TNR) threshold. Median and minimum
micro-average AUC scores are 0.91 and 0.70 respectively, both
above the 0.50 TPR/TNR threshold AUC. The positive cross
validation results demonstrated the applicability of the CNN
model to the problem of STS differential diagnosis.
We next trained a spectrum of CNN models using 70% of the

image tiles from each disease type, reserving 15% for validation
and 15% for testing. Using the validation AUC scores for each of
the trained CNN models, we selected the top performing model
for downstream use (Fig. 4, Supplementary Tables 7, 8). We tested
the selected singular model using the withheld test data cohort at
both the tile level (minimum AUC score 0.93, Fig. 4A) and slide
level (minimum AUC score 0.89, Fig. 4B), affirming model
performance during the 5-fold cross validation test. Additionally,
the likelihood distribution scores of tiles classified during the
testing step (Fig. 4C–H) demonstrate the ability of the trained CNN
model to provide strong numerical support of the correct class,
i.e., the high AUC scores are not an artifact of a low class
membership threshold. Across all disease-types, tile-level and
slide-level membership likelihood scores for the correct class are
statistically significantly higher than incorrect classes (i.e., aRMS vs.
others, eRMS vs. others, and CCS vs. others, p < 0.0001 all cases,
Fig. 4C–H). Sample histopathology images and associated class
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membership heatmaps are presented in Fig. 5, and comparative
pathologist-predicted and CNN-predicted tile images are pre-
sented in Fig. 6. Overall results are presented in Supplementary
Tables 7, 8. Overall multi-class Matthews Correlation Coefficient for
testing slides is 0.622.

Classification of external CCS, aRMS and eRMS slide cohort
Having generated and validated an RMS/CCS CNN model, we next
applied the singular CNN model to an external histopathology
slide cohort (Fig. 3B, Supplementary Table 2), consisting of 30 CCS
tissue slides, 14 aRMS tissue slides and 17 eRMS tissue slides. We

Fig. 4 Tile-level and slide-level results for withheld testing slides for clear cell sarcoma and rhabdomyosarcoma. A Tile-level ROC
curves and AUC scores of CCS, aRMS, and eRMS tiles in slide set withheld from model training. B Slide-level ROC curves and AUC scores of
CCS, aRMS, and eRMS slide set withheld from model training. C Likelihood distributions resulting from CNN classification of tiles from
pathologist-diagnosed CCS slides, with the top (All) representing softmax likelihood scores of all testing images, middle (CNN Agreement)
representing likelihood distributions when pathologist diagnosis and softmax-assigned CNN diagnosis match, and bottom (CNN
Misdiagnosis) represents likelihood distributions when pathologist diagnosis and softmax-assigned CNN diagnosis are mismatched.
Minimum and median correct softmax tile scores were 0.3416 and 0.9252, respectively. D As per (C), but for tiles from pathologist-
diagnosed aRMS slides. Minimum and median correct softmax tile scores were 0.4026 and 0.9130, respectively. E As per (C), but for tiles
from pathologist-diagnosed eRMS slides. Minimum and median correct softmax tile scores were 0.3316 and 0.9191, respectively. F As
per (C), but for pathologist-diagnosed CCS slides. Minimum and median correct softmax tile scores were 0.7095 and 0.8717, respectively.
G As per (C), but for pathologist-diagnosed aRMS slides. Minimum and median correct softmax tile scores were 0.5025 and
0.8654, respectively. H As per (C), but for pathologist-diagnosed eRMS slides. Minimum and median correct softmax tile scores were
0.7095 and 0.6175, respectively.
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pre-processed the external histopathology image cohort and then
used the trained CNN model to predict class membership of the
new slide cohort (Fig. 7). The trained CNN outperformed 0.50 TPR/
TFR threshold across all disease cohorts, with AUC scores of 0.64,
0.89, and 0.61 for CCS, aRMS, and eRMS respectively. Class
likelihood distributions for CCS, aRMS and eRMS cohorts show
numerical support of predicted class membership (Fig. 7B–D). CCS
correct class likelihood scores were significantly higher than aRMS
likelihood scores (p < 0.0001) but were indistinguishable from
eRMS likelihood scores (p > 0.05, Fig. 7B). However, both aRMS and
eRMS correct class likelihood scores were significantly higher than
other class likelihood scores (p < 0.05, Fig. 7C, D). Taken together,
the CNN prediction results on external histopathology slides
demonstrate the ability of the RMS/CCS trained CNN model to
classify unseen histopathology specimens, although show the
need for improvement with respect to CCS and eRMS disease
classification. Overall results are presented in Supplementary
Tables 9, 10. Overall multi-class Matthews Correlation Coefficient
for external testing slides is 0.213.

