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Interstitial pneumonia is a heterogeneous disease with a progressive course and poor prognosis, at times even worse than those in
the main cancer types. Histopathological examination is crucial for its diagnosis and estimation of prognosis. However, the
evaluation strongly depends on the experience of pathologists, and the reproducibility of diagnosis is low. Herein, we propose
MIXTURE (huMan-In-the-loop eXplainable artificial intelligence Through the Use of REcurrent training), an original method to
develop deep learning models for extracting pathologically significant findings based on an expert pathologist’s perspective with a
small annotation effort. The procedure of MIXTURE consists of three steps as follows. First, we created feature extractors for tiles
from whole slide images using self-supervised learning. The similar looking tiles were clustered based on the output features and
then pathologists integrated the pathologically synonymous clusters. Using the integrated clusters as labeled data, deep learning
models to classify the tiles into pathological findings were created by transfer-learning the feature extractors. We developed three
models for different magnifications. Using these extracted findings, our model was able to predict the diagnosis of usual interstitial
pneumonia, a finding suggestive of progressive disease, with high accuracy (AUC 0.90 in validation set and AUC 0.86 in test set).
This high accuracy could not be achieved without the integration of findings by pathologists. The patients predicted as UIP had
poorer prognosis (5-year overall survival [OS]: 55.4%) than those predicted as non-UIP (OS: 95.2%). The Cox proportional hazards
model for each microscopic finding and prognosis pointed out dense fibrosis, fibroblastic foci, elastosis, and lymphocyte
aggregation as independent risk factors. We suggest that MIXTURE may serve as a model approach to different diseases evaluated
by medical imaging, including pathology and radiology, and be the prototype for explainable artificial intelligence that can
collaborate with humans.
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INTRODUCTION
Interstitial pneumonia is a heterogenous benign disease that is
subclassified based on histological features1. Idiopathic pulmonary
fibrosis (IPF), for example, is a progressive condition with a 5-year
survival probability of 45%2, which is worse than that of major
malignancies such as breast carcinoma, colorectal carcinoma, and
cancers of the kidney and uterus3. It is treated with antifibrotic
drugs to alleviate its progression4,5, and the treatments and
outcomes are largely different from other types of interstitial
pneumonia. Histologically, it is characterized by heterogeneously
distributed destructive dense fibrosis predominating at the
periphery and fibroblastic foci, which is known as the usual
interstitial pneumonia (UIP) pattern6.
Also in the interstitial pneumonia family, connective tissue

disease–interstitial lung disease (CTD-ILD) represents one of the
systemic manifestations of connective tissue disease, which include
rheumatoid arthritis7, Sjögren’s syndrome, systemic sclerosis8, etc. It
is known to have nonspecific interstitial pneumonia (NSIP) patterns

as well as UIP patterns and is characterized by a variety of findings,
including lymphoplasmacytic inflammation. Corticosteroids and
immunosuppressive agents are commonly used for treatment9.
Some other types of ILD, such as immune deficiency related
interstitial pneumonia10 and hypersensitivity pneumonia11,12 require
different treatment protocols. In order to make an appropriate
diagnosis, determine the prognosis and choose a therapeutic
strategy, it is necessary for clinical, radiological, and pathological
findings to be examined from multidisciplinary perspectives13,14, of
which, pathological findings are particularly important1. However, it
has been repeatedly pointed out that histological evaluation has a
low concordance rate and reproducibility, which hinders the
determination of treatment strategies and the understanding of
pathogenesis15–17.
Recent advances in whole slide imaging (WSI) and artificial

intelligence (AI) technology, such as deep learning-based image
processing, have opened the door to quantitatively evaluate
histopathological findings18. Interestingly, WSI has added value in
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the pathological diagnosis of interstitial pneumonia because it
allows easy observation of specimens on low-power magnifica-
tions (including those not available using a conventional
microscope), which is important to recognize certain morphologic
patterns with diagnostic significance19.
The traditional pathological approach to diagnosis is to identify

