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Deep learning trained on hematoxylin and eosin tumor region
of Interest predicts HER2 status and trastuzumab treatment
response in HER2+ breast cancer
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The current standard of care for many patients with HER2-positive breast cancer is neoadjuvant chemotherapy in combination with
anti-HER2 agents, based on HER2 amplification as detected by in situ hybridization (ISH) or protein immunohistochemistry (IHC).
However, hematoxylin & eosin (H&E) tumor stains are more commonly available, and accurate prediction of HER2 status and anti-
HER2 treatment response from H&E would reduce costs and increase the speed of treatment selection. Computational algorithms
for H&E have been effective in predicting a variety of cancer features and clinical outcomes, including moderate success in
predicting HER2 status. In this work, we present a novel convolutional neural network (CNN) approach able to predict HER2 status
with increased accuracy over prior methods. We trained a CNN classifier on 188 H&E whole slide images (WSIs) manually annotated
for tumor Regions of interest (ROIs) by our pathology team. Our classifier achieved an area under the curve (AUC) of 0.90 in cross-
validation of slide-level HER2 status and 0.81 on an independent TCGA test set. Within slides, we observed strong agreement
between pathologist annotated ROIs and blinded computational predictions of tumor regions / HER2 status. Moreover, we trained
our classifier on pre-treatment samples from 187 HER2+ patients that subsequently received trastuzumab therapy. Our classifier
achieved an AUC of 0.80 in a five-fold cross validation. Our work provides an H&E-based algorithm that can predict HER2 status and
trastuzumab response in breast cancer at an accuracy that may benefit clinical evaluations.
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INTRODUCTION
Human epidermal growth factor 2 (HER2) is a proto-oncogene that
is amplified in 15–20% of breast cancer cases1. In the absence of
systemic adjuvant therapy, HER2 gene amplification or protein
overexpression is associated with aggressive clinical behavior and
poor survival outcome2,3. Fortunately, anti-HER2 treatments such
as trastuzumab significantly improve survival outcome4. Response
and overall survival rates of trastuzumab treatment, in combina-
tion with chemotherapy, for HER2+ cases for metastatic breast
cancer range from 10–41% and 56–85% respectively, while the
response and survival rates for non-metastatic cases range from
50–70% and 56–88%5–14. As a result, HER2 testing is routinely
applied in invasive breast cancer cases and used as the sole
biomarker for anti-HER2 treatment15,16. However not all clinically
defined HER2+ cases respond to treatment nor do tumors lacking
HER2 amplification16. Current ASCO/CAP16 standards for deter-
mining HER2 gene amplification and protein overexpression are
in situ hybridization (ISH) and immunohistochemistry (IHC)
respectively16–18, though discordance between ISH and IHC is
not uncommon and can lead to HER2+ overdiagnosis. One
solution may be hematoxylin & eosin (H&E) images, which are
commonly generated during pathological analysis and widely

abundant, providing opportunities for novel data-driven compu-
tational methods. Machine learning-based predictors trained on
annotated H&E data could be a potent technology to improve the
speed, accuracy, and cost of predicting HER2 status and anti-HER2
treatment response.
In recent years, there has been a growth in machine learning

approaches, especially deep learning, in the field of pathology19.
These typically utilize Convolutional Neural Network (CNN)
architectures, such as AlexNet20, GoogleNet21, or ResNet22, etc.,
pre-trained on generic images, and then fine-tune them by re-
training the last layers for a specific classification task. This
approach is typically referred to as “transfer-learning”. In contrast,
the CNN models can be trained using a “full-training” strategy,
where no pre-training is utilized, and all CNN parameters are
trained using the training dataset of interest. Representative
examples of CNN-based models for pathology applications
include tumor/benign classification23–26, predicting mutations
in key genes23,24,27,28, cancer subtype classification and
morphology analysis23,29, and treatment outcome prediction30,31.
These models have shown impressive performance, demonstrat-
ing that subtle molecular features of cancer may be discernible
from H&E images.
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The objective of this work is to provide a deep learning
framework to predict HER2 status and response to trastuzumab
therapy from breast cancer H&E slides. Recent studies have
addressed aspects of this problem with moderate success32–34. In
this work, we trained a HER2 status predictor model on 188 HER2±
H&E slides generated from the Yale Pathology electronic database
(Yale HER2 cohort) and utilized 187 HER2± H&E slides from The
Cancer Genomic Atlas (TCGA) BRCA cohort as an independent test
set. For trastuzumab response prediction, we used a cohort of 85
pre-treatment HER2+ samples from the Yale Pathology electronic
database (Yale Response cohort). In our approach, we employed
both transfer and full training strategies. Importantly, we utilized
tiles from H&E Whole Slide Images (WSIs), manually annotated for
ROIs by our pathology team.
We demonstrate that the use of tile-level annotations sig-

