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Standardized programmed death-ligand 1 (PD-L1) assessment in non-small cell lung cancer (NSCLC) is challenging, owing to inter-
observer variability among pathologists and the use of different antibodies. There is a strong demand for the development of an
artificial intelligence (AI) system to obtain high-precision scores of PD-L1 expression in clinical diagnostic scenarios. We developed
an AI system using whole slide images (WSIs) of the 22c3 assay to automatically assess the tumor proportion score (TPS) of PD-L1
expression based on a deep learning (DL) model of tumor detection. Tests were performed to show the diagnostic ability of the AI
system in the 22c3 assay to assist pathologists and the reliability of the application in the SP263 assay. A robust high-performance
DL model for automated tumor detection was devised with an accuracy and specificity of 0.9326 and 0.9641, respectively, and a
concrete TPS value was obtained after tumor cell segmentation. The TPS comparison test in the 22c3 assay showed strong
consistency between the TPS calculated with the AI system and trained pathologists (R= 0.9429–0.9458). AI-assisted diagnosis test
confirmed that the repeatability and efficiency of untrained pathologists could be improved using the AI system. The Ventana PD-
L1 (SP263) assay showed high consistency in TPS calculations between the AI system and pathologists (R= 0.9787). In conclusion, a
high-precision AI system is proposed for the automated TPS assessment of PD-L1 expression in the 22c3 and SP263 assays in
NSCLC. Our study also indicates the benefits of using an AI-assisted system to improve diagnostic repeatability and efficiency for
pathologists.
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INTRODUCTION
Companion diagnostic immunohistochemistry (IHC) tests asses-
sing programmed death-ligand 1 (PD-L1) expression are widely
used to predict the response to immunotherapy as a biomarker1–3.
PD-L1 scoring the percentage of PD-L1-positive tumor cells (%TC)
is commonly recommended for immunotherapeutic categories in
several antibodies used in non-small cell lung cancer (NSCLC)4.
Immunotherapy development has increased the requirements for
the precise assessment of immune biomarkers that enable patient
selection5. However, the interpretation of PD-L1 IHC staining is a
difficult task because of the continuously variable nature of PD-L1
expression, which is characterized by intratumoral heterogeneity,
positivity on various cell types, and various antibodies with
different possible staining properties6–8. Inter-observer variability
and a lack of reproducibility between observations are some of
the common challenges in clinical practice and may contribute to
inappropriate patient stratification9–11. In addition, the calculation
of PD-L1 expression is a time-consuming process that increases
the routine workload of pathologists.
Advances in digital pathology and widely available slide

scanners have set the foundation for the clinical application of

artificial intelligence (AI) to develop assisted computer tools for
improving pathologic practice12–14. Image-processing AI has
been developed by expert systems to machine learning (ML)
and deep learning (DL) in recent decades15. DL has been used
for several whole slide image (WSI) analysis tasks, including
histopathological diagnosis16,17, cancer detection18, cell classi-
fication and enumeration19, genomic mutation and microsatel-
lite instability prediction20,21, tumor grade22, and cancer
prognostication23. The use of digital approaches improves the
quantitative diagnosis of IHC staining, such as that of human
epidermal growth factor receptor 2, indicating the potential of
AI in assisting pathologists with tumor-specific biomarkers for
stratified medicine24–26.
Several studies have used the WSI of PD-L1 slides and manual

supervision to show that image-based scoring algorithms are highly
consistent with pathologists27–29. However, limited strategies for
automated PD-L1 scoring have been proposed using deep learning
algorithms and computer approaches. Developing clinically accep-
table AI systems to automatically obtain high-precision scores on
PD-L1 antibodies and assist pathologists in clinical settings remains
challenging.
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In this study, we proposed a DL-based computational system to
automatically detect the tumor area of NSCLC and to calculate the
tumor proportion score (TPS) of PD-L1 in FDA-approved 22c3 and
SP263 assays. The TPS assessed using the AI system was compared
with that computed by the pathologists. The aim of this study was
to develop an AI system approach to assist pathologists in the
precise diagnosis of PD-L1 expression in NSCLC.

