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Artificial intelligence-assisted mapping of proliferation centers
allows the distinction of accelerated phase from large cell
transformation in chronic lymphocytic leukemia
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Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) is characterized morphologically by numerous small
lymphocytes and pale nodules composed of prolymphocytes and paraimmunoblasts known as proliferation centers (PCs). Patients
with CLL can undergo transformation to a more aggressive lymphoma, most often diffuse large B-cell lymphoma (DLBCL), known as
Richter transformation (RT). An accelerated phase of CLL (aCLL) also may be observed which correlates with subsequent
transformation to DLBCL, and may represent an early stage of transformation. Distinguishing PCs in CLL from aCLL or RT can be
diagnostically challenging, particularly in small needle biopsy specimens. Available guidelines pertaining to distinguishing CLL from
its’ progressive forms are limited, subject to the morphologist’s experience and are often not completely helpful in the assessment
of scant biopsy specimens. To objectively assess the extent of PCs in aCLL and RT, and enhance diagnostic accuracy, we sought to
design an artificial intelligence (AI)-based tool to identify and delineate PCs based on feature analysis of the combined individual
nuclear size and intensity, designated here as the heat value. Using the mean heat value from the generated heat value image of all
cases, we were able to reliably separate CLL, aCLL and RT with sensitive diagnostic predictive values.
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INTRODUCTION
Artificial intelligence (AI) algorithms have the potential to provide
clinical-grade tools to assist in the diagnostic evaluation of tissue
biopsy samples. Exploration of AI tools in the evaluation of
lymphoid neoplasms in tissue samples has been limited. Most
deep learning studies have adopted transfer learning to fine-tune
an existing convolutional neural network model. In particular, the
whole-slide image is divided into patches for diagnostic predic-
tions, where the patch-wise predictions are fused to render a final
diagnosis at whole-slide level. This technique has been used to
distinguish benign from malignant conditions1–5 of different
types of lymphomas4,5, or to predict the onset of large cell
transformation6.
Lymph nodes involved by chronic lymphocytic leukemia/small

lymphocytic lymphoma (CLL/SLL) are characterized by replace-
ment of nodal architecture by a dominant infiltrate of small
lymphocytes interspersed by areas termed proliferation centers
(PC). The latter areas are composed of prolymphocytes and
paraimmunoblasts that have increased mitotic activity. While most
CLL patients have an indolent clinical course, a subset can develop
more aggressive disease, either “accelerated phase of CLL/SLL”
(aCLL) or Richter transformation (RT)7. Histologically, lymph nodes
with aCLL have an increased number and size of PC, which
become confluent (by definition, broader than a 20x field7). These
changes also entail an increased Ki67 proliferation index (>40% in

PCs) and mitotic figures (>2.4 mitoses/PC)7. A subset of CLL
patients, with or without detectable aCLL, develop disease
transformation—also called RT—whose most common histologic
manifestation is diffuse large B-cell lymphoma. RT is characterized
by confluent growth of large cells, occasionally interspersed by
remnant CLL. Patients who develop RT have a poor prognosis,
with a median overall survival of <12 months despite intensive
chemoimmunotherapy8,9.
Although data are scant regarding the clinical outcomes of

patients with accelerated CLL/SLL7, these data suggest that
patients with aCLL have poorer outcomes than patients with
CLL/SLL. Nevertheless, the current World Health Organization
classification of hematolymphoid neoplasms10 does not provide
morphologic guidelines to assess CLL cases with clinical suspicion
of disease acceleration. In addition, literature pertaining to this
topic is very limited, and identifying features of disease accelera-
tion based on available limited guidelines (PCs broader than a 20x
field, Ki67 proliferation index >40% in PCs and mitotic figures >2.4
mitoses/PC)7 are subjective and depend on hematopathologist’s
experience, especially in scant tissue biopsy samples7,11,12.
The application of computer-aided diagnostic algorithms based

on clinically interpretable models may provide a much-needed
assistance in this well defined clinical scenario. Previously, we have
proposed and validated an AI model based on four morphologi-
cally meaningful cellular attributes (nuclear size, intensity, cellular
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density and cell to nearest-neighbor distance) to help distinguish
CLL, aCLL and RT, showing a satisfactory predictive accuracy13.
In this study, we sought to design an AI-based tool that can

provide an objective assessment to understanding low-power
magnification architectural changes, and for enhancing the
delineation of PCs in CLL, and in its accelerated and transformed
phases. To this aim, we have performed a combined “nuclear size
and intensity analysis” that we termed “heat value”. Using the
mean heat value from the generated heat value image of all cases,
we were able to reliably separate the three phases in question
with sensitive diagnostic predictive values.