nificantly improves classification accuracy compared to previous
approaches for both HER2 status and trastuzumab response.
Figure 1 shows an overview of our approach.

MATERIALS AND METHODS
Data and study design
Approval of human tissue data. All tissues and data were retrieved under
permission from the Yale Human Investigation Committee protocol
#9505008219 to DLR

Yale HER2 cohort. 188 HER2 positive and negative invasive breast
carcinomas were identified by retrospective search of the Yale Pathology
electronic database with HER2 positive cases defined as those with 3+
score by immunohistochemistry (IHC) as defined by American Society of
Clinical Oncology/College of American Pathologists (ASCO/CAP) clinical

practice guidelines18. The samples were reviewed prior to scanning to
ensure they were strong complete membranous staining. These were
selected for the training component to avoid any ambiguity. H&E slides
generated at Yale School of Medicine include 93 HER2+ and 95 HER2−
slides. The slides were scanned at Yale Pathology Tissue Services and
underwent a slide quality check before they went into the scanner. Broken
slides, slides with broken coverslips, and slides with no/minimal tissue
were removed. The tissue samples were scanned using Aperio ScanScope
Console (v10.2.0.2352) using bright field whole slides scanning at 20×
magnification.

TCGA HER2 cohort. A total of 668 TCGA-BRCA HER2± samples with
available HER2 status were downloaded from the GDC portal. Slides were
visually inspected by our pathology team to exclude low-quality samples
with tissue folding or those that appeared to be from frozen tissue. A total
of 187 samples (92 HER2− and 95 HER2+) were retained for use as
independent test set.

Yale trastuzumab response cohort. The response cohort cases were
identified also by retrospective search of the Yale Pathology electronic
database. Cases included those patients with a pre-treatment breast core
biopsy with HER2 positive invasive breast carcinoma who then received
neoadjuvant targeted therapy with trastuzumab± pertuzumab prior to
definitive surgery. HER2 positivity was defined as previously described for
the HER2 negative/positive cohort. The response to targeted therapy was
obtained from the pathology reports of the surgical resection specimens
and dichotomized into responders or non-responders. Those with a
complete pathologic response, defined as no residual invasive, lympho-
vascular invasion or metastatic carcinoma, were designated as responders
(n= 36). Cases with only residual in situ carcinoma were included in
the responder category. Those cases with any amount of residual invasive
carcinoma, lymphovascular invasion or metastatic carcinoma were
categorized as non-responders (n= 49).

Fig. 1 Datasets and study design for HER2 status and Trastuzumab response classification. a Datasets generated and used for training
and testing the models. b Number of tiles in each class. The whole TCGA-BRCA slides as an independent test set were used for testing
(we only showed proportion of tiles corresponding to only tumor regions here). For the response model, we only used the tumor regions to
train and test the model which the proportion of tiles in each class are depicted here. c The main steps for preprocessing of slides and
training the model. Our pathology team performed quality checks and annotated the ROIs in every slide to distinguish HER2+ tumor regions,
HER2− tumor regions, and other non-tumor regions. In the preprocessing step, slides were tiled into 512 × 512 pixel windows, and
background tiles were removed. Data were randomly split into 70% for training and 30% for testing for both Yale cohorts. The TCGA-BRCA
cohort was used to independently validate the HER2 status prediction model. Data augmentation and color normalization were
utilized to increase reproducibility. Classes were balanced with down- and up- sampling. Tiles were randomly sorted and converted into
TFRecords to train the inception v3-based model. Test data was used to assess model performance. Predictions were visualized on WSIs
with heatmaps.
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Data preparation
Data annotation. Annotation of digital slides was performed, circling
areas of invasive carcinoma ROIs. Regions of necrosis, in situ carcinoma or
benign stroma and epithelium were excluded. The images were annotated
with ROIs associated to HER2± tumor area (TA) by a senior breast
pathologist. The annotations were marked tumor boundaries and
annotated by Aperio ImageScope software35. The annotations were
exported from the Aperio software in The Extensible Markup Language
(XML) format, including X and Y coordinates corresponding to
the annotated regions. We used these coordinates for each slide image
to tile these regions separately from the rest of the image, labeled as HER2
+ or HER2− class.

