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Small B-cell lymphoid neoplasms (SBCLNs) are a heterogeneous group of diseases characterized by malignant clonal proliferation of
mature B-cells. However, the classification of SBCLNs remains a challenge, especially in cases where histopathological analysis is
unavailable or those with atypical laboratory findings or equivocal pathologic data. In this study, gene expression profiling of
1039 samples from 27 gene expression omnibus (GEO) datasets was first investigated to select highly and differentially expressed
genes among SBCLNs. Samples from 57 SBCLN cases and 102 nonmalignant control samples were used to train a classifier using
the NanoString platform. The classifier was built by employing a cascade binary classification method based on the random forest
algorithm with 35 refined gene signatures. Cases were successively classified as chronic lymphocytic leukemia/small lymphocytic
lymphoma, conventional mantle cell lymphoma, follicular lymphoma, leukemic non-nodal mantle cell lymphoma, marginal zone
lymphoma, lymphoplasmacytic lymphoma/Waldenström’s macroglobulinemia, and other undetermined. The classifier algorithm
was then validated using an independent cohort of 197 patients with SBCLNs. Under the distribution of our validation cohort, the
overall sensitivity and specificity of proposed algorithm model were >95%, respectively, for all the cases with tumor cell content
greater than 0.72. Combined with additional genetic aberrations including IGH-BCL2 translocation, MYD88 L265P mutation, and
BRAF V600E mutation, the optimal sensitivity and specificity were respectively found at 0.88 and 0.98. In conclusion, the established
algorithm demonstrated to be an effective and valuable ancillary diagnostic approach for the sub-classification and pathologic
investigation of SBCLN in daily practice.
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INTRODUCTION
Small B-cell lymphoid neoplasms (SBCLNs) are a group of diseases
characterized by malignant clonal proliferation of mature B-cells,
mainly including chronic lymphocytic leukemia/small lymphocytic
lymphoma (CLL/SLL), follicular lymphoma (FL), mantle cell
lymphoma (MCL), nodal marginal zone lymphoma (NMZL), splenic
marginal zone lymphoma (SMZL), extranodal marginal zone
lymphoma of mucosa-associated lymphoid tissue (MALTL),
lymphoplasmacytic lymphoma/Waldenström’s macroglobulinemia
(LPL/WM), and hairy cell leukemia (HCL)1. Because of the
heterogeneity and complexity, routine diagnosis of SBCLN is still
challenging, which usually requires experienced pathological
examination and secondary review.
Researchers have revealed that the pathogenesis of some

entities is characterized by distinct chromosomal aberrations,
somatic mutations, or gene expression signatures, for instance,
IGH-BCL2 in FL, IGH-CCND1 in MCL, +12 in CLL/SLL, BIRC3-MALT1
fusion in MALTL, MYD88 L265P in LPL/WM, BRAF V600E in HCL,
and SOX11 overexpression in conventional MCL (cMCL)2–7. Thus,
the diagnosis of SBCLN usually not only depends on pathological

examination but also is completed by immunophenotypic,
cytogenetic, and genomic methods, especially in cases that
mainly present with leukemic involvement. Nonetheless, even
with integrated diagnostic approaches, precise diagnosis of
SBCLNs remains difficult in some cases with atypical laboratory
findings.
Previous studies have demonstrated that the classification of

lymphoid neoplasms based on gene expression signatures was
feasible and accurate8–11. To date, technologies have been
developed to reliably quantify low-throughput gene expression
in RNA from either fresh/frozen or formalin-fixed paraffin-
embedded (FFPE) tissue, allowing the development of clinically
relevant RNA assays9–14. However, most of these assays focused
on binary classification problems and only address a small
proportion of lymphoid neoplasms, limiting their application in
clinical practice. Here, by taking advantage of the NanoString
platform, we developed a 35-gene expression-based classifier
used for the classification of 6 main SBCLN entities. Initial
candidate gene markers were selected from global gene
expression profiling (GEP) analyses. Then, the classifier was trained
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by 57 SBCLN and 102 nonmalignant control cases, and further
validated by an independent cohort of 197 SBCLN cases. In
conclusion, we demonstrated a robust, highly accurate, and
validated assay for SBCLN distinction using the NanoString
platform.