different microscopic findings, analyze the relationship between
them, integrate data based on their professional experience, and
eventually reach to the appropriate diagnosis regarded as a ground
truth. Since pathology is critical for understanding pathogenesis and
determining treatment strategies, recent reports have emphasized
the importance of mechanisms that provide the explanation of the
model’s outputs. Grad-CAM20 and attention are typical mechanisms
to visualize the regions of interest used in many fields, and there have
been several reports of their application to pathological tissues21–24.
These models often provide a heatmap, highlighting the areas that
influenced the outputs, or extract representative areas for explain-
ability. Among other advantages of such approaches are that it is easy
to generalize, and the output is not restricted by existing cognitive
frameworks, such as cancer cell, mitosis, and necrosis, etc. At the same
time, there are significant gaps in outputs highlighted by AI-
generated heatmaps and the traditional pathological approach which
is the intuitive process to find out diagnostic clue in the tissue.
Here, we present a new strategy, MIXTURE (huMan-In-the-loop

eXplainable artificial intelligence Through the Use of REcurrent
training), to easily extract microscopic findings recognized by
expert pathologists assisted by deep learning, using the histo-
pathology of interstitial pneumonia as an example. We also show
that these extracted findings can be used for practical tasks such
as predicting diagnosis and analyzing prognostic factors. In this

way, we are able to take advantage of computational pathology to
perform quantitative studies based on well-documented patholo-
gical concepts rather than the fully automated heatmap, which
leaves room for interpretation.

MATERIALS AND METHODS
Study cohort
This is a retrospective study using a series of consulted cases (2009–2020)
from a single institute. Four non-overlapping datasets were created from
these cases, including two pretraining sets, one utility set, and one test set
(Fig. 1). The patient characteristics in each cohort are shown in Table 1.
The principal pretraining set was a cohort established for the purpose of

building a model to classify tiles; cases were arbitrarily selected from those
sampled between 2015 and 2020 with the aim of covering a variety of
histological patterns important in diagnosis and differential diagnosis of
interstitial pneumonia. This set consisted of 53 cases (151 WSIs), mainly
from the five most frequent diseases belonging to the interstitial
pneumonia family (IPF/UIP, rheumatoid arthritis, systemic sclerosis, diffuse
alveolar damage, pleuroparenchymal fibroelastosis, organizing pneumo-
nia, and sarcoidosis).
The supplemental pretraining set (15 cases, 30 WSIs) was a cohort

selected to extract rare but important histopathological findings such as
fibroblastic foci15,25–28. This set consisted of surgical lung biopsy specimens
consulted between 2015 and 2020 in which fibroblastic foci were
prominent.
The utility set consisted of 180 consecutive surgical lung biopsy cases

(535 slides) sampled between 2009 and 2014 for which follow-up data
were available. WSIs that were not suitable for analysis, such as those with
faded staining, were excluded. All cases were diagnosed by an expert
pulmonary pathologist (J.F.) and thoroughly reviewed in multidisciplinary
discussion with clinicians and radiologists (supervised by T.J. and Y.K. as
senior experts).
The test set consisted of the cases sampled between 2016 and 2018:

51 surgical lung biopsy cases (180 slides) were randomly selected in class
balanced manner. All cases were diagnosed by J.F., T.J., Y.K. using the same
criteria as in the utility set.

Image preparation
Glass slides were scanned at 20x magnification into digital slides using an
Aperio ScanScope CS2 digital slide scanner (Leica Biosystems, Buffalo
Grove, IL).
Figure 2 shows the overview of the following procedures of MIXTURE. In

the principal pretraining set WSIs were tiled into non-overlapping 280 ×
280 pixel images at magnifications of 2.5×, 5×, and 20×, respectively. Three
different magnifications were studied because they provide access to
different and sometimes non-overlapping morphological findings
(described below in a section about labeling/clustering) having important
diagnostic significance for evaluation of interstitial pneumonia. Back-
ground was defined as pixels with all values above 220 in the 24-bit RGB
color space, and tiles with more than 90% of this coverage were excluded.
If more than 300 tiles were obtained from a single slide, 300 tiles were
randomly selected. Finally, we collected 36,978 tiles for 2.5× magnification,
44,066 tiles for 5× magnification, and 45,300 tiles for 20× magnifications.
In the supplemental pretraining set, WSIs were tiled into 280 × 280 pixel

images with 50% overlap at 20x magnification. Tiles over 70% background
were excluded; all images were used, regardless of the number of tiles
generated from a single WSI. The total number of tiles was 1,008,390.
In the utility set and test set, WSIs were tiled into non-overlapping 224 ×

224 pixel images, which is the common input size for ResNet architectures
(we further empirically confirmed that the pathologically important
findings could be recognized in 224 × 224 tiles). Tiles over 70% back-
ground were excluded; all images were used, regardless of the number of
tiles generated from a single WSI.