Data prep-processing. Yale cohort slides were randomly split and
assigned to 70% for training and 30% for testing. Image slides were tiled
into non-overlapping patches of 512 × 512 pixels in 20× magnification.
Regions with excess background or containing no tissue as well as regions
excess fat were removed as previously described24. Tiles were shuffled and
assigned to Tensorflow Records (TFRecords). To mitigate the effects of class
imbalance, we utilized undersampling of the majority class for two-class
classification and undersampling and oversampling of the minority and
majority classes respectively for three-class classification.

Data augmentation and normalization. Data augmentation was per-
formed on training tiles with 90-, 180-, and 270-degree rotations and as
well as horizontal and vertical flips. To standardize the color space and
address potential batch-effects, we utilized a deep learning-based
generative model to normalize the stain color across training and
independent test data sets36. The normalization method is fully
unsupervised and does not utilize class label information in the normal-
ization process.

Model training and assessment
CNN architecture and training. We utilized an Inception v3 architecture36

to predict HER2 status in breast cancer and trastuzumab treatment in
HER2+ samples. Models were trained using both transfer learning and
full training strategies. Transfer learning model parameters were set
according to optimal values from the ImageNet competition37. The
parameters of the last layer of the network were fine-tuned on samples
using back propagation. To quantify the impact of ROIs on training, we
utilized three different training schemes to predict the HER2 status. 1.
Unannotated two-way classifier: Tiles were assigned the label according
to the WSI (Positive or Negative) and ROIs were not taken into
consideration in training. 2. Annotated two-way classifier: Only tiles
falling within the ROIs were utilized in training. Exterior regions
(including stromal cells, necrotic cells and/or mixed of tumor and
normal cells) were not taken into consideration for training and within
ROI tiles were assigned the WSI label. 3. Annotated three-way classifier:
Both within ROIs and exterior regions were utilized to train a multi-way
classifier. Within ROI tiles were labeled as Positive or Negative according
to the WSI label. Tiles in the exterior regions were labeled as “Other”
independent of the WSI label. A similar strategy was taken to train a
binary classifier for the trastuzumab response predictor. A softmax link
function was utilized as loss and predicted probabilities were calculated
for each tile. We used RMSProp69 optimization with learning rate of 0.1,
weight decay of 0.9, momentum of 0.9, and epsilon of 1.0 to train the
model (Fig. 1).

Model assessment. Model performance was evaluated on test tiles. Slide-
level probabilities were calculated by averaging the output probabilities for
HER2+ and HER2− classes and the final slide-level label was decided using
a 0.5 cutoff threshold on the aggregate probabilities. Model performance
was assessed on a per-tile and a per-slide basis. The ROC curves and the
corresponding AUC were calculated, and 95% Confidence Intervals (CIs)
were estimated by 1000 iterations of the bootstrap method38. For the
treatment response predictor, we also utilized a 5-fold cross validation,
which was possible due to the smaller number of samples. The mean and
standard deviation of AUC values were calculated using prediction on
each fold.

Computational configuration. All analyses were performed in Python.
Inception V3 code was adopted from24. Images were analyzed and
processed using OpenSlide. Classification metrics were calculated using
the Scikit-learn package39. All of the computational tasks were performed
on Massachusetts Green High Performance Computing Cluster (MGHPCC)
on nodes with the following specification: 8 CPUs with 64 GB RAM, Tesla
V100 GPUs with 256 GB RAM. TensorFlow and TF-slim documentations and
NVIDIA GPUs support were followed to setup and configure CUDA 8.0
Toolkit and cuDNN v5.1.