MATERIALS AND METHODS
Patients and samples
In this study, total 159 cases were retrospectively enrolled in the training
cohort, and 197 SBCLN cases were independently recruited in the
validation cohort in our center (Tongji Hospital, Wuhan, China). Among
the training cohort, 57 subjects were diagnosed as SBCLN, including 7 CLL/
SLL, 13 FL, 9 cMCL, 4 leukemic non-nodal MCL (nnMCL), 19 MZL (NMZL,
MALT, or SMZL), 5 LPL/WM cases, and 102 non-malignant biopsies from
the sites where SBCLNs frequently developed (Table 1) (Supplementary
Tables S1–4). For SBCLN cases, the training cohort included 8 fresh samples
and 49 formalin-fixed paraffin-embedded (FFPE) samples, and the
validation cohort consisted of 32 fresh samples and 165 FFPE samples.
All diagnoses were established by at least three experienced hemato-
pathologists according to the 2016 World Health Classification criteria.
Tumor cell content was determined by the flow cytometric analysis in
matched fresh samples, which was defined as the ratio of the number of
tumor cells to the number of total nucleated cells. For samples with FFPE
tissues only, tumor cell content was determined by at least three

experienced pathologists (Supplementary Methods). Tumor cell content
was required no less than 0.9 in each sample of the training cohort and
was at least 0.3 in each sample of the validation cohort. The study was
conducted in strict accordance with the guidelines formulated by the
Tongji Hospital Ethics Committee (IRB ID: TJ-S1203), Wuhan, China. Written
informed consent was obtained from each recruited subject in strict
accordance with the Declaration of Helsinki.
Genomic DNA and RNA were extracted with AllPrep FFPE DNA/RNA Kit

(Qiagen, Germany) for FFPE samples or AllPrep DNA/RNA Mini Kit (Qiagen,
Germany) for fresh/frozen samples by following the manufacturer’s
instructions. The concentrations of genomic DNA and RNA were
quantitatively determined on a Qubit 3.0 fluorometer (Thermo Fisher
Scientific, USA).

Immunophenotypic, cytogenetic, and mutational analyses
Immunophenotype, several distinct chromosomal aberrations and somatic
mutations were detected and available in all SBCLN cases of the training
and validation cohorts at diagnosis. Immunohistochemical (IHC) staining of
FFPE tissues and flow cytometry of fresh samples were performed for CD5,
CD10 (MME), Cyclin D1 (CCND1), SOX11, CD38 and other additional
biomarkers according to the manufacturer’s protocols. The fluorescence
in situ hybridization (FISH) study performed on FFPE tissue sections or fixed
cells from cytogenetic cultures was used to interrogate breaks of the loci
BCL2, CCND1, MALT1, and IGH (dual color, break apart rearrangement
probes) and identify chromosomal abnormalities, including +12 and del
(7q), using commercially available probes (Abbott Molecular, USA). Sanger
Sequencing was conducted for determining at least 5 hotspot mutations
including EZH2 exon18 (Y646), MYD88 exon5 (L265P), BRAF exon15
(V600E), CXCR4 exon2 (S338X), and NOTCH2 exon34 (R2400X). (Supple-
mentary Table S5). A next-generation sequencing (NGS) panel targeted
157 lymphoma-associated genes was also designed to identify other
mutations in several samples (Designstudio Sequencing, Illumina, USA)
(Supplementary Table S6). The sequencing library was prepared with 20 ng
of input DNA per sample and sequenced to 1000× coverage. Generated
variants were annotated using Annovar15. Exonic nonsynonymous or splice
donor/acceptor site variants with reads ≥20 were initially filtered. Then,
variants with a population frequency > 0.0001 in the gnomAD database
(gnomAD.broadinstitute.org) were excluded unless they were relevant to
lymphoma according to the COSMIC database (https://cancer.sanger.ac.uk/
cosmic/).

Quantitative gene expression study
Digital gene expression of samples in the training and validation cohorts
was performed with 200 ng of RNA input on the NanoString platform
(NanoString Technologies, USA), using the “high sensitivity” setting on the
nCounter™ PrepStation and 550 field of view (FOV) on the nCounter™
Analyzer. Normalization of digital gene expression was performed using
the geometric mean of the counts of appropriate housekeeping genes for
the training cohort and the validation cohort separately. The normalized
data were then log2 transformed for further analyses.

Statistical analysis
All statistical analyses were conducted by employing R v3.6.2. Differences
were evaluated by using Fisher’s exact test for categorical variables. The
significance of the co-occurrence or mutual exclusivity was also assessed
by utilizing Fisher’s exact test. Nonpaired t tests were used to compare the
gene expression level between groups, as appropriate. Unless otherwise
specified, a two-tailed P < 0.05 was considered statistically significant for all
analyses.