Specificity of human STS-trained CNN on model-naïve STS
disease image cohort
We trained the RMS/CCS CNN model used in this study based on
availability of histopathology slides and resulting tile set size,
which excluded a cohort of histopathology slides from multiple
sarcoma subtypes: Botryoid RMS, sarcoma with a CIC-family gene
fusion, epithelioid sarcoma, mixed-type RMS, RMS classified as not
otherwise specified (NOS) and spindle-cell RMS (Fig. 3C, Supple-
mentary Table 2). To investigate the specificity of the trained CNN
model with respect to histopathology slides from untrained

malignancies, we used the RMS/CCS CNN model to classify the
non-RMS, non-CCS sarcoma slide cohort (Supplementary Fig. 2).
The epithelioid sarcoma cohort did not specifically resemble either
trained malignancy (p > 0.05 between CCS and eRMS cohort,
Supplementary Fig. 2A), the mixed histology RMS cohort
demonstrated a significant similarity to eRMS (p < 0.0001, eRMS
vs. other, Supplementary Fig. 2B), the cohort of tissue samples
with subtypes listed as NOS (not otherwise specified) tended
towards being predicted as aRMS (p < 0.05, aRMS vs other,
Supplementary Fig. 2C), and the remaining slide cohort comprised
of various sarcoma types showed significant similarity to eRMS (p
< 0.0001, eRMS vs. other, Supplementary Fig. 2D). Taken together,
the varied prediction patterns for non-RMS, non-CCS sarcoma
histopathology images suggest the currently generated CNN
model performs well predicting classes for trained diseases but
cannot currently discriminate against untrained disease images.
Overall results are presented in Supplementary Table 11.

Predictive accuracy of human RMS-trained CNN in the
presence of anaplasia
Anaplastic tumors, which are defined as having large, lobate,
hyperchromatic nuclei (at least three times the size of neighboring
nuclei) or atypical (obvious, multipolar) mitotic figures, are
histopathologically-anomalous cases and may skew model train-
ing and classification toward atypical cases. Correspondingly, the
singular CNN model used for the current study was trained only
on histopathology slides determined to not have evidence of
anaplasia. We subsequently classified the withheld anaplastic
histopathology samples (4 aRMS tissue slides and 27 eRMS tissue
slides, Fig. 3D, Supplementary Table 2) using the singular trained

Fig. 5 Heatmap-coded likelihood scores and corresponding base histopathology images. Color map scores are assigned to individual tiles
within the slide images based on class membership likelihood values. Red is membership in class aRMS, blue is membership in class eRMS,
black is membership in class CCS. A Original aRMS histopathology image. B Heatmap-coded aRMS histopathology image. C Original eRMS
histopathology image. D Heatmap-coded eRMS histopathology image. E Original CCS histopathology image. F Heatmap-coded CCS
histopathology image. Scale bars represent 5 mm.
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CNN model to determine classification rates of RMS tissues with
evidence of anaplasia (Supplementary Fig. 3). Prediction of both
anaplastic aRMS and eRMS outperformed the TPR/TNR 0.50
threshold with aRMS and eRMS ROC AUC scores at 0.73 and
0.74, respectively (Supplementary Fig. 3A), demonstrating that
presence of anaplasia in aRMS or eRMS does not impair the
accurate diagnose via the CNN model.
Additionally, predicted class likelihood scores demonstrate

significantly higher likelihood scores for the correct classes versus
incorrect classes for both anaplastic aRMS vs. others (p < 0.05 for
both, Supplementary Fig. 3B) and anaplastic eRMS vs. others (p <
0.001 all cases, Supplementary Fig. 3C). Overall results are presented
in Supplementary Tables 12, 13. Overall multi-class Matthews
Correlation Coefficient for external testing slides is 0.287.

Classification of murine RMS histopathology images using
human RMS-trained CNN model
We also applied the singular human RMS/CCS CNN model to a
cohort of murine aRMS and eRMS histopathology slides originat-
ing from genetically engineered mouse models of RMS. We pre-
processed the image cohort (Fig. 3E, Supplementary Table 2), then
used the trained CNN model to predict human class membership
of the murine slide cohort (Supplementary Fig. 4). The CNN model
outperformed the TPR/TNR 0.50 threshold, with the ROC AUC for
aRMS and eRMS at 0.72 and 0.67, respectively (Supplementary
Fig. 4A), and the class membership likelihood for murine eRMS

slides demonstrates strong membership in the correct class
(Supplementary Fig. 4C). Notably, the class membership likelihood
scores for murine aRMS are less clearly weighted towards aRMS
(Supplementary Fig. 4B), suggesting that murine aRMS histo-
pathology slides may loosely resemble human aRMS in the
context of individual subregions, but more fully resemble human
aRMS in the context of whole histopathology images. Murine
aRMS correct class likelihood scores are not significantly higher
than either eRMS or CCS likelihood scores (p > 0.05, Supplemen-
tary Fig. 4B). However, murine eRMS correct class likelihood scores
were significantly higher than both aRMS and CCS class likelihood
scores (p < 0.0001 both cases, Supplementary Fig. 4C). Overall
results are presented in Supplementary Tables 14, 15. Overall
multi-class Matthews Correlation Coefficient for external testing
slides is 0.01.