MATERIAL AND METHODS
Datasets
The datasets comprised the following five parts: (1) The DL model training
set contained 173 WSIs of the 22c3 assay for training the DL model for
tumor area detection, including 133 WSIs of resected lung adenocarci-
noma (LADC) and the remaining resected lung squamous cell carcinomas
(LSQCs), and approximately 1–5 representative tumor areas (>1mm2) were
selected from each WSI of the 22c3 assays for further model training. To
obtain a robust model, the tumor regions were evaluated by specialist
pathologists and selected with a balance of subtypes, especially in LADC,
which comprises various histological subtypes. One or two representative
non-neoplastic regions (>1mm2), including various immune cells (macro-
phages and lymphocytes), hemorrhage, necrosis, and stromal cells, were
also selected as negative inputs. A total of 563 regions were selected for
the DL model training set. (2) The DL model test set contained 114 selected
regions of 78 WSIs of the 22c3 assay and was used to evaluate the
performance of tumor area prediction and to determine the most
appropriate structure of the DL model. (3) The TPS comparison test set
contained 110 slides (55 resected samples and 55 biopsy samples) and was
used to test the consistency of TPS between that obtained by the AI
system and pathologists in the 22c3 assay; 111 regions were selected from
61 WSIs to test the tumor detection performance. (4) An AI system-assisted
test set contained 40 WSIs, including 20 resected samples and 20 biopsy
samples, and was used to test the performance of the AI-assisted
procedure of the TPS analysis for pathologists in the 22c3 assay. (5) The
Ventana PD-L1 (SP263) assay test set contained 100 WSIs, including 50
resected samples and 50 biopsy samples, and was used to test the
performance of the AI system in tumor detection and TPS evaluation in the
SP263 assay; 114 regions were selected from 61 WSIs.
All 22c3 IHC slides were selected from a collection of clinical detection

specimens at Peking University Cancer Hospital (PKUCH) and Tianjin
Medical University Cancer Hospital (TMUCH) from January 2018 to
December 2019, whereas SP263 IHC slides were collected from a collection
of experimental studies at PKUCH from October 2019 to December 2019.
The detailed dataset information is summarized in Tables S1 and S2.

PD-L1 staining and TPS interpretation by pathologists
PD-L1 staining and WSI preparation. All slides were obtained by cutting
formalin-fixed, paraffin-embedded NSCLC samples into 4 μm-thick sections
and stained with PD-L1 IHC 22c3 pharmDx assay (Dako, Carpenteria, CA,
USA) according to the standard staining protocol using the Dako
Autostainer Link 48 platform. PD-L1 IHC SP263 assays (Ventana Medical
Systems, Tucson, AZ, USA) were developed on the Ventana BenchMark
platform. All PD-L1 IHC slides were scanned using a Leica Aperio CS2 (Leica
Biosystems, Buffalo Grove, IL, USA) at 20× magnification.

TPS interpretation by pathologists. TPS was estimated as the percentage
of viable TCs showing partial or complete membrane staining5. To obtain
more detailed comparative data, the TPS values calculated by pathologists
were recorded as follows: <1, 1–2, 3–5, 5–9, 10–14, 15–19,… 90–94, 95–98,
and 99–100%, with intervals of 5% between 5 and 95% for each range. As
described in the protocols, TPS of <1% was considered negative, 1–49%
was considered low expression, and ≥50% was considered high
expression. In this study, “TPS-pathologists” refers to TPS estimated by
pathologists, “TPS-trained” to TPS estimated by trained pathologists, and
“TPS-untrained” to TPS estimated by untrained pathologists.

AI system development
Annotation procedure. All regions (tumor and stroma) in the datasets
were annotated by five pathologists using QuPath (Version 0.2.2)30. A pilot
study was performed to test the concordance of the labels from different
pathologists. The intersection over union (IoU) and concordance among
pathologists on three random slides were tested (Table S3). The regions
were then randomly assigned to five pathologists after comparing the

concordance of the manual annotations. To obtain high-quality datasets,
the labels were reviewed by a consultant pathologist to resolve any
controversy in the annotation procedure.