RESULTS
Selecting initial candidate genes for classification
In a first step towards developing a classification model, the global
GEP of 1039 samples from 27 Gene Expression Omnibus (GEO)
datasets (Affymetrix U133 plus 2.0 microarrays, Thermo Fisher
Scientific, USA) was initially investigated, including 808 SBCLNs
and 231 nonmalignant control cases (Supplementary Tables S7-
S8) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi). Raw data of
all the samples were normalized together using the 3′ robust
multiarray average (3′ RMA) and analyzed by using one-way
between-subject analysis of variance (ANOVA). For each subgroup,

Table 1. Patient demographic data and disease characteristics of
training and testing cohort.

Training cohort
(n= 57)

Validation cohort
(n= 197)

Age of onset (years)

Median (range) 53 (22~81) 58 (13~85)

Gender

Male 31 118

Female 26 79

Subtype

CLL/SLL 7 14

cMCL 9 27

nnMCL 4 3

FL 13 65

MZL 19 67

LPL/WM 5 17

Other SBCLNs 0 4

Sample type

FFPE tissue 49 166

Fresh/Frozen sample 8 31

Location

Lymph node/
Waldeyer’s ring

35 101

Peripheral blood/
bone marrow

0 8

Extranodal tissue 14 65

Other 8 23

Tumor cell content

>0.9 57 11

0.7~0.9 0 84

0.3~0.7 0 102

CLL/SLL chronic lymphocytic leukemia/small lymphocytic lymphoma, cMCL
conventional mantle cell lymphoma, nnMCL leukemic non-nodal mantle
cell lymphoma, FL follicular lymphoma, MZL marginal zone lymphoma, LPL/
WM lymphoplasmacytic lymphoma/Waldenström’s macroglobulinemia,
FFPE formalin-fixed paraffin-embedded.

W. Zhang et al.

633

Modern Pathology (2022) 35:632 – 639

https://cancer.sanger.ac.uk/cosmic/
https://cancer.sanger.ac.uk/cosmic/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi


differentially expressed genes were selected by one-vs-rest or
one-vs-one strategies (Supplementary Table S9). Then, 136 genes
were revealed as differentially expressed genes with absolute
log2-fold change > 1 and a significant FDR (<0.05). Moreover, 18
other differentially expressed genes referring to associated studies
were also included as an essential supplement10,13,16 (Supple-
mentary Table S9). Based on the geNorm algorithm, 13 genes with
stable expression were selected as potential housekeeping
genes17. Subsequently, these genes were validated in the GEP of
1039 samples using an unsupervised hierarchical clustering
approach. Clustering results demonstrated that samples were
dominantly distributed in terms of their respective entity and
status of sample purification. Compared with the whole gene

expression signature, the targeted 154-gene expression signature
performed better in clustering samples, because most subgroups
had fewer cluster branches and most cluster branches gathered
more samples of the same subgroup (Fig. 1) (Supplementary
Fig. S1) (Supplementary Table S8). The clustering results indicated
that our 154-gene expression signature was feasible for the
classification of SBCLN. Thus, a NanoString codeset panel
consisting of 154 candidate genes for the classification of SBCLN,
along with 13 potential housekeeping genes, was designed for
quantitating gene signatures (NanoString Technologies, USA)
(Supplementary Table S9). In this panel, capture probes in the
codeset were designed to target conserved sequences within all
transcripts of each gene.

Fig. 1 Unsupervised hierarchical clustering of expression profiling of 1039 SBCLN and control cases. A tree diagram based on the whole
gene expression signature is shown above. A tree diagram based on the targeted 154-gene expression signature is shown on the bottom.
Each black box highlights a major distribution branch of a reliable SBCLN entity.