Development of elementary feature extractor (ElEx) by self-
supervised learning
We first used the tiles from the principal pretraining cohort to create an
elementary feature extractor (ElEx), which will be the basis for clustering
similar tiles and for later transfer learning.
We trained a CNN that outputs features consisting of 128 vectors by self-

supervised learning (MoCo29) for each of three magnifications (2.5×, 5×,
20×). The original algorithm uses multiple GPUs, but due to the limitations

Fig. 1 Flow diagram of the study. Distribution of cases and WSIs
across different datasets.

W. Uegami et al.

1084

Modern Pathology (2022) 35:1083 – 1091



Fig. 2 Pipeline overview of MIXTURE. For each magnification, elemental feature extractors (ElEx) were trained using self-supervised learning.
This feature extractor consists of a ResNet18 CNN which outputs features consisting of 128 vectors. The extracted features were clustered
throughout the principal pretraining set. The pathologists viewed a montage of each cluster tiles and reclassified them into pathologically
meaningful findings. Finally, the reclassified findings were used as labels of training data for the transfer learning of feature extractor to obtain
a classifier to classify the findings from the tiles.

Table 1. Patient characteristics of each cohort.

Pretraining set Utility set Test set

Principal Supplemental Training Validation

(n= 53) (n= 15) (n= 126) (n= 54) (n= 51)

Age (SD) 59.57 (11.91) 66.2 (7.55) 63.27 (7.15) 60.30 (11.18) 59.33 (10.74)

Sex

Male (%) 31 (58.5) 14 (93.3) 74 (58.7) 34 (55.6) 31 (60.8)

Female (%) 22 (41.5) 1 (6.7) 52 (41.3) 20 (37.0) 20 (39.2)

Sampling year 2014–2020 2016–2020 2009–2015 2009–2015 2016–2018

Sampling modality

SLB 49 15 126 54 51

TBLC 3 0 0 0 0

TBLB 1 0 0 0 0

UIP cases, n (%) n/a n/a 78 (61.9) 27 (50) 26 (52)

Follow up time, days (SD) n/a n/a 1430.9 (469.1) 1267.9 (461.7) n/a

Event, death (%) n/a n/a 29 (23.2%) 12 (23.1%) n/a

SD standard deviation, SLB surgical lung biopsy, TBLC transbronchial lung cryobiopsy, TBLB transbronchial lung biopsy, UIP usual interstitial pneumonia, n/a not
applicable.
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of our computational resources, we modified a single GPU version30

available for Google Colab31. The number of negative keys (moco-k) was
set to 4096, moco momentum of updating key encoder (moco-m) was set
to 0.99, and softmax temperature (moco-t) was set to 0.1.
During training, each image was randomly flipped and rotated between

−20° and 20°, and central 224 × 224 pixels were cropped to make it
compatible with the original dimensions of ResNet. We used Adam as the
optimizer with a global learning rate of 0.0001.

Clustering of tiles
The tiles in the principal pretraining set were converted into feature
vectors comprised of 128 values by the ElEx we developed in the previous
step. To aggregate similar images, these feature vectors were clustered
using the K-means algorithm for each magnification. To provide a
comprehensive view of the pathological findings that characterize each
cluster, a montage (Figure S1) was created by randomly selecting 120 tiles
from each cluster. We tested various numbers of clusters: 5, 8, 10, 30, 50,
80, 100, and 120 clusters. A small number of clusters tended to contain
multiple findings within a single cluster, while a large number of clusters
tended to contain the same findings in multiple clusters. In other words,
using too few clusters was overly broad, and using too many clusters
became redundant. The pathologist used the generated montage as a
reference to determine the findings to be classified by each magnification
and selected the optimal number of clusters.