DL model development. Figure 1a illustrates the process of the entire AI
system. A DL model was built based on a U-Net structure, with residual
blocks in the model to accelerate convergence and avoid degradation of
the deep neural network. U-Net, which displays excellent performance in
the field of image segmentation, was employed in PD-L1 IHC WSIs for
tumor area detection. Our DL model contains an encoding component to
extract features and a follow-up decoding component to restore the image
and classify each pixel (Fig. 1b). In the training procedure, the DL model
was trained to simultaneously segment the tumor area and classify the
input region as auxiliary loss. Only the output of the tumor area
segmentation task was used to predict the tumor area.
WSIs with a resolution of 20× magnification were used for training and

testing the DL model. 256 × 256 pixel patches were randomly obtained
from the WSI annotation areas and fed into the network for model training.
The categorization labels during classification model training were set
according to whether the proportion of the tumor area in each patch was
greater than 0.75. To obtain a high-performance model, data enhance-
ments were performed during the training. Because the PD-L1 IHC slides
were collected from different hospitals and may have different staining
properties, the color of the images was also enhanced. After processing by
a trained deep neural network model, each pixel in the image was
assigned a probability value to determine whether it was in the tumor area
(>0.5) or not. In the prediction process, a sliding window (256 × 256 pixels,
step size of 128 pixels) was used; however, only the prediction results in
the middle of the window (128 × 128 pixels) were recorded.

Cell segmentation and TPS calculation. For tumor area detection using the
DL model, the tumor cells were segmented with a modified watershed
algorithm, which is a common method for peak detection in cell
segmentation, in QuPath (Version 0.2.2)30. The TPS calculation process
requires a cell-segmentation threshold and a positive discrimination
threshold. Before being applied to the entire dataset, parameter
initialization was performed on a randomly chosen group of 3–5 WSIs.
We searched for the best default thresholds for the dataset with this group
based on the specialist pathologists’ observations of the visualized cell
segmentation and positive discrimination results. The entire dataset was
processed with the adjusted thresholds, and the TPS was calculated using
the number of PD-L1-positive and -negative cells, as the ratio of the
number of PD-L1-positive tumor cells to the total number of tumor cells. In
this study, “TPS-AI” was defined as the TPS calculated by the proposed AI
system.

AI system visualization. Each IHC image showed the tumor detection
results and enabled pathologists to visualize the reliability of TPS
evaluation by the AI system. Additionally, the segmented cells were
marked on IHC images with different colors representing PD-L1-positive
or -negative status to show positive discrimination results. In the current
AI system, PD-L1-positive and -negative tumor cells are shown as red
and green dots, respectively. Thus, PD-L1 pathologists could easily
identify PD-L1-positive or -negative tumor cells to confirm the TPS
calculation.

TPS comparison test in the 22c3 assay
Six pathologists, including three highly trained pathologists (PD-L1 22c3
assay certified) and three untrained pathologists, were involved in this
study using the TPS comparison test set. The TPS assessed by the AI system
was compared with the median and average results of TPS evaluated
under a microscope by pathologists. The test time was recorded. The TPS
results from three trained pathologists were used as the ground truth. The
consistency of TPS in LADC and LSQC subtypes, specimen types, and the
two institutes was analyzed.

AI system-assisted diagnosis test in the 22c3 assay
In the AI-assisted diagnosis test, six pathologists evaluated the TPS of PD-
L1 22c3 IHC expression using the AI system-assisted test set. Three trained
pathologists evaluated the TPS only with WSIs on a computer, and three
untrained pathologists evaluated the TPS with WSIs, which contained the
pre-read results and visualized figures by the proposed AI system to mimic
a computer-aided diagnosis workflow. The time cost was recorded for each
participant with and without the aid of the AI system.
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Fig. 1 Flowchart of the study, framework, and deep learning (DL) model performance. a The design of this study was to develop an
artificial intelligence (AI) system to automatically assess the tumor proportion score (TPS) of PD-L1 expression in non-small cell lung cancer
(NSCLC). b DL model development consisting of an annotation dataset and U-Net training for testing tumor detection performance.
c Histograms of DL model performance in NSCLC and subtypes of lung adenocarcinoma (LADC) and lung squamous cell carcinoma (LSQC) in
the DL model test set (22c3 assay).
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Ventana PD-L1 (SP263) assays test
The DL model, which was trained on the 22c3 assay, was directly tested on
SP263 assays for its performance in tumor detection without additional
training or transfer learning with the Ventana PD-L1 (SP263) assay test set.
TPS was automatically calculated on SP263 WSIs using the same procedure
as the 22c3 WSIs. Two trained pathologists (J. W. and X. Y.) independently
evaluated PD-L1 (SP263) IHC slides under a microscope. The inconsistent
cases were reviewed by a third consultant pathologist (D. L.) to obtain a
consensus. The TPS of the SP263 assay in this test, which was assessed by
the AI system, was compared with the consensus results obtained by the
pathologists.