Fig. 2 Developing a molecular classifier of SBCLN based on the NanoString Platform. A Hierarchical clustering heatmap based on targeted
genes of 57 SBCLN cases in the training cohort. Genes are shown in rows, and cases are shown in columns in the heatmap (red: high
expression, green: low expression). Each SBCLN entity is represented by a different color. B Digital gene expression data of 57 SBCLN cases
shown in a two-dimensional tSNE plot. Targeted genes were selected and processed by the tSNE algorithm with a perplexity score of 30.
Major SBCLN entities are highlighted in different colors. C Schematic representation of the predictor model. In the lower part, the genes used
for the classification in each step are indicated.
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Quantification of targeted gene expression based on the
NanoString platform
Targeted gene expression was thereby quantified in 57 SBCLN
and 102 control cases of the training cohort. At the beginning of
data processing, 4 genes (ACTB, GAPDH, GUK1, and GUSB) were
selected as the final subset of housekeeping genes because the
other 9 potential housekeeping genes had low expression levels
or a high coefficient of variation across the samples. First, the
normalized 154-gene signature of 57 SBCLN cases was analyzed
by an unsupervised hierarchical clustering approach. Cases were
dominantly clustered into 5 main branches according to their
respective subgroup: one was mostly made up of FL cases (13/
14, 93%); one included the majority of MZL (16/19, 84.2%) but
mingled with 3 nnMCL cases; one was mainly composed of
cMCL cases (9/10, 90%); another consisted of all CLL/SLL cases
(7/7, 100%); and the last one was exclusively comprised of LPL
cases (5/5, 100%) (Fig. 2A). Overall, ~87.7% (50/57) of cases were
appropriately clustered, suggesting the feasibility of subsequent
development of a classification model using the NanoString
platform.

Development of SBCLN classification model
To overcome the difficulty of multiclassification, the model was
decomposed into a cascade of one-vs-rest binary classifiers used
for multistep discriminations, which was similar to that described
by Navarro et al.16. Each classifier was trained based on the
random forest algorithm using the scikit-learn library for the
Python programming language (Python Software Foundation,
https://www.python.org/) with standard parameters. The order of
an SBCLN entity to discriminate was decided according to
Davies-Bouldin Index (DBI). Entities with lower DBI were more
distinguishable from the other entities and were given priority to
discriminate (Supplementary Table S10) (Fig. 2B). In each step,
the classifier will determine if a given sample belongs to a
designated SBCLN subgroup. Cases were classified as the
respective SBCLN if they had a ≥0.5 prediction probability of
belonging to the designated entity. The leave-one-out (LOO)
cross-validation strategy was used to evaluate the sensitivity and
specificity of each classifier. For each classifier, the importance
Gini index was used to evaluate the classification ability of all 154
candidate genes, and only the top valuable upregulated genes in
discriminating an entity were selected as the final subset
of markers to build the one-vs-rest classifier of the entity

(Supplementary Table S11). Details of the modeling method are
described in the Supplementary Methods. Finally, with a set of 35
genes for the classification in total (Table 2) (Supplementary
Fig. S2), our model was trained to successively determine
whether a sample belongs to CLL/SLL, cMCL, FL, nnMCL, MZL,
LPL/WM, or ultimately annotated as “undetermined cases”
(Fig. 2C). CLL/SLL was the first entity to discriminate in the
model, with 5 differentially upregulated genes (BTLA, ARHGAP44,
ZBTB24, CLNK, and CD200), and was followed by cMCL with 6
markers, FL with 8 markers, nnMCL with 4 markers, MZL with 6
markers, and LPL/WM with 6 markers. Among them, only CCND1
was used two or more times for prediction (both cMCL and
nnMCL). The entire model was internally evaluated with the LOO
cross-validation strategy. Focusing on SBCLN cases, the overall
predictive accuracy was 91.2% (52/57) (Fig. 3A). Five SBCLN cases
not classified into their belonging entities, including 1 FL, 1
nnMCL, and 3 MZL cases, were all predicted as “undetermined
cases”. This result demonstrated a 100% specificity of our model
since no case was misclassified (Supplementary Table S12).

Performance of the model in validation cohort
To determine the validity and reproducibility of the model in an
extended and independent dataset, we constructed a validation
cohort consisting of 197 SBCLN samples. The tumor cell content
ranged from 0.32 to 0.94 (mean 0.67). Digital gene expression data
of the validation cohort were independently normalized using 4
final housekeeping genes. Using the 35-gene signature model,
137 cases in total were identified as one of the 6 SBCLN entities,
and the other 60 cases were ultimately undetermined (Fig. 4).
Among those 137 cases, initial pathological diagnosis was
incorrect in 1 FL and 3 MZL cases, and histopathological
examination was unavailable in the other 13 cases (Supplemen-
tary Table S4), but these 17 cases were all accurately classified into
their respective entities by our model. However, misclassification
of our model was found in 1 cMCL, 1 FL, 1MZL, and 1 LPL/WM.
Overall, the sensitivity and specificity of our model were 0.68 (133/
197) and 0.97 (133/137), respectively (Fig. 3B). The fixation method
did not affect the predictive accuracy of model since the
differences of predictive accuracy between fresh samples and
FFPE samples was not significant (Supplementary Fig. S3).
As expected, the mean tumor cell content in ultimately