Training of CNN model of murine rhabdomyosarcoma and
normal murine muscle tissue histopathology images
Separate from the human RMS/CCS CNN model, we used a
cohort of 318 murine histopathology slides comprised of 206
aRMS tissue slides from 62 mice, 54 eRMS tissue slides from
13 mice, and 58 normal muscle tissue slides from 58 mice to
create a CNN model to classify murine RMS. Similar to the
human created model, we normalized tissue slide color,
segmented the slide images into 512 × 512 pixel tiles at a 20x
magnification, removed extraneous blank tiles, and oversampled

Fig. 6 Pathologist-diagnosed and CNN-predicted tile-level images. Tile images generated from 512 × 512 pixel sub-regions of individual
histopathology. Pathologist Diagnosed represents the disease subtype for the entire histopathology slide determined by pathologist analysis,
while CNN Predicted Class represents the class predicted by the CNN model for the individual tile. Numbers in bottom right corner are
likelihood scores assigned to the tile by the CNN model for the CNN predicted class. Scale bars= 50 µm.
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the murine aRMS, eRMS, and normal muscle tissue tile sets to
produce 447,192 total tiles (157,595 aRMS, 136,584 eRMS, and
153,013 normal muscle, Fig. 3E, Supplementary Table 2). We
subsequently trained and validated two murine RMS CNN
models, one model generated with RMS histopathology images
and normal murine skeletal muscle (mSKM) images (Supple-
mentary Fig. 5A–D) and the other model generated only with
murine RMS images (Supplementary Fig. 5E–G). We then ranked
the generated models by using validation set prediction scores
and tested the top-ranked CNN model using the withheld
testing tile set using the previously described 70/15/15% tile set
segmentation approach (Fig. 1A, using murine-origin instead of
human-origin histopathology slides).
The AUC ROC scores for murine aRMS, eRMS, and normal tissue

slides are 0.97, 0.98, and 1.0, respectively, for the withheld tile set
classified by the top-ranked murine-trained CNN model. Addition-
ally, class likelihood scores for the correct class versus incorrect
class are statistically significant across all disease cohorts (p <
0.0001 for aRMS vs. others, eRMS vs. others, normal vs. others).
Notably, CNN model performance from the ROC AUC score

perspective and likelihood score perspective was statistically
indistinguishable between the models trained with and without
normal mSKM tissue (p= 0.7514 and 0.8157 for murine aRMS
and murine eRMS ROC curves, respectively21). However, the CNN
model including mSKM outperformed the CNN model without
mSKM based on MCC, F1 score, and Accuracy metrics (0.62,
0.87, 0.83 vs. 0.56, 0.87, 0.81, respectively), suggesting that
inclusion of histologically normal tissue may improve practical
classifier performance, but will require a larger image cohort and
study to fully validate improvement in predictive accuracy.
Sample histopathology images and associated class member-
ship heatmaps are presented in Supplementary Fig. 6. Overall,
the results demonstrate the strong predictive power of the

murine histopathology-trained CNN model to predict murine
disease classification. Tabular results are presented in Supple-
mentary Tables 16, 17.

DISCUSSION
The results from our study demonstrate the applicability of CNN
models to numerical differential diagnoses for soft-tissue sarco-
mas. Sarcoma tissues are at elevated risk of misclassification by
histopathology analysis due to the few cases seen by generalized
anatomical pathologists in primary centers. By leveraging a cohort
of 424 centrally-reviewed sarcoma histopathology slides (Supple-
mentary Table 1), we then trained a CNN model to recognize three
sarcoma subtypes (CCS, aRMS, eRMS) with high ROC AUC scores
on an unseen dataset (0.96, 0.93, and 0.95 tile-level scores and 1.0,
0.90, and 0.98 slide-level scores for CCS, aRMS, and eRMS,
respectively) and significant differences in class membership
likelihood scores (p < 0.0001 for all correct class vs. incorrect class
likelihood scores). Positive predictive results were further affirmed
by accurately classifying additional aRMS and eRMS histopathol-
ogy datasets (AUC ROC scores 0.98 and 0.84, respectively), and the
trained CNN model demonstrated robustness with respect to
atypical morphological features collectively known as anaplasia.
The decrease in predictive accuracy can potentially be attributed
to differences in histopathology slide scanning and slide quality
between different institutions. Additionally, visualization of tile-
level CNN scores identified a pattern of increased CNN classifica-
tion variation around the borders of histopathology images, which
stabilizes towards the image center of mass. This observation
merits further investigation to improve classification accuracy.
Nonetheless, the collective results of our study demonstrate the
potential of trained CNN models to assist in differential diagnosis
of rare cancers such as pediatric sarcoma.