Evaluation metrics
Metrics (including precision, recall, specificity, F1-score, IoU, and accuracy)
were used in this study to evaluate the performance of the DL model for
tumor detection.

Statistics
The intraclass correlation coefficient (ICC) was used when TPS was treated
as a continuous variable among the pathologists. Pearson’s correlation
coefficient was used for comparison with TPS-AI and the median and
average continuous variables of the TPS-pathologists. Fleiss’ Kappa was
calculated for inter-pathologist agreement, and Cohen’s kappa was
calculated for the agreement of the interval variables of TPS-pathologists
and TPS-AI. The Kappa values were categorized as poor (<0.40), moderate
(0.40–0.70), or excellent (≥0.70). Statistical significance was set at p < 0.05.
All statistical analyses were performed using Python (version 3.6) with
scikit-learn and scipy.

RESULTS
Model training and performance in the 22c3 assay
The DL model was iteratively trained and subsequently evaluated
on the test set to demonstrate its ability to detect tumor areas.
The DL model achieved high performance on PD-L1 IHC WSIs. For
all cases of NSCLC, the results showed an accuracy of 0.9326,
specificity of 0.9641, precision of 0.9248, recall of 0.8609, F1-score
of 0.8871, and an IoU of 0.8051. The DL model also showed high
performance in the test sets of the LADC and LSQC subtypes.

LADCs have more complex histological structures than LSQCs and
are usually divided into several predominant subtypes. Addition-
ally, the performance of the DL model was evaluated on these
subtypes, and the model showed similarly high accuracy and
specificity in LADC subtypes. In particular, high specificity was
obtained in both LADC (0.9681) and LSQC (0.9549) and
maintained over 0.95 in any subtype of LADC to minimize the
false detection of non-neoplastic cells that possibly showed PD-L1
co-expression and influenced the TPS output. Therefore, a highly
specific and highly accurate DL model that enables automated
detection of the tumor area was prepared for the calculation of
TPS on PD-L1 WSIs. Figure 1c and Table S4 show the performance
of the experimental DL model.

TPS comparison test in the 22c3 assay
Based on tumor area detection of PD-L1 IHC WSIs by the DL model,
TPS was automatically calculated with positivity analysis after tumor
cell segmentation and DAB baseline evaluation. The TPS comparison
test set was composed of 110 WSIs, including 55 surgical samples
and biopsies from each NSCLC. Figure 2, S1, and S2 show examples
of the visualization of tumor area detection and TPS calculation in
PD-L1 IHC WSIs for the surgical samples and biopsies, respectively.
In this test set, the DL model showed high performance in

tumor area detection with an accuracy of 0.9464, specificity of
0.9594, precision of 0.9318, recall of 0.8882, F1-score of 0.9063,
and an IoU of 0.8344 (Fig. 3a and Table S4).
To test the performance of the AI system in the TPS calculation,

six pathologists, including three trained pathologists and three
untrained pathologists, examined the slides using a microscope.
Initially, the intraclass consistency of TPS-pathologists in sub-
groups of trained and untrained pathologists was compared. The
trained and untrained pathologists obtained intraclass consisten-
cies with ICC values of 0.963 (95% confidence interval [CI],
0.941–0.977) and 0.922 (95% CI, 0.879–0.952), respectively) (Fig. 3b,
Table 1, and Table S5). During the test, the untrained pathologists
had a longer average time per slide than the trained pathologists
(2.58 vs. 2.15 min).