Cluster integration and transfer learning
Two pathologists (J.F. and W.U.) reviewed the montages and grouped
clusters characterized by pathologically synonymous findings into separate
classes. The morphological findings we categorized were the following
(Figure S2): for 2.5× magnification, acellular fibrosis, cellular fibrosis, near
normal, and other; for 5× magnification, acellular fibrosis, edge, cellular
and fibrotic IP, cellular interstitial pneumonia/NSIP, lymphoid follicle,
complete normal, and other; for 20× magnification, dense fibrosis,
elastosis, fibroblastic foci, fat, mucin, bronchiolar epithelium, lymphocyte
aggregation, and other. The “edge” in 5× means the sharp structural
contrast to airspace and the “pale” in 5× includes tiles with faded staining
or structures refractory to H&E staining (e.g., elastic fibers). In order to
comprehensively investigate the relationship between findings, morpho-
logically recognizable findings were adopted as independent findings,
even when their significance was unknown. Clusters that did not fit into
any of the findings or were difficult to explain as morphological findings
were grouped into a single class, “other”. Clusters that characterized more
than one morphological finding (e.g., a cluster which had both “acellular
fibrosis” and “cellular fibrotic IP”) were excluded. Thus, labeled data was
constructed with the aid of ElEx clustering. We term this process “cluster
integration”, meaning the merging of synonymous clusters together and
the cleaning up of cluster data by pathologists.
Although the 20× resolution tiles could be labeled “dense fibrosis”,

“bronchiolar epithelium”, or “lymphocyte aggregation” by this procedure,

clusters consisting purely of fibroblastic foci, one of the most important
findings, could not be obtained, even when the number of clusters was
quite large. In order to collect these important findings, we clustered the
tiles of the supplemental pretraining set, which was enriched with a large
number of fibroblastic foci, by case. In this way, we obtained clusters of
purer findings, and we added these to the labeled data. In addition, we
checked the labeled data only at 20× resolution and ~10% of images were
manually corrected.
We added a fully connected layer on top of the ElEx and created CNN

classifiers of morphological findings by transfer learning, in which the
integrated classes were used as labels of training data (Fig. 3). The loss
function was defined as the cross entropy between predicted probability
and the true class labels, and we used Adam optimization with a learning
rate of 0.0001. In this step, instead of only optimizing the weights of the
fully connected layer, we also optimized the parameters of previous layers,
including all convolution filters of each layer.

Tile classification and mapping of findings on WSIs
The tiles obtained from the utility set were classified using the CNN
classifier created in the previous step. The results were mapped and
compared with the original WSIs by two pathologists (J.F. and W.U.). In
order to use the classifications for subsequent analysis, the results
obtained for each case were aggregated, and the number of tiles
predicted as each finding was totaled. When there was more than one
WSI in a case, all tiles collected were added together. Considering the
possibility that the size of the normal lung area in a surgical specimen
may vary depending on the sampling procedure and the progression of
the UIP rather than the presence of UIP, tiles classified as “complete
normal” were excluded at 5× magnification, and the frequency of other
findings was calculated. (Note that many tiles originating from normal
lungs have already been excluded because tiles containing more
than 70% background were excluded at the time of the image
preprocessing).

UIP prediction
The UIP pattern is known as a histological pattern which characterizes IPF,
furthermore, it indicates a progressive clinical course and poor prognosis
with short overall survival in other interstitial lung diseases32,33. Based on
the well-known fact that UIP pattern is a key predictor of adverse outcome
in IPF16,34,35, our cases were dichotomized into UIP and non-UIP groups.
We considered that this binary classification coupled with an overall
survival as an endpoint may reliably estimate the performance of our AI
model from a clinical point of view. We defined UIP as cases diagnosed
with “definite UIP” or “probable UIP” in the pathology report and non-UIP
as all other cases according to the international 2011 guidelines36. The 180
patients in the utility set were randomly assigned into a training set of 126
cases and a validation set of 54 cases. UIP prevalence was balanced
between the training and validation set.
We developed both random forest and support vector machine models

to predict UIP/non-UIP based on the frequency of each finding. In the
validation and the test set, these models were applied to predict UIP/non-
UIP, and the area under the receiver operating characteristic curve was
calculated to evaluate the performance for actual diagnosis. We tested
whether the diagnosis of UIP predicted by the proposed model could
predict the overall survival by using the log-rank test.