undetermined cases was significantly lower than that in deter-
mined cases (0.55 vs 0.72, p < 0.05), which indicated that tumor
cell content had a great impact on the predictive probability of a
case belonging to the respective entity. To make >90% of cases
with a tumor cell content no less than the cutoff value have a >0.5
probability of belonging to their respective SBCLN entity, the
minimal cutoffs of the tumor cell content were determined to be
0.41 in CLL/SLL, 0.48 in cMCL, 0.72 in FL, 0.78 in nnMCL, 0.68 in
MZL, and 0.71 in LPL/WM (Fig. 5A). These results also indicated
that our model is more tolerant to lower tumor cell contents in
CLL and cMCL samples than in other SBCLN samples. Under the
distribution of our validation cohort (Fig. 5B), the overall sensitivity
and specificity of our model were both >95% within cases with
tumor cell content ≥0.72 (Fig. 5C) (Supplementary Table S13).
We further studied whether combining with other specific

chromosomal aberrations and recurrent mutations used in the
diagnosis could improve the sensitivity or specificity of our model
(Supplementary Table S4). Among 137 cases identified as one of
the 6 frequent SBCLN entities, NGS was additionally performed in
4 pathologically misdiagnosed cases, 4 molecular misclassified
cases, and 17 other cases with unavailable pathological examina-
tion (Fig. 5D). Additional genetic events were considered a
combined marker of the model only if it could accurately reclassify
≥2 cases. Combined with EZH2 Y646, MYD88 L265P, and BRAF
V600E mutations, the overall sensitivity and specificity were 0.77
(151/197) and 0.98 (151/154), respectively. If only IGH-BCL2 was
included as a marker of FL, the overall sensitivity and specificity

Table 2. Genes that finally selected in building the molecular
classifier.

Classification Differentially expressed genes

CLL/SLL BTLA, ARHGAP44, ZBTB24, CLNK, CD200

cMCL SOX11, PLEKHG4B, ZNF711, CCND1a, FAM129C, ABCA6

FL BCL2, EML6, ELL3, CTLA4, FCER2, IGF2BP3, RGS13, EBF1

nnMCL CCND1a, ZNF331, PAX5, CNR1

MZL FCRLA, HDAC9, MS4A1, SIGLEC6, ZBTB32, BHLHE41

LPL/WM CCR2, HOPX, FKBP11, ANK3, ZNF226, MFAP5, MEF2A

Additional markers

FL IGH-BCL2 translocation or t(14;18)(q32;q21)

LPL/WM MYD88 L265P mutation

HCL BRAF V600E mutation

CLL/SLL chronic lymphocytic leukemia/small lymphocytic lymphoma, cMCL
conventional mantle cell lymphoma, nnMCL leukemic non-nodal mantle
cell lymphoma, FL follicular lymphoma, MZL marginal zone lymphoma, LPL/
WM lymphoplasmacytic lymphoma/Waldenström’s macroglobulinemia,
HCL hairy-cell leukemia.
aCCND1 gene was selected as marker in both cMCL and nnMCL.
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were 0.82 (162/197) and 0.98 (152/155), respectively. If IGH-BCL2,
MYD88 L265P, and BRAF V600E were included as supplemental
markers of the model, HCL cases could be additionally identified,
and the overall sensitivity and specificity could reach 0.88 (173/
197) and 0.98 (173/176), respectively (Fig. 3C) (Fig. 5E). More than
95% of cases were correctly classified within cases with tumor cell
content ≥0.69 (Fig. 5F).

DISCUSSION
The diagnosis of SBCLNs has been notoriously difficult, especially
in cases that predominantly had lymphocytosis but did not have
lymphadenopathy or accessible tissues for diagnosis. Previous
studies have indicated that gene expression signatures could
facilitate the diagnosis and classification of SBCLNs, but most of
them were largely of binary nature. In this study, using the
NanoString platform, we developed a 35-gene signature-based
RNA assay to identify major subtypes of SBCLNs, which was
validated by an independent cohort. The overall accuracy was
>95% within highly purified cases and could be higher if IGH-BCL2,
MYD88 L265P, and BRAF V600E were included as supplemental

markers. Since this approach requires only very limited laboratory
handling and could reliably quantify the expression of a set of
genes without interobserver variability, it exhibited potential
clinical application prospects as an ancillary method of classifica-
tion of SBCLN.
There were many difficulties in the development of the model.