Fig. 2 Examples of tumor detection and PD-L1 calculation. Visualization of typical examples of PD-L1 scoring in non-small cell lung cancer
(NSCLC) From left to right: PD-L1 immunohistochemistry (IHC) raw images, tumor detection, and PD-L1 calculation. PD-L1-positive and
-negative tumor cells were set as red and green dots in the PD-L1 calculation, respectively.

J. Wu et al.

406

Modern Pathology (2022) 35:403 – 411



Fig. 3 Consistency of the pathologists and the artificial intelligence (AI) system in the 22c3 assay. a Histograms of deep learning (DL)
model performance in non-small cell lung cancer (NSCLC) and subtypes of lung adenocarcinoma (LADC) and lung squamous cell carcinoma
(LSQC) in the tumor proportion score (TPS) comparison test set. b The intraclass consistency of TPS in trained and untrained pathologists.
c Consistency of TPS between AI system (TPS-AI) and average and median TPS in trained pathologists (TPS-trained) and untrained
pathologists (TPS-untrained). d TPS agreement among pathologists and AI system using intervals applied in current clinical practice.
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The TPS-AI and TPS-pathologists were then compared to show
the consistency between the AI system and pathologists; the
average and median variables of TPS-pathologists were used in
the comparison test. The results showed a high consistency
between the TPS-AI and TPS-trained (TPS-AI vs. average TPS-
trained: R= 0.9458; TPS-AI vs. median TPS-trained: R= 0.9429).
The consistency between TPS-AI and TPS-untrained was analyzed
and found to be relatively lower (TPS-AI vs. average TPS-untrained:
R= 0.9087; TPS-AI vs. median TPS-untrained: R= 0.8878) than that
of trained pathologists (Fig. 3c and Table 1).
Surgical samples and biopsies are commonly used in clinical

processes for PD-L1 detection and are included in the comparison
test. The TPS-AI in biopsies was highly consistent with that of
trained pathologists (TPS-AI vs. average TPS-trained: R= 0.9794;
TPS-AI vs. median TPS-trained: R= 0.9763), whereas a relatively
lower consistency was obtained in surgical samples (TPS-AI vs.
average TPS-trained: R= 0.8990; TPS-AI vs. median TPS-trained:
R= 0.8968). The performance of the AI system in PD-L1 IHC WSIs
from the two centers was also considered for possible staining
differences. The AI system achieved a similarly high performance
in samples from both centers: for PKUCH, TPS-AI vs. average TPS-
trained: R= 0.9444; TPS-AI vs. median TPS-trained: R= 0.9407; for
TMUCH, TPS-AI vs. average TPS-trained: R= 0.9440; TPS-AI vs.
median TPS-trained: R= 0.9477. High consistency for the NSCLC
subtypes was achieved in both LADC and LSQC: for LADC, TPS-AI
vs. average TPS-trained: R= 0.9373; TPS-AI vs. median TPS-trained:
R= 0.9333; for LSQC, TPS-AI vs. average TPS-trained: R= 0.9680;
TPS-AI vs. median TPS-trained: R= 0.9658 (Fig. S3 and S4 and
Tables S6).
In the current clinical PD-1/PD-L1 immunotherapy procedure,

TPS intervals of the 22c3 assay are commonly recommended at a
cutoff of 1 and 50% as thresholds for patient stratification for
potential pembrolizumab benefits. Therefore, the TPS-AI and TPS-
pathologists were compared using cutoffs at 1 and 50%. The
results showed that the intraclass agreement of untrained
pathologists were also lower than those of trained pathologists.
When comparing the TPS-AI and TPS-pathologists, moderate and
excellent agreement was obtained at kappa values of approxi-
mately 0.6 at TPS < 50% and 0.898 at TPS ≥ 50%, respectively.
Figure 3c, S3, and S4 and Tables S7 and S8 show the results of the
comparison of TPS-AI and TPS-pathologists in the categorized TPS.