Comparison of non-integrated model and MIXTURE
To assess the effects of cluster integration by pathologists and subsequent
transfer learning, we created a model without these steps (non-integrated
model). The tiles from the principal pretraining set were divided into 4, 8,
10, 20, 50, and 80 clusters based on the feature vector generated by ElEx.
Tiles derived from the utility sets were also converted into feature vector
and the nearest cluster was predicted referring the centroid of each cluster
in the previous step. As in the original models, maps of findings associated
with WSIs were created, and the frequency of each finding at each
magnification was calculated.
We also developed both random forest and support vector machine

models to predict pathological diagnosis of UIP using this frequency of the
clusters. We evaluated how the receiver operating characteristic (ROC)
curve and its area under the curve (AUC) were affected when we used non-
integrated model instead of MIXTURE based proposed model. The
statistical significance between the AUCs from the different models was
estimated by 5000 iterations of the bootstrap method.

Fig. 3 Identification of findings at each magnification. From
the whole slide image, tiles were created at 2.5×, 5×, and 20×
magnifications. For each magnification, a CNN classifier was
constructed to classify each tile into multiple findings. Based on
the classification, maps that can be compared with WSI were
synthesized.
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Analysis of factors associated with survival
We examined the histological risk factors for short overall survival using all
cases in the whole utility set with the Cox proportional hazard model.
Similarly, the histological risk factors were also estimated in the subgroups,
which pathologist diagnosed as UIP and non-UIP.

Environment
All of the analysis in this study was executed on an Ubuntu 20.04 Linux
system with a single GPU (NVIDIA RTX 3090). WSIs was tiled using the
OpenSlide37 library. Deep learning was performed using Pytorch38, python
library version 1.7.1 with CUDA 11 and cuDNN 8.0.2. K-means clustering
was performed in scikit-learn version 0.24.0. The analysis for the extracted
morphological findings was performed in R version 3.6.339. We used the
randomForest 4.6.14 package for the random forest algorithm, e1071 1.7
package for the support vector machine algorithm, the pROC40 1.6.12
package for ROC analysis, and the survival 3.1.8 package for survival
analysis.

RESULTS
Tile classification and visualization
By the observation of clustered images by pathologists, the
numbers of clustering were set as 30, 80, and 80 for 2.5×, 5× and
20× magnification, respectively. All of these clusters were
integrated into several classesshown in Fig. 3. Using the CNN
classifier we built by transfer learning, all tiles were categorized
into several findings. Figure 4 shows the original WSIs and the
finding maps at magnifications of 2.5×, 5×, and 20×. Additional
examples are given in the Fig. S3.
The histological findings observed in characteristic tissue

patterns such as UIP and NSIP were displayed with good contrast,
and a side-by-side comparison between WSIs and the maps were
made to confirm that these findings were appropriately detected.

UIP prediction by MIXTURE
We developed a random forest model to predict the diagnosis of
UIP by pathologists using the findings extracted at 5× magnifica-
tion, and the model was able to predict the diagnosis with AUC
0.90 in the validation cohort and AUC 0.86 in test cohort (Table 2).
Similarly, the models based on the findings of 20x magnification,
and the combination of 20× with other studied magnifications
also predicted the diagnosis of UIP with high accuracy. The ROC
curves are shown in Fig. 5a and b, and the relationship between
the score of the random forest regressor and the actual pathology
diagnosis is shown in Fig. S4. The most important findings in the
random forest model were cellular interstitial pneumonia/NSIP
and acellular fibrosis (Table 3). Feature importance in the models
on other magnifications are shown in Tables S1–S4. There were no
significant differences in performance between models using only
findings extracted at 5× magnification, findings extracted at 20×
magnification, or a combination of these findings from different
magnifications. However, it was difficult to predict UIP using only
the findings extracted at 2.5× magnification. When the threshold
for judging UIP was set to 0.5 for the output of the random forest
regressor in 5× model, the sensitivity was 0.89 and the specificity
was 0.74. The cases predicted to be UIP had a poorer prognosis
than those predicted to be non-UIP (Fig. 5c): 5-year overall survival
was 55.4% in cases predicted as UIP whereas 95.2% in cases
predicted as non-UIP, suggesting that the model effectively
predict the UIP as a poor prognostic factor.
Instead of the random forest, support vector machines were

used to predict the diagnosis of UIP. The results are shown in
Table S5. As in the case of the random forest, the diagnosis of UIP
could be predicted with high accuracy.