First, in consideration of the difficulty of an intralaboratory large-
scale GEP or RNA-sequencing study, a total of 1039 available
global GEP data was analyzed to select differentially expressed
genes, and related reports were also referred to include
supplemental gene markers. Thus, a panel with an expanded
number of 154 candidate genes was designed, since the
unsupervised hierarchical clustering result demonstrated that
targeted gene expression signatures were basically capable of
SBCLN classification. However, potential deviations could result
from different submitters. Therefore, targeted gene expression
was also reliably quantified under the same experimental
conditions using the NanoString Platform, and the classification
capability of each candidate gene was reevaluated. In the
subsequent modeling process, a subset of classification markers
was finally refined to an optimal size with 35 genes in total,

Fig. 3 Performance of the model in each cohort. A Self validation of the model in the training cohort using the LOO cross-validation strategy.
B Performance of the model in the validation cohort. C Performance of the model combined with 3 additional markers in the validation
cohort. HCL cases could be additionally identified by BRAF V600E.
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which further increased the clinical applicability of the assay.
Second, multiclassification has usually been much more difficult
than binary classification. To cope with this problem, we split the
multiclass classification model into a cascade of binary classifiers.
The order of an SBCLN entity to discriminate and an optimal size
of gene markers were determined according to popular
machine-learning methods, which are detailed in the Supple-
mentary Methods. Thus, each binary classifier was finally
developed based on the random forest algorithm because one-
dimensionalization in advance was not necessary, and this
method performed best within multiple machine-learning
algorithms, especially in the classification of entities difficult to
distinguish from one another, including nnMCL, MZL, and LPL/
WM18. Third, it was more challenging for the multiclassification
model that samples for routine tests were usually inconvenient
to purify. We did not include more tumor samples to serve the
model better since it was difficult to collect highly purified
samples with complete immunophenotypic, cytogenetic, and
mutational results. Therefore, 102 nonmalignant biopsies from
the sites where SBCLNs frequently developed were included as
control samples to standardize the model. As expected, the
inclusion of a large number of control samples reduced the
sensitivity of the model, especially to samples with low tumor
cell content; however, it increased the specificity of the model. It
should be noted that the validity of our model was evaluated
based on our given validation set, and the tumor cell content in
each sample was ≥0.3. However, the predictive specificity of the
model did not significantly decrease in samples with low tumor
cell content (Fig. 5C). Thus, what limited the clinical applicability
of the assay is that the predictive sensitivity decreased when the
model was applied to samples with low tumor cell content. To
address this problem, minimum tumor cell content was
determined to be 0.72 for reliable classification, since each

qualified sample has a ≥95% probability of being correctly
classified. Another approach was, as one of the ancillary
diagnostic methods, the accuracy of the classification could be
improved if specific genetic or cytogenetic aberrations were also
detected. The IGH-BCL2 translocation is a hallmark of FL and is
present in 80% FL cases and even 90% in low-grade FL cases,
but rarely identified (3%) in non-FL SBCLN cases19,20. Similarly,
MYD88 L265P and BRAF V600E mutation was specifically
detected in >90% LPL/WM and HCL cases, respectively. By
contrast, both mutations were present in <5% other subtypes of
SBCLN3,16,21,22. Therefore, if IGH-BCL2 translocation, MYD88
L265P mutation, and BRAF V600E mutation were also detected
and the results were combined with the model, the overall
predictive sensitivity could increase to 0.88, and was markedly
improved in samples with low tumor cell content. However, the
modified model still needs to be improved in the discrimination
of the MZL cases with low tumor cell content.
We also further focused on our final subset of gene markers.