MATERIAL AND METHODS
Data collection
The study was approved by The University of Texas MD Anderson Cancer
Center (MDACC) Institutional Review Board and conducted in accord with the
Declaration of Helsinki. We retrospectively searched patients with hematolym-
phoid diseases clinically evaluated at MDACC between February 1, 2009, and
July 31, 2021. We randomly selected 10 CLL, 12 aCLL, and 8 RT digitized
hematoxylin and eosin stained slides of excisional biopsy specimens of lymph
nodes to study the mapping of PC. Slide scanning was conducted using Aperio
AT2 scanners at an optical resolution of ×20 (0.50 µm/pixel). All selected slides
came from different patients, and in total we manually annotated 25, 28, and
21 regions of interest (ROI) encompassing small round PCs and confluent/
expanded PCs from CLL, aCLL, and RT, respectively. ROI selection was random
in the three disease categories and did not target any specific areas to
decrease selection bias, however during ROI annotation, we avoided areas with
tissue folding, red blood cell extravasation and accumulation, and in RT cases

areas of necrosis, as these morphologic features could affect the performance
of our algorithm targeting our cells of interest. To ensure the heatmap
generated frommapping of PC had sufficient information, both the length and
width of the annotated ROI were required to be larger than 2000 pixels. Stain
normalization was performed on all ROIs prior to further processing14 (Fig. 1).

Cell segmentation and refinement
This study aimed to objectively automate mapping of PCs, which is visually
delineated by pathologists in clinical practice during evaluation of glass
slides. Our proposed mapping model is based on visual properties of
individual nuclear size and intensity, thus nuclear segmentation is a
prerequisite. We employed Hover-Net for the nuclear segmentation task,
given that Hover-Net is a state-of-the-art nuclear segmentation algorithm
pre-trained on the MoNuSeg dataset, thus avoiding time-consuming
nuclear annotation and model tuning procedures15,16. We performed a
quantitative evaluation of 15 manually annotated patches of 256 × 256
pixels and achieved an overall mean Dice score of 0.825. The Hover-Net had
Dice scores of 0.826 and 0.853 on datasets Kumar and CoNSep, respectively.
Nuclear segmentation of our dataset was consistent with Hover-Net’s
reported performance. A strong agreement between the manual and
Hover-Net segmentations was indicated with a Dice score over 0.80, thus
laying the foundation for the proposed nuclear-based feature engineering.
The Hover-Net results were also visually checked by a hematopathologist (S.
E.H.) to assure nuclear segmentation quality (Fig. 2A, B).
Nevertheless, after Hover-Net segmentation, inevitably we encountered few

overlapping nuclei that were inaccurately segmented. To address this issue, we
deployed the solidity feature, defined as the ratio of segmented nuclear
contour area to its convex hull area, to filter out overlapping nuclei. Segmented
nuclei with a solidity value smaller than 0.84 were removed from further
analysis. In addition, we set the minimum and maximum pixel number of the

Fig. 1 Digital slide staining normalization. A Illustration of the reference image used for staining normalization is provided; Illustration of
digital slides images from the three disease entities before B and C after staining normalization. CLL chronic lymphocytic leukemia/small
lymphocytic lymphoma, aCLL accelerated chronic lymphocytic leukemia/small lymphocytic lymphoma, RT Richter transformation, diffuse
large B-cell lymphoma variant.

Fig. 2 Nuclear segementation. A Example image from a Richter transformation, diffuse large B-cell lymphoma (RT) case, B with application of
nuclear segmentation, followed by C generation of nuclear intensity map.
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nuclei to be 32 and 432, which corresponds to 8 and 108 µm2, respectively. We
also discarded nuclei with a pixel number outside the set range.