RESULTS
HER2 status classification using unannotated slides
As a base model and for benchmarking with previous approaches,
we trained a CNN model to predict HER2 status using
unannotated slides from the Yale HER2 cohort (93 HER2+ and
95 HER2−). In this classification scheme (two-way unannotated,
Methods) WSIs were tiled to non-overlapping regions and each
tile was assigned the label of its corresponding slide (HER2+ or
HER2−). The CNN model was trained using both transfer learning
as well as full training. Prediction on the left-out data showed a
slide-level AUC 0.81 (95% CI, 0.65–0.92) in transfer learning and
AUC 0.82 (95% CI, 0.66–0.92) in the fully trained model. At the tile-
level the model achieved an AUC of 0.65 (95% CI, 0.63–0.66) in
transfer learning and 0.65 (95% CI, 0.63–0.65) in the fully trained
model (Fig. 2). In the following sections, we will present
classification schemes that improve on these widely used two-
way classifiers, resulting in significant gains in model accuracy and
generalizability.

HER2 status classification using annotated slides
We hypothesized that using tiles from ROIs may reduce
irrelevant features and enable the CNN to better learn features
specific to HER2± tumor status. Our pathology team annotated
the Yale HER2 cohort to mark the regions corresponding to the
invasive tumor cells while excluding regions such as necrosis,
in situ carcinoma, benign stroma and epithelium. Each slide was
masked according to these manual annotations, then broken
into tiles for analysis with each tile categorized as tumor or
Other. The tumor tiles were categorized as either HER2+ or
HER2−, yielding 3 classes for training: HER2+, HER2− and Other.
To draw direct comparison with the previous classifier, we

Fig. 2 HER2 status classification using unannotated slides. AUC/ROC for HER2 status classification at the slide-level (a) and at the tile-level
(b) for both transfer learning and the fully trained models.
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trained another two-way classifier, this time trained on HER2±
tiles only (two-way annotated, Methods). Figure 3a, b presents
the AUC values of the CNN classifier for the two-way annotated
model using both full training and transfer learning approaches.
The model achieved a slide-level AUC of 0.90 (95% CI, 0.79–0.97)
and a tile-level AUC of 0.77 (95% CI, 0.76–0.77) in the transfer
learning approach, and AUC of 0.89 (95% CI, 0.78–0.96) and a
tile-level AUC of 0.75 (95% CI, 0.74–0.75) in the fully trained
model. We generated a heatmap using tile-predicted probabil-
ities to visualize the predictions made by the model (Fig. 3d
middle column). Although the prediction performance at the
slide-level is high, the tile-level heatmaps do not show the same
level of performance compared with tile-level pathologist
annotations (Fig. 3d first column yellow regions).
Next, we tested whether including tiles from exterior regions of

ROIs can improve the tile-level accuracies and ROI visualizations
by heatmaps. Our rationale for including these tiles was that the
classifier trained on HER2± tiles is likely unable to predict class
label of the exterior tiles. We trained a three-way classifier on
HER2+, HER2−, and Other tiles (annotated three-way, Methods).
Figure 3c shows the tile-level AUCs for models trained using
transfer learning or full training. The fully trained CNN model
predicted the HER2− status with an AUC of 0.88 (95% CI,
0.77–0.95), and HER2+ with an AUC of 0.88 (95% CI, 0.85–0.91)
and Other class with an AUC of 0.87 (95% CI, 0.75–0.92). The
transfer learning model achieved similar AUCs. This is a clear
increase in the CNN’s tile-level AUC compared with the two-way
annotated classifier (Fig. 3b), indicating that features from non-
HER2± tiles can decrease the confusion between HER2+ and
HER2− tiles. Figure 3d right column illustrates the heatmaps
produced by the three-way classifier. There is strong agreement

between the heatmap from the three-way classifier and pathol-
ogist annotated ROIs, indicating the utility of our model for
automatic ROI detection.