Fig. 7 Slide-level testing results for external STS slide cohort. A Slide-level ROC curves and AUC scores of externally-sourced CCS, aRMS, and
eRMS slide set. B Likelihood distributions resulting from CNN classification of tiles from pathologist-diagnosed CCS slides, with the top (All)
representing softmax likelihood scores of all testing images, middle (CNN Agreement) representing likelihood distributions when pathologist
diagnosis and softmax-assigned CNN diagnosis match, and bottom (CNN Misdiagnosis) represents likelihood distributions when pathologist
diagnosis and softmax-assigned CNN diagnosis are mismatched. Minimum and median correct softmax tile scores were 0.4328 and 0.6575,
respectively. C As per (B), but for pathologist-diagnosed aRMS slides. Minimum and median correct softmax tile scores were 0.4083 and
0.5458, respectively. D As per (B), but for pathologist-diagnosed eRMS slides. Minimum and median correct softmax tile scores were 0.4588
and 0.6685, respectively.
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Our study also highlighted limitations of the available datasets
and robustness of the current approach. Due to the rarity of
pediatric sarcoma amongst the population of cancer patients and
the corresponding paucity of histopathology tissues, the current
CNN model is trained on a smaller dataset than ideal for serving as a
differential diagnosis clinical support tool. The current dataset is
likely neither large enough nor diverse enough to truly reflect the
biological and morphological diversity of the disease on study,
highlighted in part by the reduced performance in the presence of
anaplastic histopathology samples. Additionally, our investigation of
prediction behavior on histopathology images from non-trained
diseases highlights the limited robustness of our model in particular,
and CNN modeling in general, on predictions made for unknown
image classes. Robustness of the CNN model can be greatly
improved by expanding training sets to include curated and
centrally-reviewed pathology images from a broader spectrum of
diseases with similar tissues- and organs-of-origin. Additional
robustness testing will be applied to inclusion of non-cancerous
histopathology images. In the context of rhabdomyosarcoma,
normal muscle tissue is theoretically well-suited to identifying
entrapped muscle fibers or surrounding normal muscle tissue, both
of which are challenges in rhabdomyosarcoma diagnosis. However,
the current CNN model is well-suited to the specific goal of
differential diagnosis of subtypes of pediatric sarcoma.
We also note the difference in performance associated with

different image magnification levels between the current study and
a previous study on lung cancer13. While the original study
demonstrated that models trained on 5x magnification images
outperformed models trained on 20x magnification images, our
results suggest the opposite to be true for childhood STS. We
hypothesize the difference to be in part due to the small size of our
current histopathology dataset, as 5x image magnification produces
fewer tiles for model training and testing. We furthermore
hypothesize the improved performance under 20x magnification
may also be inherent to the challenging nature of childhood STS
pathological diagnosis, which currently results in frequent misdiag-
nosis and disagreement in diagnosis in real-world use. Subsequently,
the cytomorphological details, and specifically the nuclear character-
istics, such as the nuclear shape and the chromatin texture, are
better identified and evaluated through 20x magnification for diffuse
infiltrating neoplasms such as various sarcoma subtypes. Corre-
spondingly, the underlying reason behind the improvement under
higher magnification may be histopathological in nature.
The course of the study also demonstrated the challenges of

processing histopathology resources originating from multiple
organizations prepared by different researchers/technicians. Variabil-
ity in histopathology tissue quality, scanning technologies, and
scanner operator protocol results in downstream impact in CNN
model training and validation. Developing standardized scanning
protocols or centralizing histopathology tissue imaging for digital
applications would help in alleviating this challenge. Unfortunately,
centralizing operations would also negatively impact the accessibility
for institutions seeking to leverage the CNN differential diagnosis
engine, leaving methodology standardization as the preferred path
to improve quality of digital histopathology resources.
Overall, our study demonstrates that deep-learning CNN for

RMS differential diagnosis is a promising additional tool to assist
pathologists in their classification and subclassification of histo-
pathology images of RMS tissue samples. As extensions of the
current work, we will prioritize expanding the image cohort to
include more histopathology images of currently trained sarco-
mas, as well as images of pediatric/young adult sarcomas we have
not trained the CNN model to recognize. Additionally, we will
broaden image sharing collaborations to include institutions of all
sizes around the world, with the goal of enabling a web-accessible
differential diagnosis engine (www.cc-tdi.org/machine-learning) to
support histopathologic diagnosis for clinicians who may not have
access to modern pathology analysis resources.

MATERIALS AVAILABILITY
De-identified histopathology images are available online in.svs format through a
material transfer agreement.
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