Automated mapping of proliferation centers
We first split each ROI into multiple tiles by setting two parameters, the tile
length and stride (Fig. 3A). These two parameters are set to be the same on
both horizontal and vertical directions and across all ROI. In our experiments,
we set the tile length and stride as 1000 and 100 pixels, respectively. As the
value of tile length is larger than the stride, some neighboring tiles overlapped,
thus creating a sufficient number of tiles to map PCs.
We then conducted feature analysis of the combined size/intensity

properties (Fig. 2C) of nuclei inside each tile (Fig. 3B), to generate and
recreate a novel representation of PCs. As nuclear size varied from 8 to
108 square micrometers, and nuclear mean intensity varied from 0 to 255,
we normalized the values of nuclear size and mean intensity to 0.0 and 1.0,
by subtracting the minimum value and dividing it by the value range
length, and called them S(nuci) and Imean (nuci), respectively. We then
estimated the heat value of each tile by integrating nuclear size and mean
intensity using the following formula:

1
Nnuc

XNnuc

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S nucið Þ ´ Imean nucið Þ

p
:

With the proposed heat value estimation formula, we calculated the
heat value for each tile in each ROI. We then generated a heat value image
for each ROI to map its PCs and repeated this process for ROI of all CLL,
aCLL, and RT cases (Fig. 4A–D).
Based on our proposed heat value formula, the heat values in the heat

value image were less than 0.5 in analyzed ROIs, thus the contrast of the
generated heat value image is very limited. Instead of directly converting
the heat value image to the heatmap, we first accentuated heat values by
multiplying by a factor of 2.0 to increase the contrast, followed by heatmap
conversion based on the scaled heat value image for better visualization.
By multiplying the heat values by a factor of 2.0, the resulted heat values
were still in the range of 0.0 to 1.0, without value saturation. We applied
Otsu’s method to identify the optimal threshold for each heat value image
and regarded the segmented foreground as PC areas.
For an objective quantification of the heat value image, we went a step

further and generated a heat value histogram for each heat value image
(Fig. 4E). Based on the obtained histograms, we employed the F-score (a
measure of a test’s accuracy using the following formula: F-score= 2.0 ×
(precision × recall)/(precision+ recall)) to identify two heat value thresh-
olds and achieve an optimal separation performance among the three
entities (Supplementary Fig. 5). The two-sided Welch’s t test was used to
quantify the difference between diseases. Furthermore, we employed the
mean value from the ROI heat value histogram to evaluate the diagnostic
performance (Supplementary Fig. 6).

RESULTS
Heatmaps were generated based on heat values per tile inside each
ROI of the three disease phases (CLL, aCLL, and RT), as illustrated in

Fig. 4A–D. The intensity of the heat value image (Fig. 4B) was
accentuated to sharpen color separation, then converted to a
heatmap (Fig. 4C), to recreate the PCs (Fig. 4D). Areas with high
heat values (in the yellow spectrum) correspond to tiles harboring
cells with increased nuclear size and mean intensity (PCs in CLL cases
and expanded/confluent PCs in aCLL and RT cases) (Fig. 4D). In
contrast, areas with low heat values (in the blue spectrum) correspond
to tiles with decreased nuclear size and mean intensity, representing
small neoplastic lymphocytes surrounding PCs (Fig. 4D). This
recreation of PCs based on objective measures of nuclear attributes
(size and intensity) provides on its own a visual aid to assess the
extent of large cells (with large nuclei) depicted in yellow in relation to
small neoplastic lymphocytes in blue, in the three disease phases:
Yellow foci confined in small PC, and occupying a subset of the ROI,
with predominantly blue areas composed of small-size neoplastic
lymphocytes with decreased intensity in CLL; Expanding yellow foci
creating confluent PCs, with decreasing background blue areas in
aCLL; Predominantly yellow ROI with sheets of large cells, resulting
from fusing of PCs, and virtually absent blue areas in RT (Fig. 4D).
Based on obtained histograms from heat value images (Fig. 4E), we

isolated two optimal heat value thresholds based on the F-score to
achieve the best separation among the three disease phases: 0.228,
below which the case was most likely to be CLL (the top histogram in
Fig. 4E represents a CLL ROI with heat values ranging between 0.16
and 0.19, and peaking at 0.18 approximately); and 0.288, above which
the case was most likely to be RT (the bottom histogram in Fig. 4E
represents an RT ROI with heat values ranging between 0.20 and 0.30,
and peaking at 0.27 approximately); Cases with heat values ranging
between 0.228 and 0.288 were most likely aCLL (the middle
histogram in Fig. 4E represents an aCLL ROI with heat values ranging
between 0.28 and 0.35, and peaking at 0.29 approximately). We then
plotted the mean heat value frequencies of all ROI from the three
phases: There was a significant difference in the ranges of mean heat
value frequencies for CLL, aCLL, and RT, which were 0.168 to 0.233,
0.212 to 0.307, and 0.261 to 0.353, respectively (Supplementary Fig. 5).
Besides, we performed a diagnostic study to evaluate the mean