Model validation on independent test set
We next validated the HER2 status classifier on an external
independent test set. For this analysis, we downloaded a dataset
consisting of 569 HER2− and 99 HER2+ WSIs of H&E stained
sections of formalin fixed paraffin-embedded (FFPE) samples
from TCGA-BRCA cohort. Our pathology team performed quality
control to exclude samples with poor scanning and staining
quality, resulting in 197 samples being excluded from further
analysis. Slides were processed and tiled as in the Yale HER2
cohort, resulting in 176399 HER2+. and 193546 HER2− tiles.
Since the training and test cohorts were from independent
sources, we performed a stain-color normalization step using a
deep generative model36 to scale the TCGA cohort to the Yale
cohort (Methods). The CNN HER2 status classifier, trained on the
Yale HER2 cohort was used to make predictions on the TCGA
cohort. The AUCs of the model performance are 0.81 (95% CI:
0.73–0.84) at the slide-level and 0.65 (95% CI: 0.54–0.69) at the
tile-level.
We also tested whether ROIs can be accurately detected in the

test set. As in the Yale HER2 cohort, our pathology team annotated
the TCGA-BRCA cohorts to mark ROIs. Figure 4 shows two
representative samples of annotations (yellow regions), heatmaps
predicted by the unannotated two-way classifier, and the
heatmap produced by the annotated three-way classifier. There
is a high-level of agreement between the ROIs and the predictions
made by the three-way classifier, demonstrating the general-
izability of our automatic ROI detection.

Fig. 3 HER2 tumor status classification using annotated slides. AUC/ROC for HER2 status classification at the slide-level (a) and at the tile-
level (b) for both transfer learning and the fully trained models. c Tile-level AUC of the three-way classifiers. d Two representative H&E slides
from the test set with corresponding heatmaps based on predicted probabilities by the CNN model. Yellow regions indicate the ROIs
determined by our pathology team. The middle panel shows predicted heatmaps for unannotated model and the right panel shows the
predicted heatmaps from three-way annotated model.
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Deep learning predicts trastuzumab treatment outcome
We next tested whether deep learning trained on H&E slides from
HER2+ patients can predict trastuzumab treatment outcome. For
this study, we utilized pre-treatment H&E slides from the Yale
trastuzumab cohort. As with the previous samples, our pathology
team annotated the slides to mark the invasive tumor cells area. In
addition to model assessment using test sets and CI estimation
with bootstrapping, we performed a 5-fold cross validation to
more stringently assess model performance. The unannotated
model achieved an AUC of 0.68 (95% CI: 0.47–0.88) at the slide-

level and an AUC of 0.63 (95% CI: 0.62–0.65) at the tile-level. On
the other hand, the annotated models achieved an AUC of 0.80
(95% CI: 0.69–0.88) at the slide-level and an AUC of 0.73 (95% CI:
0.63–0.79) at the tile level (Fig. 5). As in the HER2 status classifier,
the improvement in AUCs shows the importance of annotations in
training of deep learning classifiers for response prediction.
We also tested whether the HER2 status classifier can directly

predict trastuzumab treatment response. This is important as
HER2 status is the clinical biomarker for anti-HER2 treatment. For
this test, the Yale HER2 response data was used as input to the

Fig. 4 Representative H&E slides from TCGA test set and their predicted heatmaps. Left column slides along with indicated ROIs. Middle
panel: Two-way unannotated classifier heatmaps. Right panel: Three-way annotated classifier heatmaps.

Fig. 5 Trastuzumab response prediction. a Slide-level and Tile-level AUC/ROC for both annotated and unannotated models using
bootstrapping and 5-fold cross validation. b Confusion matrix of the HER2 status classifier used as Trastuzumab response predictor.
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HER2 status CNN-classifier, and the predictions made by the
classifier (HER2±) were tabulated against the response labels.
Figure 5b shows the confusion matrix. As shown, 50% of HER2+
samples were predicted as responders, while 65% of the HER2−
samples were predicted as non-responders. These results demon-
strate that although HER2 status, as determined by traditional IHC/
ISH methods, can moderately predict trastuzumab response, more
specifically trained models are needed to better identify patients
who would benefit from trastuzumab treatment therapy. Taken
together, these results support the feasibility of image-based
biomarkers for prediction of trastuzumab therapy and the ability
of the deep learning model to identify morphological variations
associated with treatment outcome. Trastuzumab response
predictors, such as the one presented in this study, have the
potential to augment HER2 status testing for treatment recom-
mendation in HER2+ patients.