AI system-assisted diagnosis test
The TPS comparison test showed that the proposed AI system was
highly consistent with trained pathologists in the 22c3 assay. The
AI-assisted diagnosis tests (schematic shown in Fig. S5) were then
performed to reveal the potential impact on pathologists when
evaluating TPS with the assistance of an AI system with a pre-
diagnostic analysis and visualization of PD-L1 positive/negative

tumor cells. The intraclass consistency among pathologists was
compared; the ICC of untrained pathologists who assisted with the
AI system was higher than that of trained pathologists who
calculated the TPS only with WSIs on a computer without AI
assistance (0.944 in TPS-untrained vs. 0.866 in TPS-trained) and
higher than the diagnostic procedure of untrained pathologists
under the microscope (ICC of TPS-untrained, 0.922) (Fig. 4a and
Table S9). Comparison of the TPS results between pathologists
and AI system showed a higher consistency between the
untrained pathologists and AI system in this test (average of
0.9799 for TPS-untrained vs. an average of 0.8506 for TPS-trained;
0.9701 in median TPS-untrained vs. 0.8551 in median TPS-trained)
(Table 1). Similarly, higher intraclass agreement and higher
accordance between TPS-AI and TPS-pathologists were also
achieved in untrained pathologists in the categorized TPS (Fig. S6
and Table S7).
In this test, all six pathologists evaluated the TPS using WSIs; the

three untrained pathologists spent less time than the trained
pathologists. The three trained pathologists took an average time
of 2.85 min per WSI (ranging from 2.70 to 3.03 min), whereas the
three untrained pathologists took 1.38 min per WSI (ranging from
1.30–1.48 min). With the assistance of the AI system, the time
taken for untrained pathologists was less than that of trained
pathologists, and less than the diagnosis process of PD-L1
evaluation by trained/untrained pathologists under the micro-
scope (Fig. 4b and Table S10). Therefore, the test indicated that
the AI system improved the repeatability and significantly reduced
the time cost of TPS evaluation for untrained pathologists.

Model performance and TPS comparison on Ventana PD-L1
(SP263) assays
The DL model was only trained using the 22c3 assay; therefore,
the AI system was also tested for its performance in Ventana PD-
L1 (SP263) assays to explore the reliability of a different antibody.
A similar performance of DL models in the SP263 dataset was
achieved (accuracy: 0.9624; specificity: 0.9793; precision: 0.9265;
recall: 0.8848, F1-score: 0.9025; and IoU: 0.8307) (Fig. 4c and
Table S4). High specificity and accuracy were achieved for both
LADC and LSQC (Table S4). Thus, the DL model was robust for
tumor area detection using SP263 assays.
TPS was further calculated using the AI system on 100 WSIs of

SP263 IHC staining and compared with the TPS results of
consensus from specialist pathologists. The results showed
a high consistency between the TPS-AI and TPS-pathologists
(TPS-AI vs. TPS-pathologists: R= 0.9787) (Fig. 4d and Table 1).
Similarly, high consistency was obtained in surgical samples and
biopsies and in LADC and LSQC (Fig. S7 and Table S6). In
addition, the TPS-AI and TPS-pathologists were compared using
cutoffs at 1 and 50%. The results showed moderate and

Table 1. The intraclass correlation coefficient (ICC) among pathologists in tests and consistency among TPS-AI and TPS-pathologists.

Tests Group name ICC 95% CI Comparison of average
TPS-pathologists

Comparison of median
TPS-pathologists

R value P value R value P value

TPS comparison test
set (22c3)

TPS-trained 0.963 0.941–0.977 0.9458 1.41E-54 0.9429 2.29E-53

TPS-untrained 0.922 0.879–0.952 0.9087 9.13E-43 0.8878 3.38E-38

AI-system-assisted test
set (22c3)

TPS-trained 0.866 0.787–0.922 0.8506 3.68E-12 0.8551 2.16E-12

TPS-untrained 0.944 0.907–0.968 0.9799 3.13E-28 0.9701 5.80E-25

Ventana PD-L1 (SP263)
assay test set

TPS-pathologists – – 0.9787* 3.64E-69 – –

*Comparison of consensus of TPS-pathologists; TPS-AI, TPS calculated by the AI system; TPS-pathologists, TPS evaluated by the pathologists; TPS-trained, TPS
evaluated by trained pathologists; TPS-untrained, TPS evaluated by untrained pathologists.