UIP prediction by non-integrated model
In order to test the effectiveness of the pathologist’s integration of
the clusters and subsequent transfer learning, we developed
another model without cluster integration by a human pathologist

(non-integrated model) and the performance of UIP prediction
was compared. The original WSI and the maps of the tile
classifications were compared, and pathologists (J.F. and W.U.)
confirmed that tiles characterized by similar pathological findings
were categorized in the same cluster. In addition, we examined
whether UIPs could be predicted from the distribution of the
predicted clusters. The number of clusters we evaluated ranged
between 4 and 80; we found that the best results were obtained
when assorting into eight clusters on 5× magnification, but the
AUC only reached 0.65 (Table 2). ROC of non-integrated model is
shown in Fig. 5a. When we set the threshold for judging UIP to 0.5
for the output of the random forest regressor in 5× model, the
sensitivity was 0.85 and the specificity was 0.19. There was a
significant difference (p= 0.0002) in performance compared to
the MIXTURE-based model.
Similar results were obtained when we used support vector

machine instead of random forest (Table S5). Eventually, non-
integrated model could not achieve high accuracy in UIP
diagnosis irrespective of the type of prediction algorithm (random
forest or support vector machine) and number of clusters.

Factors associated with patient survival
Next, to identify histological risk factors for survival, all cases in the
utility cohort were examined by the Cox proportional hazards
model. Since we extracted similar findings at different magnifica-
tions, we observed pairs of findings that were highly correlated in
frequency within a case (Fig. S5). To avoid multicollinearity,
variables with high correlation, such as acellular fibrosis (2.5×),
near normal (2.5×), acellular fibrosis (5×), and lymphoid follicle
(20×) were excluded prior to analysis.
The independent prognostic factors identified in this analysis

were fibroblastic foci, dense fibrosis, elastosis, and dense
lymphocyte aggregation (Table 4). In a subgroup analysis of cases
diagnosed with UIP by pathologists, only fibroblastic foci were a
poor prognostic factor (Table S6). Interestingly, lymphocyte
aggregation was identified as a poor prognostic factor in patients
diagnosed as non-UIP by pathologists (Table S7), which is not
usually well acknowledged.

DISCUSSION
In this study, we proposed a method, MIXTURE, to build a deep
learning model without laborious direct annotations and showed
this model working effectively in the pathology field. In this
method, the encoder specialized in pathological images was
developed by self-supervised learning and used to cluster the tiles
which have similar morphological findings. Pathologists inte-
grated the morphologically synonymous clusters into several
classes, which were used as training data for subsequent transfer
learning. The model illustrates the amount and the distribution of
each morphological finding compared with the original WSI,
which was utilized to build an explainable AI to predict UIP
diagnosis for subsequent analysis.
The unique point of this method is that the images that are

clustered based on similarity are further integrated by experts and
used as training data. There are three advantages to using this
method. The first is that it leaves room for the expert’s judgment
in model creation. In reality, K-means clustering alone does not
always form pathologically meaningful clusters, and may form
clusters based on non-essential characteristics such as differences
in staining or specimen condition. It is considered that the
integration of the clusters may extenuate these non-essential
differences. The method to integrate the clusters depends on the
insights of the experts, which may affect the final model. In fact,
the result that the UIP could not be predicted without the
integration process suggests that the performance of the final
model could be greatly affected by this step. The second
advantage is that clustering reduces the huge cost of labeling
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for each tile. Tile labeling requires expertise and needs to be
optimized for each application. Thus, annotation of pathological
tissues costs a lot of time and money. However, there is a chronic
shortage of pathologists41,42, making it almost impossible to
obtain a large number of annotations in reality, i.e., in clinical
settings. The third advantage is that clustering over the entire
dataset makes it easier to maintain the consistency of the training
data. Many pathological findings are essentially continuous and
change without a distinct boundary, especially in benign diseases
such as interstitial pneumonia, and judgments are often not
consistent between evaluators15–17. Therefore, elaborate annota-
tion of such findings is difficult, and even if it were possible, there
is concern that these differences between the individuals and the
timing of the annotations will result in inconsistent training data.
There are several points that should be considered concern-