Constitutive CCND1 and BCL2 overexpression, which is due to
chromatin translocation, is a well-known hallmark of MCL and
FL, respectively. BTLA is an immune checkpoint suppressor B
lymphocyte attenuator, and overexpression of BTLA in CLL/SLL,
which probably leads to immune escape and involved in the
pathogenesis of CLL/SLL, has been described by several
studies23,24. The neural transcription factor SOX11 has emerged
as a cooperative key oncogenic factor in the pathogenesis of
cMCL, whereas it is not expressed in normal B cells or virtually in
any other mature B-cell neoplasm16,25. SOX11 is even also highly
expressed in a minority of cMCL characterized by CCND2/CCND3
rearrangements with IGK/IGL enhancers26. Therefore, it has also
been instrumental to specifically distinguish cMCL from
other SBCLNs. Previous research has illustrated that IGF2BP3
(IMP-3) overexpression is seemingly restricted to several

Fig. 4 The molecular classifier based on machine learning. A multistep molecular discrimination of 197 SBCLN cases in the validation cohort
is shown in a heatmap based on digital expression data. Each column represents an SBCLN case, and each row represents a variable gene in
the heatmap (red: high expression, green: low expression; scaled by z statistics). In each row, the gene expression of the remaining cases was
scaled by z statistics. All selected genes were included in the refined subset and clustered according to their corresponding entities. Tumor
cell content, pathological diagnosis, predictive subgroup by molecular classifier, and integrated diagnosis are indicated above.
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epithelial malignancies correlated with aggressive behavior and
lymphomas originating from physiologic germinal center B cells.
Hodgkin lymphoma, Burkitt lymphoma, FL, and diffuse large
B-cell lymphoma all demonstrated IMP-3 positivity in >80% of
cases27. Consistent with these findings, our data also showed
that IMP-3 was a well-performing biomarker in distinguishing FL
from other SBCLN cases. Moreover, some genes encoding
clusters of differentiation antigens were also selected in the
refined subset, including MME (CD10), FCER2 (CD23), and MS4A1
(CD20). However, most differentially expressed genes were not
reported by previous studies, and further research is necessary
since the association between gene overexpression and
oncogenesis has not been elucidated.
There are some limitations of the model that need to be

improved. First, more highly purified SBCLN cases should be
included in further studies, especially cases of entities with limited
sample sizes or those not included in our training cohort. Second,
a larger panel of genes need to be further evaluated if the

challenge lies in discriminating samples with low tumor cell
content because it is usually inconvenient to enrich tumor cells in
routine practice, especially for samples with only FFPE tissue
available. Third, more cases with atypical/inconclusive genetic
findings or belong to rare subtypes should also be included in the
validation cohort, such as CLL carrying the IGH-BCL2 translocation,
FL without the IGH-BCL2 translocation, Cyclin D1-negative cMCL,
or SBCLN, not otherwise specified (NOS) cases. Regarding
experimental methodology, consistency among different tissue
types, serial dilution experiments, and intra- and interlaboratory
reproducibility of the model should be determined. These works
can improve the accuracy and extend the clinical applicability of
the model.
In conclusion, we described a feasible model based on a digital

gene expression platform that can classify SBCLNs independent of
sample type with a good performance. Despite some limitations,
our work provides a novel alternative for the routine diagnosis and
subclassification of SBCLNs.

Fig. 5 Performance of the model in validation cohort. A Scatter plot demonstrating the correlation between the tumor cell content of the
sample and the probability of the case belonging to the respective entity. Colored plots indicated correctively classified cases. Black circles
represented misclassified cases. B Fan chart showing the distribution of cases in the validation cohort. PTFL, pediatric-type FL; tMZL,
transformed MZL. C Cumulative sensitivity and specificity of the model. The overall sensitivity and specificity of our model were both >95%
empirically within cases with tumor cell content no less than 0.72 in our validation cohort. D Immunophenotypic and genetic features of 25
cases studied by NGS. Features are shown as rows, and samples are shown as columns. Immunophenotypic analysis was performed by flow
cytometry. Cytogenetic studies were examined by FISH study. Genetic variations were generated by targeted NGS. The initial
histopathological diagnosis, molecular entity predicted by the model, and final diagnosis are indicated above. E Modification of the model
with IGH-BCL2 translocation, MYD88 L265P mutation, and BRAF V600E mutation added. F Cumulative sensitivity and specificity of the modified
model. The overall sensitivity and specificity of our model were both >95% empirically within cases with tumor cell content no less than 0.69
in our validation cohort.
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AVAILABILITY OF DATA AND MATERIALS
The NanoString profiling of the training cohort and the validation cohort has been
deposited in the Gene Expression Omnibus (GEO) and is accessible through GEO
Series accession number GSE183030.
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