DISCUSSION
In this work, we presented CNN-based classifiers for determining
HER2 status and trastuzumab response prediction. Using high-
quality slides carefully annotated by expert pathologists, we were
able to reduce the feature space and hence the number of
required samples for training our classifiers. To minimize hetero-
geneity and avoid confusion with borderline cases during training,
we only utilized ROIs from the Yale cohort cases with IHC score 3+
to train the model. The testing was performed on all TCGA
samples that passed the quality control (Methods). A two-way
classifier of HER2 status, trained on within-tumor ROI tiles
achieved a slide-level AUC of 0.90 in cross-validation and 0.81
on an independent test set. To increase the tile-level accuracy and
the predicted ROI heatmaps, we devised a three-way classification
scheme and trained a multi-way classifier using tiles from within
as well as the exterior ROI regions. The three-way classifier was
able to distinguish tiles from each class with high accuracy (AUCs:
HER2+ 0.88, HER2− 0.88, Other: 0.87). Heatmaps produced by the
three-way classifier show a remarkable agreement with pathology
annotations, both in the slides from the training set as well as the
slides from the independent set.
Three recent studies have also addressed aspects of this

problem. Bychkov et al.34, investigated whether predicting
HER2 status using a CNN model can guide the choice of
therapy. The study utilized cancer tissue samples from FinProg
patient series40, the FinProg validation series41, and the FinHer
clinical trial42, all of which had HER2 amplification determined
by CISH. Their CNN model, trained on random tile crops of size
950 × 950 from 693 H&E-stained patient samples from the
FinProg series was able to predict tile-level HER2 status with
AUC 0.70 (95% CI, 0.63–0.77) in a 5-fold cross validation and AUC
0.67 (95% CI, 0.62–0.71) on 712 test images from the FinHer
dataset. They did not report slide-level AUCs. In their
approaches, only tiles from the center crop (2100 × 2100 pixels)
of the WSI were used to test the prediction performance,
whereas in our approach tile-level AUC was estimated using all
test tiles. As such, direct comparison between the methods is
confounded by their test-tile selection procedure. On the other
hand, our ensemble procedure for slide-level HER2 status
prediction results in a significant increase in AUCs, demonstrat-
ing the robustness and the generalizability of our approach.
They also devised a score for HER2 status (H&E-ERBB2 score) and
reported that CISH HER2+ patients with high H&E-ERBB2 score
treated with trastuzumab had a more favorable distant disease-
free survival rate than those with a low H&E-ERBB2 score (Hazard
Ratio, 0.37; 95% CI, 0.15–0.93; P= 0.034). CISH HER2+/ high H&E-
ERBB2-positive patients not treated with trastuzumab also
exhibited less favorable disease-free survival (Hazard ratio,
2.03; 95% CI, 0.69–5.94; P= 0.20). These findings indicate that
an H&E-based score can contribute to a more accurate

prediction of trastuzumab efficacy than CISH alone, but at the
same time it is critical to further improve on these AUC values to
optimize applicability to clinical practice.
In another related study Rawat et al.33 trained a patch-based

CNN classifier on 939 TCGA H&E images with patch-sizes of 224 ×
224. Their model achieved a slide-level HER2 AUC of 0.71 (TCGA,
n= 124) in a 5-fold cross validation. They also tested the
generalizability of their model using an independent cohort from
The Australian Breast Cancer Tissue Bank (ABCTB)40. Their model
achieved a slide-level Her2 AUC= 0.79 (ABCTB, n= 2487). Inter-
estingly, this AUC is larger than their within-TCGA cross-validation
AUC (0.71), on which their model was trained, presumably due to
the higher quality of ABCTB slides. In both cases, our cross-
validation and independent test AUC on TCGA cohort (0.9, and
0.81) improves upon these results.
Finally, Naik et al.32, developed a ReceptorNet ER+/ER− binary