ing clustering. The histological findings that characterize the
clusters depend on the size and resolution of each tile.
Therefore, we need to set the appropriate magnification and
tile size according to the required findings. In addition, there are
findings such as adipocytes and loose stromal tissue that are
easily recognized by pathologists but tend to be classified into
the same cluster. In this case, manual labeling was more
effective to create training data. This was often true for well-

defined findings that could be identified with high magnifica-
tion. Even when the tiles were manually labeled, clustering
improved the efficiency of the task.
The proposed approach does not adopt an end-to-end learning

structure, which is common in state-of-the-art research22,43. End-
to-end learning directly outputs the result, bypassing the feature
extraction steps. The performance of the system is generally high
because it is relatively free from potential human cognitive biases,
but the decision-making mechanism is a black box. Although
recent models are designed to highlight the areas that contribute
to the output22,44, it is still necessary to reinterpret the output
from an expert perspective. In reality, the cases in which
pathologically useful findings have been discovered from these
explanations are quite limited.
In contrast to these approaches, we designed a pathologist-

centered, non-end-to-end model which outputs pathological
findings without laborious annotation. This mechanism contri-
butes to enhancing the explainability for the outputs and the
generalizability for multiple fields other than UIP prediction,
because many pathological entities are defined based on these
findings. Furthermore, the model is more familiar to pathologists
because the output is directly comparable with conventional
findings-based knowledge. Such an intuitive nature of the model

Fig. 4 Classification of findings in the representative entities. a–d UIP/IPF case. The entire specimen consists of dense fibrosis with minimal
inflammatory cell infiltration, and is highlighted in yellow, red, and orange at 2.5×, 5×, and 20× magnification, respectively. Elastosis and
bronchial metaplasia at the margins of the specimen are appropriately highlighted at 20×. e–h Idiopathic pleuroparenchymal fibroelastosis
(PPFE) case. A subpleural band of elastosis is clearly visualized by the 20× feature extractor. The same finding is recognized as “pale” tissue in
5×. i–l. A case of NSIP in systemic sclerosis. The pathology shows cellular and fibrotic NSIP, which is clearly differentiated from UIP lesions by
blue highlighting on 5x feature extractor.
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is essential in introducing the model in clinical settings, in which
pathologists without AI-background will participate.
When searching for certain target findings, there is a common

need to quantitatively analyze histological findings. Our model
seeks to serve that purpose. At present, we do not take into
account the spatial relationship of each finding, but once this is
implemented, more detailed analysis will be possible.
Another feature of our model is that it is composed of three

independent modules. Each of them is a simple CNN that can be
interpreted by itself and can be used for other tasks such as
predicting treatment response. In this use case, we assigned three
modules with different magnifications of 2.5×, 5×, and 20×, which
simulates the actual pathological evaluation process and is
intuitive for pathologists. Furthermore, if these modules are
augmented with those for interpreting radiological images and
genetic data instead of WSIs, it will open the door to the
realization of explainable multimodal models45, which will allow
for new analytical opportunities such as interdisciplinary relation-
ships between findings.
From a medical point of view, it is the first model known to

predict the diagnosis of UIP from histopathological images. Our
results appear to be promising in that the model predicts UIP as a
poor prognostic factor with high performance, considering that
observer discordance rate is quite high in this area. While not
directly addressed in this study, other interstitial pneumonias,
such as pleuroparenchymal fibroelastosis or NSIP, can be
predicted in a similar way, since the characteristic spatial
distributions of the findings for each disease are handled deftly

by our ElEx. The random forest algorithm can estimate the
importance of each finding, and our model showed that the
presence of NSIP and dense fibrosis were important. This is
consistent with the existing literature and actual practice1. In the
prognostic analysis, fibroblastic foci, dense fibrosis, elastosis, and
lymphocyte aggregation were identified as risk factors. Although
the conclusions are controversial, some studies have mentioned
the relationship between excessive fibroblastic foci and
prognosis15,25–28. The amount of dense fibrosis is also a diagnostic
factor for UIP1, which makes sense from a pathological point of
view, and there have been reports that increased fibroelastosis is
associated with poor prognosis46. In our data, dense inflammatory
cell infiltration was identified as an independent risk factor; a
similar result was obtained in the subgroup analysis of the non-
UIP cohort, but it was not an independent risk factor in the UIP
cohort. Related previous literature has linked interstitial mono-
nuclear cell infiltration to respiratory function decline at 6 months
in IPF patients26. Another group has discussed the relationship
between CD3-positive T cell infiltration and poor prognosis in
idiopathic interstitial pneumonia47. To the best of our knowledge,
there are no studies that have examined the relationship between
inflammatory cell infiltration and poor prognosis, especially in
non-UIP patients; more studies are needed in the future.
There are some limitations in this study. First, the data used in