heat value’s prediction ability via repeated splitting analysis, where
we randomly split the whole dataset into training and testing
cohorts 100 times, stratified at patient level with a ratio of 1:1. The
splitting was performed patient-wise, insead of ROI-wise, to avoid
selecting ROIs belonging to the same patients in both the training
and testing sets. The accuracy and area under the curve diagnostic
predictive values using data from nuclear size alone were 0.658
(±0.115) and 0.771 (±0.096), respectively; and using mean nuclear
intensity, 0.679 (±0.094) and 0.841 (±0.052), respectively; with a
noticeable increase using heat value frequencies (integrating the
nuclear size and mean nuclear intensity) reaching 0.813 (±0.0630)
and 0.885 (±0.109), respectively (Supplementary Fig. 6).

Fig. 3 Generation of heat values by integrating nuclear size and intensity analysis. A Regions of interest (ROIs) are split into multiple tiles
by setting two parameters, the tile strength and stride; B this is followed by feature analysis of the combined size/intensity of segmented
nulcei inside each tile; C the estimated heat value per tile is generated by integrating nuclear size and mean intensity using the following
formula: 1

Nnuc

PNnuc
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S nucið Þ ´ Imean nucið Þp

. nuc nuclear, S size, I intensity.
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DISCUSSION
Clinically, accelerated phase disease behaves similarly to typical CLL
in terms of B-symptoms, disease bulk, functional status and clinical
stage, these patients often have higher serum LDH levels and their
lymphoma is ZAP70 positive. Some data suggest that the prognosis
of aCLL patients is poorer than that of CLL patients. In contrast,
patients with unequivocal disease transformation, or RT, are
notoriously more symptomatic, have lower performance status,
higher serum LDH levels, and higher uptake on PET-CT scan17.
Although in some practices, aCLL cases are still treated like CLL
(combination therapy of ibrutinib and venetoclax)17, switching into a
more intensive treatment regimen in patients with aCLL is deployed
in some settings with better clinical response, especially in CLL
patients who become refractory to treatment. Thus the importance
of distinguishing classic CLL from its accelerated phase morpholo-
gically, corroborating with clinical suspicion of disease progression
and the need to upgrade treatment. However data from prospective
clinical trials is needed to better assess the long term benefits/
outcomes of aggressive therapeutic strategies in aCLL.
Hematopathologists rely on low magnification microscopic

examination to characterize the shape of PCs in patients with
history of CLL. Small round and distinct PCs are indicative of an
underlying CLL, whereas confluent PCs occupying larger areas are
more indicative of underlying disease acceleration (aCLL). Lastly,
expanded sheets of large cells, beyond a recognizable PC
morphology, is diagnostic of RT. Analysis of PC expansion/ formation
of sheets of large cells is conducted based on the assessment of H&E
glass slide at low magnification, coupled with Ki67 stain that may
highlight the extent of large cell (~mitotically active cell) expansion.
Gine et al. defined expanded PC in aCLL as broader than a 20x field7.
However, in our experience, this assessment is morphologist-
dependent and varies greatly depending on the exposure of
hematopathologists to these particular cases9.
We previously published an AI-based “disease diagnosis model” in

which we isolated “nuclear/cellular morphologic features” that we

implemented as biomarkers to enhance diagnostic accuracy in CLL,
aCLL and RT13. In the present study, we sought to design an
“architecture-based” tool to enhance the delineation of PCs, by
implementing a novel technique that integrates nuclear size and
intensity. By applying this tool, large nuclei (~large cells) with high
intensity, and small nuclei (~small cells) with low intensity occupy
the yellow and blue spectra, respectively (Fig. 4A–D). Using this
method, we were able to enhance the visualization of large cell
overall architectural distribution and extent in studied ROI: confined
yellow foci in PCs in CLL, confluent yellow foci representing fused
PCs in aCLL, or yellow sheets replacing the vast majority of the ROI
in RT (Fig. 4D). As we were able to reproduce these results across ROI
from the three disease phases, we propose that this tool, with
further fine-tuning, could be implemented in the future to further
assist in the visual assessment of challenging cases with features of
disease acceleration/transformation, especially in limited core-
needle biopsy specimens.
In addition to visually mapping the extent of large cells, we plotted