J. Wu et al.

408

Modern Pathology (2022) 35:403 – 411



excellent agreement of approximately 0.65 at TPS < 50% and
0.926 at TPS ≥ 50%, respectively (Fig. 4e and Table S7). Figure S8
shows examples of the visualization of the tumor area detection
and TPS calculation in SP263.

DISCUSSION
We developed a fully automated method that enables tumor
area detection and quantitative scoring of TPS in digital PD-L1
IHC slides of NSCLC. This system displayed high consistency in

Fig. 4 Artificial intelligence (AI)-assisted diagnosis test in the 22c3 and Ventana PD-L1 (SP263) assays test. a The intraclass consistency
among trained pathologists diagnosing whole slide images (WSIs) and untrained pathologists diagnosing WSIs assisted by the AI system.
b The AI system significantly reduces the time cost and improves the intraclass consistency for tumor proportion score (TPS) evaluation by
untrained pathologists. c Histograms of deep learning (DL) model performance in non-small cell lung cancer (NSCLC) and subtypes of lung
adenocarcinoma (LADC) and lung squamous cell carcinoma (LSQC) in the Ventana PD-L1 (SP263) assay test set. d Consistency between TPS-AI
and TPS-pathologists in the SP263 assay. e TPS agreement among pathologists and the AI system using intervals in the SP263 assay.
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the TPS evaluation of 22c3 (R= 0.9429–0.9458) and SP263 (R=
0.9787) assays between the AI system and trained pathologists.
Moreover, the potential benefits of the AI system in improving
the efficiency and interobserver repeatability of pathologists
were demonstrated.
Precise assessment of PD-L1 IHC expression requires specialized

training, considerable expertise, and a longer practice time for
pathologists. Consistent with the findings of previous studies,
highly trained pathologists showed higher intraclass consistency
compared to untrained pathologists31. TPS from highly trained
pathologists with high intraclass consistency as a measurement of
the ground truth was utilized. The AI system obtained a higher
consistency with trained pathologists than untrained pathologists
(R= 0.963 vs. 0.922). Therefore, the diagnostic ability of the system
could be as capable as trained pathologists and possibly higher
than that of general pathologists. Koelzer et al. trained a PD-L1
scoring algorithm for melanomas using random forest after manual
annotation and showed a high concordance with the %TC scores
generated by pathologists (R= 0.97)27. We achieved a perfor-
mance similar to that of a fully automated method that did not
require manual annotation to achieve successful PD-L1 analysis.
As TPS counting was based on PD-L1 membrane positivity on TCs,

distinguishing PD-L1 positive on non-neoplastic cells can be
challenging in PD-L1 %TC scoring. Immune cells (e.g., macrophages
and lymphocytes) also commonly express PD-L1, which may exert
an influence on %TC scoring when not clearly excluded in cancer
detection. We used supervised learning comprising U-Net and
residual blocks and trained the model with a pilot study to
standardize the tumor labels from different pathologists. To
minimize the potential influence of the non-neoplastic cells that
could co-express PD-L1, we annotated multiple non-neoplastic areas
as negative inputs and developed a highly specific DL model for TC
detection (>0.95 in all NSCLC subtypes) for use in the calculation of
PD-L1 on TCs. High-performance tumor area detection and cell
segmentation models are crucial for accurate TPS interpretation.
In the actual use scenario, the AI system was designed to

automatically process tumor detection, cell segmentation, and
positive discrimination after the pathologists uploaded WSIs into the
system. The system assists pathologists by pre-reading PD-L1 slides
and presenting quantitative values as second opinions to pathol-
ogists. Furthermore, visualization of the AI assistance system is useful
for pathologists during PD-L1 diagnosis. The AI system marks the
tumor area after detection and PD-L1-positive and -negative tumor
cells after segmentation on the images. The images with marks
would be provided for pathologists to assist them in rapidly
performing a scrutinized assessment and reducing the pathology
workload by automatically highlighting PD-L1-positive TCs.
General pathologists commonly showed higher inter-observer