this study were specimens collected and processed at a single
institution and scanned with a single model of WSI scanner.
Therefore, external validation using independent (ideally, a large
scale multi-institutional) cohort and different technical setup, such
as scanner model and staining protocol, is necessary. In addition,
most of the specimens were surgical lung biopsies sampled by a
relatively invasive procedure, which is currently being replaced by
the less invasive transbronchial lung cryobiopsy in some institu-
tions. Regarding the technical pipeline of MIXTURE, the findings

Table 2. Area under ROC for each model.

AUC 95% CI

Validation set

Proposed model

2.5× 0.68 0.54–0.83

5× 0.9 0.81–0.99

20× 0.9 0.81–0.99

2.5×+ 5× 0.88 0.78–0.98

5×+ 20× 0.92 0.85–1.00

2.5×+ 20× 0.89 0.80–0.98

2.5×+ 5×+ 20× 0.92 0.84–1.00

Non-Integrated model

k= 4 0.52 0.37–0.68

k= 8 0.65 0.50–0.81

k= 10 0.49 0.33–0.65

k= 20 0.47 0.31–0.63

k= 30 0.61 0.46–0.76

k= 50 0.56 0.40–0.72

k= 80 0.52 0.36–0.68

Test set

Proposed model

2.5× 0.74 0.60–0.88

5× 0.86 0.75–0.97

20× 0.77 0.64–0.90

2.5×+ 5× 0.88 0.78–0.98

5×+ 20× 0.87 0.77–0.97

2.5×+ 20× 0.83 0.71–0.94

2.5×+ 5×+ 20× 0.88 0.78–0.98

AUC area under the receiver operator characteristic curve, CI confidence
interval, k number of clusters.

Table 3. Feature importance (node purity) of each finding in 5x model
with random forest algorithm.

Findings Importance

Acellular fibrosis 4.8

Cellular and fibrotic IP 3.8

Cellular IP/NSIP 7.54

Lymphoid follicle 2.82

Edge 4.68

Pale 3.24

IP interstitial pneumonia, NSIP non-specific interstitial pneumonia.

Table 4. Analysis of prognostic factors by Cox proportional
hazards model.

Hazard ratio 95% CI p value

Cellular fibrosis 0.83 0.57–1.22 0.346

Cellular IP/NSIP 0.84 0.48–1.47 0.54

Edge 1.1 0.78–1.55 0.6

Dense fibrosis 1.57 1.04–2.40 0.034

Fibroblastic focus 1.47 1.11–1.96 0.008

Elastosis 1.48 1.02–2.15 0.04

Fat 1.15 0.85–1.57 0.355

Lymphocytic aggregates 1.35 1.03–1.77 0.03

Mucin 1.17 0.81–1.69 0.397

Bronchiolar epithelium 0.74 0.50–1.10 0.137

IP interstitial pneumonia, NSIP non-specific interstitial pneumonia.
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that can be extracted are limited to those that are clustered
coincidentally, so that this method is not suitable for creating
training data for findings that are extremely similar or very rare. In
addition, it is difficult to incorporate findings that are not
recognized by the pathologist into the model. The integration of
clustering strongly depends on the judgment of the pathologists.
In the present study, only two pathologists discussed and made
decisions, and this may be biased. We plan to validate the model
by prospectively applying it to incoming cases, including those
sampled by cryobiopsy. Furthermore, we see great potential for
MIXTURE to be trained and tested on entities other than interstitial
pneumonia, such as tumors.
In summary, we proposed an original approach to extract

multiple features that can be interpreted by pathologists with
minimum annotation effort by experts. The model not only
effectively describes the quantity and distribution of features for
different IPF entities but is also effective in explainably predicting
progressive disease and quantitatively analyzing histological
features. The same approach could be applied to other areas of
pathology or radiology, and represents a new direction for
explanatory analytical models.
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