classifier trained on patches sampled from 2535 H&E WSIs from
Australian Breast Cancer Tissue Bank (ABCTB) and 1014 H&E WSIs
from 939 patients from TCGA with ER, PR, and HER2 status
determined by pathologists using IHC. Their classifier achieved an
Area Under the Curve (AUC) of 0.899 (95% CI: 0.884–0.913) on
cross-validation and an AUC of 0.92 (95% CI: 0.892–0.946) on the
test set. They reported that the ER+/ER− classifier performed
significantly better on HER2− samples (AUC= 0.927, 95% CI:
0.912–0.943) as compared to HER2 samples (AUC= 0.768, 95% CI:
0.719–0.813). Additionally, they trained and evaluated their
classifier to predict PR and HER2 status and obtained an AUC of
0.810 (95% CI: 0.769–0.846) on PR and an AUC of 0.778 (95% CI:
0.730–0.825) on HER2.
A key improvement of our method compared to these previous

approaches is our use of tumor Regions of Interest (ROI)
annotations during training. These annotations allowed us to
train and evaluate the three-way classification model for HER2+,
HER2−, and non-tumor tiles within each WSI. In contrast, previous
approaches have utilized a weakly supervised two-way (HER2
+/HER2−) classification model based on slide-level rather than tile
level annotations. On the other hand, reliance of our models on
manually annotated ROIs make the approach less generalizable to
other cancer types where such detailed annotations are not
readily available. This is a potential drawback of our approach,
however, tissue imaging is rapidly progressing in scale and we
anticipate that annotated training datasets as well as increasingly
accurate computational tumor ROI predictors will become more
prevalent.
Another strength of our method is the use of deep learning-

based color normalization36 to remove batch-effects and improve
generalizability to independent datasets. We utilized a deep
learning-based color normalization scheme developed by Zanjani
et al.36. Color and intensity variations between H&E samples from
different medical centers or even within the same laboratory
samples generated at various trials or time periods is common43.
Variations in specimen sample preparation protocol, staining
protocols, scanning, and imaging device characteristics are some
of the contributing factors. As such, H&E stain color normalization
has been studied and used in deep learning approaches44–46.
Recently43, Howard et al. showed that features extracted by deep
learning models trained on H&E images vary substantially across
data sets. They point out that color normalization alone may not
be sufficient to address confounding factors and generalizability
of deep learning models to independent datasets remains a
challenging task. However, this may be limited to more subtle
molecular features of cancer. In our case, color normalization
resulted in a small increase in model accuracy, and further
investigation of similar effect are likely important to under-
standing the variations in predictive accuracy across different
cohorts.
Taken together, the significant improvement in slide-level and

tile-level AUCs relative to those from our unannotated model and
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previous results32–34 indicate the importance of using pathology
annotation to guide targeted feature learning.
Although the response rate to trastuzumab therapy in HER2+

patients has been good, augmenting HER2 status determination
with more accurate methodologies for treatment response
prediction has the potential to improve patient care. Using pre-
treatment samples from HER2+ positive patients with known
trastuzumab response, we trained a classifier able to accurately
predict response (AUC: 0.80; 5-fold cross validation). In contrast,
Bychkov et al.34 showed that their HER2 status score was
associated with survival hazard ratio on a trastuzumab-treated
cohort. That approach, while conceptually informative, lacks the
direct clinical applicability of a binary response predictor as we
have presented in this study. Indeed, we showed that the
HER2 status classifier is a weak predictor of trastuzumab response.
In contrast the classifier trained on pre-treatment samples
performs significantly better, demonstrating the value of directly
predicting anti-HER2 response efficacy and suggesting the need
for additional biomarkers to augment HER2 status for treatment
recommendation.
In summary, the methodology that we have developed in this

study provides an accurate and reproducible H&E-based approach
for detection of HER2 status and response to trastuzumab therapy.
Given that many new drugs have emerged for treatment of
patients that express HER2, a combination of an AI classifier with
conventional methods might improve the ability to select which
HER2 drug is most likely to benefit each patient. Future
prospective trials in the neoadjuvant setting are being considered.
Furthermore, we anticipate that this approach will be general-
izable to other cancer types and treatment outcome predictions.
Identification and mapping of predictive features extracted by the
CNN models on the H&E images can increase the interpretability
of the results and aid in diagnostics. In future work, we plan to
investigate the hierarchy of features extracted from H&E images
for predicting HE2 status and response to trastuzumab.
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