variability and took a longer time than highly trained pathologists in
a conventional TPS interpretation process31. We performed an AI
system-assisted diagnosis test to reveal the impact of AI approaches
on general pathologists. By comparing the intraclass consistency
and time cost between the untrained pathologists who assisted with
the AI system and the trained pathologists without AI assistance, we
observed a higher ICC and a lower time cost in the subgroup of
untrained pathologists. This test demonstrated the potential
benefits of the AI system to help pathologists improve the
repeatability and efficiency by providing pre-read PD-L1 results
and the visualization of PD-L1 expression cells.
In current clinical practice, several assays for detecting PD-L1

expression using IHC analysis have been developed for different
platforms32. Pathologists need standardized training for different
antibodies, which significantly increases the complexity of PD-L1
interpretation in practice33. We first demonstrated the general-
ization of the AI tool using different PD-L1 antibodies. To explore
the reliability of the AI system with different antibodies, direct
testing of the DL model on SP263 without additional transfer
learning was performed; a similarly high performance was

achieved in the tumor area. Based on the characteristics of
SP263 staining, the DAB default baseline of SP263 was reset, and
the TPS assessed by the AI system was consistent with that of
specialist pathologists, indicating that the AI system can also be
used for SP263 assay analysis. This DL model showed potential
generalization to different antibodies, which may aid in the
acceleration of the standardization of different antibody protocols.
Harmonization of PD-L1 evaluation in different assays may help
standardize patient screening and accelerate clinical trials and the
application of PD1/PD-L1 target immunotherapy6.
The inconsistency between the AI system and pathologists was

mainly due to occasional poor IHC staining and different judgments
of scattered tumor cells (Fig. S9). Overstaining, cytoplasmic
positivity, or weak staining were the most common causes of
abnormal PD-L1 expression analysis. The scattered macrophages
that intermix in tumor nests were not easily identified. Such cases
are commonly controversial among pathologists, and the consis-
tency between pathologists and the AI system is also relatively
lower at a cutoff at 1%. The cell segmentation and DAB parameter
threshold must be actively adjusted by pathologists in such
situations. In this study, AI system testing in the SP263 assay
obtained a slightly higher performance than the 22c3 assay for the
SP263 dataset collected from an experimental study with higher
staining quality and homogeneity than the 22c3 dataset, which was
collected from routine clinical detection. Weak staining of PD-L1,
which could be highlighted by the AI system, might not be
observed by pathologists during diagnosis. Thus, the AI system
could reduce the omission of weakly positive expression for
pathologists in routine diagnosis.
This study had some limitations. First, only two institutes were

involved, and the dataset was relatively small. More datasets
collected from multiple institutions would increase the robustness
of the AI model, and a multicenter clinical trial is required to verify
the performance of the AI system in real-world settings. Second,
the DL-based tumor detection model, which occasionally mis-
identifies non-neoplastic cells, may cause a certain deviation in
TPS outputs. Third, the AI system was tested only on approved
22c3 and SP263 assays. The system will be validated on more
antibodies when adequate slides from other assays are available.
Finally, because of complex clinical situations, none of the DL
models always detect all rare subtypes of NSCLC, which may lead
to misjudgment of the tumor area in rare cases. Visualization of
quality control is necessary for the clinical application of AI tools,
and a Man-Machine integration34 in the PD-L1 diagnostic work-
flow is recommended.
In conclusion, our study extended tumor area detection,

automated PD-L1 scoring %TCs, and generalization of different
antibodies. The AI system achieved high consistency with
specialist pathologists in the TPS analysis of both the 22c3 and
SP263 assays. The diagnostic repeatability and efficiency could be
improved with the pre-reading quantitative results and visualiza-
tion of PD-L1 expression status provided by the AI system. This
study indicated that the AI-assisted system could be an effective
and valuable tool to overcome the challenges of PD-L1 assess-
ment in the field of immunotherapy.
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