the heat values of all tiles to their frequencies per ROI (Fig. 4E). This
technique is likened to a cell size and intensity “sorter”. By repeating
this process in all ROIs, we isolated two heat value coefficients: 0.228,
below which a case is most likely to be classified as CLL; and 0.288,
above which a case is most likely to be classified as RT. Cases lying in
between these two coefficients are most likely to be aCLL. We also
noticed that heat value frequencies in CLL ROI had a single Gaussian-
like prominent peak, as illustrated in the example we provide in the
top histogram in Fig. 4E. Heat value frequencies that demonstrated a
smearing pattern, with no definitive dominating peak in aCLL cases,
are illustrated in the example we provide in the middle histogram in
Fig. 4E. Finally, RT cases demonstrated a right-shifted distribution of
heat value distribution frequency, with some tiles occupying
increasing heat values, as illustrated in the example we provide in
the bottom histogram in Fig. 4E.
To test the generalizability of the findings described above, we

plotted the mean heat value in all ROIs (y axis) across the three

Fig. 4 Heatmap generation based on heat values per tile for each of the three disease entities. A Based on image obtained from selected
regions of interest (ROIs), B heat value images are generated, C followed by heat map generation and D accentuation to re-create proliferation
centers. Areas with high heat value frequencies (yellow spectrum) correspond to tiles harboring cells with increased nuclear size and mean
intensity (PCs in CLL cases and expanded/confluent PCs in aCLL and RT cases). In contrast, areas with low heat value frequencies (blue
spectrum) correspond to tiles with decreased nuclear size and mean intensity (small neoplastic lymphocytes surrounding PCs); E a heat value
frequency histogram per tile per ROI is then created for each case: the two optimal thresholds isolated to obtain the highest separation value
among the three disease entities were: 0.228, below which the case was most likely to be CLL, and 0.288 above which the case was most likely
to be RT. Cases with heat value frequencies ranging between 0.228 and 0.288 were most likely aCLL cases.
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disease phases (x axis). The range of mean heat value frequencies
demonstrated a statistically significant separation among the three
phases in most cases, with one aCLL case overlapping with RT range,
and a few CLL cases overlapping with aCLL range (Supplementary
Fig. 5). Overlapping ranges among entities on rare occasions could
be attributed to ROI sampling of active PCs belonging to the far end
side of disease spectrum, as PCs in CLL and aCLL are dynamic
environments and could be captured at any point during their
growth, including phases in which a minor percentage of them have
crossed over to a more progressive state (CLL into aCLL or aCLL into
RT). In the future, the robustness of our model will need to be tested
in a multicenter environment with different pathologists.
Our data suggest that this model, based on objective

architectural analysis of PCs, is able to achieve a high diagnostic
accuracy. Although our design was performed on excisional biopsy
specimens, which are inherently more informative morphologically,
the end goal of this model is to deploy it in limited biopsy
specimens. In fact, core-needle biopsy is nowadays a more common
method of tissue sampling in the setting of clinical suspicion of
underlying disease progression/transformation, as these specimens
can be obtained more rapidly and are minimally invasive in
comparison to excisional biopsies. However, core-needle biopsy
specimens provide an incomplete picture of the underlying nodal
architecture, a keystone in the assessment of accelerated disease,
and delivering an accurate and confident diagnosis in this
challenging scenario may be achieved by the assistance of
objective tools. We suggest that our model, with further refinement
and sophistication, can be ultimately deployed to this aim.
In summary, our study provides an architecture-based tool to

objectively assess the extent of PCs in CLL cases with clinical
suspicion of disease progression, based on the integrative analysis
of cell nuclear size and mean nuclear intensity and automation of
PC mapping. Using the mean heat value of all cases, we were able
to reliably separate the three disease phases in question with
sensitive diagnostic predictive values. We suggest that an ROI
mean heat value less than 0.228 is predictive of CLL, and a value
more than 0.288 is predictive of RT. aCLL cases demonstrate a
mean heat value ranging from 0.228 to 0.288. These thresholds
need to be independently verified using external image sets to
ensure generalizability. Nevertheless, this work highlights the
value of using AI-based tools in identifying clinically meaningful
cellular and architectural features, to enhance disease diagnosis in
challenging clinical scenarios. Our model, although trained and
tested on excisional biopsy specimens, could be potentially very
useful in the assessment of limited core-needle biopsy specimens,
where typically only a small percentage of PCs is available for
morphologic evaluation of architecture and extent of growth.

DATA AVAILABILITY
All the original data of this study will be available upon reasonable request to the
corresponding authors, including, but not limited to, a request to reproduce results in
this manuscript.
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